
A Declarative Characterization of

Different Types of

Multicomponent Tree Adjoining Grammars

Laura Kallmeyer

SFB 441, University of Tübingen,
Nauklerstr: 35, D-72074 Tübingen, Germany.

Abstract. Multicomponent Tree Adjoining Grammars (MCTAG) is a
formalism that has been shown to be useful for many natural language
applications. The definition of MCTAG however is problematic since it
refers to the process of the derivation itself: a simultaneity constraint
must be respected concerning the way the members of the elementary
tree sets are added. This way of characterizing MCTAG does not allow
to abstract away from the concrete order of derivation. In this paper, we
propose an alternative definition of MCTAG that characterizes the trees
in the tree language of an MCTAG via the properties of the derivation
trees (in the underlying TAG) the MCTAG licences. This definition gives
a better understanding of the formalism, it allows a more systematic
comparison of different types of MCTAG, and, furthermore, it can be
exploited for parsing.

1 TAG and MCTAG

Tree Adjoining Grammar (TAG, [Joshi and Schabes, 1997]) is a tree-rewriting
formalism. A TAG consists of a finite set of trees (elementary trees). The nodes
of these trees are labelled with nonterminals and terminals (terminals only la-
bel leaf nodes). Starting from the elementary trees, larger trees are derived by
substitution (replacing a leaf with a new tree) and adjunction (replacing an in-
ternal node with a new tree). In case of an adjunction, the tree being adjoined
has exactly one leaf that is marked as the foot node (marked with an asterisk).
Such a tree is called an auxiliary tree. When adjoining it to a node n, in the
resulting tree, the subtree with root n from the old tree is attached to the foot
node of the auxiliary tree. Non-auxiliary elementary trees are called initial trees.
A derivation starts with an initial tree. In a final derived tree, all leaves must
have terminal labels. For a sample derivation see Fig. 1.

Definition 1 (Tree Adjoining Grammar)
A Tree Adjoining Grammar (TAG) is a tuple G = 〈I, A, N, T 〉 with

– N and T being disjoint finite sets, the nonterminals and terminals
– I being a finite set of initial trees with nonterminals N and terminals T , and
– A being a finite set of auxiliary trees with nonterminals N and terminals T .

NP

John

S

NP VP

V

laughs

VP

ADV VP∗

always

derived S
tree: NP VP

John ADV VP

always V

laughs

derivation tree:
laugh

1 2

john always

Fig. 1. TAG derivation for John always laughs

Definition 2 (TAG derivation and tree language) Let G = 〈I, A, N, T 〉
be a TAG. Let γ and γ′ be finite trees.

– γ ⇒ γ′ in G iff there is a node position p and a γ′

0 that is either elementary
or derived from some elemenentary tree such that γ′ = γ[p, γ′

0].
1

∗
⇒ is the reflexive transitive closure of ⇒.

– The tree language of G is LT (G) := {γ | there is an α ∈ I such that α
∗
⇒ γ

and all leaves in γ have terminal labels}.

TAG derivations are represented by derivation trees that record the history of
how the elementary trees are put together. A derived tree is the result of carrying
out the substitutions and adjunctions, i.e., the derivation tree describes uniquely
the derived tree. Each edge in a derivation tree stands for an adjunction or a
substitution. The edges are labelled with Gorn addresses.2 E.g., the derivation
tree in Fig. 1 indicates that the elementary tree for John is substituted for the
node at address 1 and always is adjoined at node address 2.

Definition 3 (TAG derivation tree) Let G = 〈I, A, N, T 〉 be a TAG. Let γ
be a tree derived as follows in G:

γ = γ0[p1, γ1] . . . [pk, γk] where γ0 is an instance of an elementary tree and the
substitutions/adjunctions of the γ1, . . . , γk are all the substitutions/adjunctions
to γ0 that are performed to derive γ.

Then the corresponding derivation tree has a root labelled with γ0 that has k
daugthers. The edges from γ0 to these daughters are labelled with p1, . . . , pk, and
the daughters are the derivation trees for the derivations of γ1, . . . , γk.

A TAG extension that is useful for linguistic applications is multicomponent
TAG (MCTAG, [Weir, 1988]). An MCTAG contains sets of elementary trees.
In each derivation step, one of the tree sets is chosen and its trees are added
simultaneously. Depending on the nodes to which the trees from the set attach,
different kinds of MCTAGs are distinguished: if the nodes are required to be part
of the same elementary tree, the MCTAG is tree-local, if they are required to be
part of the same tree set, the grammar is set-local and otherwise it is non-local.

1 For trees γ, γ1, . . . , γn and pairwise different node positions p1, . . . , pn in γ,
γ[p1, γ1] . . . [pn, γn] denotes the result of subsequently substituting/adjoining the
γ1, . . . , γn to the nodes in γ with addresses p1, . . . , pn respectively.

2 The root address is ǫ, and the jth child of a node with address p has address pj.

{

WH

what

}

{

NP

John

}

S’

WH S

NP S

to like

S

to be
certain

S∗

S

does S∗

S

seem S∗

Fig. 2. MCTAG derivation of what does John seem to be certain to like

Definition 4 (MCTAG) A multicomponent TAG (MCTAG) is a tuple G =
〈I, A, N, T,A〉 such that:

– GTAG := 〈I, A, N, T 〉 is a TAG, and
– A is a partition of I ∪ A, the set of elementary tree sets.

γ ⇒ γ′ is a multicomponent derivation step in G iff there is a {γ1, . . . , γk} ∈
A and there are pairwise different node addresses p1, . . . , pk in γ such that γ′ =
γ[p1, γ1] . . . [pk, γk].

A derivation starts from some α ∈ I being in a unary set. In the final derived
tree, all leaves must be labelled by terminals.

In this paper, in section 2, we argue that the simultaneity requirement of
the standard MCTAG definition is problematic and we propose an alternative
declarative definition for non-local MCTAG. Section 3 extends this to different
types of MCTAG, section 4 briefly sketches a parsing algorithm based on the
declarative characterization from section 2, and section 5 concludes.

2 A declarative characterization of MCTAG

To illustrate the idea consider the derivation in Fig. 2. The to be certain tree ad-
joins to the lower S of the like tree, the WH and NP nodes of like are substituted
for what and John respectively, and the trees for does and seem are adjoined
simultaneously to the upper S node of like and the root node of to be certain.
These last adjunctions cannot be performed before having added to be certain
to like, otherwise the simultaneity requirement cannot be satisfied. Simultaneity
imposes certain derivation orders even though different orders might lead to the
same adjunctions and substitutions: E.g., one might as well start by adding does
to like (at the higher S), then adjoin to be certain to like (at the lower S) and
then adjoin seem to certain. This yields the same adjunctions and substitutions
and the same derived tree. But the simultaneity requirement is not respected.

In contrast to this, in a TAG it is sufficient to check whether there is a
derivation tree that yields the tree in question; one can abstract away from the
order of the derivations steps. E.g., the derivation order in Fig. 1 does not matter
for the resulting derivation tree and derived tree.

For MCTAG as well one would like to abstract away from derivation orders
that do not yield different substitutions and adjunctions. One way to achieve this

MCTAG:

α A

B

ǫ

βa A

B A∗

NA

a

βb B

B∗

NA b

βc A

B A∗

NA

c

βd B

B∗

NA d

violation
of (MC):

α

ǫ

βa

violation
of first
part of (SIM):

α

ǫ

βa

1
βb

violation
of second
part of (SIM):

α

ǫ 1
βa βd

ǫ ǫ

βc βb

Fig. 3. Sample derivations not licensed in a non-local MCTAG

is to consider an MCTAG as a TAG G where the elementary trees are grouped
into pairwise disjoint sets. Because of this grouping, only some of the derivation
trees in G are licensed by the MCTAG. Namely those that satisfy the constraints
following from the multicomponent sets and the simultaneity requirement. This
is the idea we will pursue in this paper.

Each MCTAG derivation step is a sequence of substitutions and/or adjunc-
tions. Consequently, each derivation in an MCTAG G with G = 〈I, A, N, T,A〉
corresponds to a derivation in the underlying TAG GTAG := 〈I, A, N, T 〉. Let
us define the TAG derivation tree of such a multicomponent derivation as the
corresponding derivation tree in GTAG. We can then define different variants of
MCTAG by putting different constraints on this derivation tree.

In general, the TAG derivation trees for MCTAG derivations must have three
properties (see Fig. 3 for sample derivation trees not satisfying these properties):
Firstly, if an instance of an elementary tree set is used, then all trees from this
set must occur in the derivation tree. This is the multicomponent condition
that we will call (MC). Secondly, one tree from an elementary tree set cannot be
substituted or adjoined into another tree from the same set. This is the first part
of the simultaneity condition (SIM). Thirdly, two tree sets cannot be interleaved,
i.e., they must be added one after the other. Consequently, derivation trees as

(1) are not allowed with γ
(i)
1 and γ

(i)
2 being in the same tree set Γi because

(1) indicates that there is a cycle in the order of adding the tree sets: Γ2 must
be added before Γ1, Γ3 before Γ2 etc., Γm before Γm−1 and Γ1 before Γm. By
transitive closure, Γ1 must be added before Γm and Γm before Γ1. This is the
second part of the condition (SIM).

(1) γ
(1)
1 γ

(2)
1 γ

(m−1)
1 γ

(m)
1

γ
(m)
2 γ

(1)
2 . . . γ

(m−2)
2 γ

(m−1)
2

For each derivation tree D, let PD be the parent relation and DD the dom-
inance relation on the nodes in D. In other words, for two nodes n1, n2 in D,
〈n1, n2〉 ∈ PD means that n1 is the mother of n2 and 〈n1, n2〉 ∈ DD means that
n1 dominates n2.

Lemma 1 Let G = 〈I, A, N, T,A〉 be an MCTAG, GTAG := 〈I, A, N, T 〉. Let
D be a derivation tree in GTAG with the corresponding derived tree t being in
L(GTAG). Let L be the set of node labels in D.

D is a possible TAG derivation tree in G with t ∈ L(G) iff

– (MC) There are k pairwise disjoint instances Γ1, . . . , Γk of elementary tree

sets (k ≥ 1) such that L =
⋃k

i=1 Γi.
– (SIM) D satisfies the following:

(a) For all Γi, 1 ≤ i ≤ k and for all γ1, γ2 ∈ Γi being labels of nodes n1, n2

in D: if n1 6= n2, then 〈n1, n2〉 6∈ DD.
(b) For all pairwise different Γ ′

1, Γ
′

2, . . . , Γ
′

m ∈ {Γ1, . . . , Γk} (m ≥ 2)
with N1, . . . , Nm being the sets of nodes labelled with elements from
Γ ′

1, Γ
′

2, . . . , Γ
′

m respectively:

There are no n
(i)
1 , n

(i)
2 ∈ Ni (1 ≤ i ≤ m) such that 〈n

(1)
1 , n

(m)
2 〉 ∈ DD

and 〈n
(i)
1 , n

(i−1)
2 〉 ∈ DD for 2 ≤ i ≤ m.

The proof is given in [Kallmeyer, 2005]. The lemma gives us a way to char-
acterize non-local MCTAG via the properties of the TAG derivation trees the
grammar licenses.

3 Different types of MCTAG

We can define tree-local and set-local derivations by imposing further conditions.

Definition 5 Let G = 〈I, A, N, T,A〉 be an MCTAG. Let D be a TAG deriva-
tion tree for some t ∈ L(〈I, A, N, T 〉).

– D is tree-local iff
(TL) for all nodes n1, . . . , nm in D, m > 1, with labels from the same tree
set instance: there is a node n0 such that 〈n0, n1〉, . . . 〈n0, nm〉 ∈ PD.

– D is set-local iff
(SL) for all nodes n1, . . . , nm in D, m > 1, with labels from the same ele-
mentary tree set instance Γ : there are n′

1, . . . , n
′

m with labels from another
elementary tree set instance Γ ′ such that 〈n′

i, ni〉 ∈ PD for 1 ≤ i ≤ m.

Obviously, an MCTAG is tree-local/set-local iff the TAG derivation trees
licensed by it satisfy (MC), (SIM) and (TL)/(SL). Actually, if (TL) or (SL) is
required, (SIM) is not needed since it holds anyway:

Lemma 2 Let G = 〈I, A, N, T,A〉 be an MCTAG, D a TAG derivation tree for
a t ∈ L(〈I, A, N, T 〉) satisfying (MC). If D satisfies (SL) then it satisfies (SIM).

The proof is given in the appendix. Note that a derivation tree that satisfies
even (TL) trivially satisfies (SL) and therefore (SIM).

Other restrictions sometimes imposed on MCTAG are so-called dominance
links (e.g., non-local MCTAG with dominance links [Becker et al., 1991] and

(2) ... dass [es]1 der Mechaniker [t1 zu reparieren] verspricht
... that it the mechanic to repair promises
‘... that the mechanic promises to repair it’

VP

es VP∗

NPacc

ǫ

VP

NPnom VP∗ verspricht

NP VP

der Mech. NPacc zu reparieren

TAG derivation tree:
reparieren
ǫ 1

verspricht ǫ-es

1 ǫ

Mechaniker es

Fig. 4. MCTAG with dominance constraints: derivation of (2)

Vector MCTAG with Dominance Links, V-TAG, [Rambow, 1994]). A dominance
link is a constraint f ≥ n where f is a foot node in some β, n an internal node
in some γ, and β and γ belong to the same elementary tree set. It indicates that
in the final derived tree, the node f (or the root of anything adjoined to f) must
dominate n (or anything adjoined to n). For an example see Fig. 4. Es and its
trace are in the same tree set. The dominance link between them signifies that in
the derived tree es must c-command the trace. The crucial property of the TAG
derivation tree is that es is adjoined to the spine3 of verspricht which is adjoined
to reparieren at a node that dominates the substitution site of the trace ǫ-es.
Dominance constraints are restrictions on the derived trees. We can formulate a
corresponding constraint (Dom) for the possible TAG derivation trees.

We first define a relation SDD of spine-dominance on the nodes of a deriva-
tion tree D: A node n1 spine-dominates a node n2 (notation 〈n1, n2〉 ∈ SDD) if
all edge labels on the path that links them are spine addresses.4

For each chain of adjunctions γ1 adjoining γ0, γ2 to γ1, γ3 to γ2 etc. up to
some γn, in the derived tree the following holds: the foot node of γn dominates
a node k from γ0 iff this node is below the node γ1 adjoins to and γ1 spine-
dominates γn. This is the following lemma (see the appendix for the proof).

Lemma 3 Let D be a TAG derivation tree, n0, . . . , nm nodes in D with labels
γ0, . . . , γm. Let 〈ni−1, ni〉 ∈ PD with edge label pi for all 1 ≤ i ≤ m. Let γm be an
auxiliary tree such that nothing adjoins to the foot node f of γm. Furthermore,
let p be a node address in γ0 pointing at a node k.

In the corresponding derived tree the foot node f of γm dominates k (or
anything adjoined or substituted at k) iff 〈n1, nm〉 ∈ SDD and p1 prefix of p.

Now we define (Dom). For f ≥ k with f foot node of β and k node in γ,
(Dom) distinguishes three caes: (a) if k is part of a γ′ that is attached to β, then
γ′ must be adjoined to f in order to satisfy the dominance link. (b) and (c) (see

3 The spine is the path from the root to the foot node.
4 A spine address is a node address on the spine of an auxiliary tree, i.e., a prefix of

the foot node address.

Case (b):

γ

n′
← n′ prefix of n

β′

. . . ← spine dom.
β

Case (c):

γ′

n1 prefix of n2 → n1 n2

γ1 γ2

spine dom. → ← dom.
β γ

Fig. 5. Cases (b) and (c) of (Dom)

Fig. 5) correpond to the configuration of Lemma 3. With (b), if 〈γ, β〉 ∈ DD

then the foot node f of β dominates the foot node of β′, and the foot node of
β′ dominates n. With (c), if 〈γ, β〉 /∈ DD then f dominates the foot node of γ1

that dominates everything attached to k2.

Definition 6 Let G = 〈I, A, N, T,A〉 be an MCTAG, DomG a set of dominance
links for G. Let D be a TAG derivation tree for some t ∈ L(〈I, A, N, T 〉) that
satisfies (MC). D respects the dominance links in DomG iff the following holds:

(Dom) for each pair β, γ from the same elementary tree set instance with β
labelling nβ, γ labelling nγ in D such that there is a dominance constraint f ≥ k
with f foot node of β, k an internal node in γ:

(a) if 〈nβ , nγ〉 ∈ DD, then there is a node n with 〈nβ , n〉 ∈ PD with the foot node
position in β as edge label, and 〈n, nγ〉 ∈ DD

(b) if 〈nγ , nβ〉 ∈ DD, then there is a β′ labelling nβ′ and a node address k′ in
γ that is a prefix of k such that 〈nγ , nβ′〉 ∈ PD with edge label k′ and nβ′

spine-dominates nβ, and
(c) if 〈nγ , nβ〉 /∈ DD and nγ′ (with label γ′) is the lowest node dominating both

in D, then there are nγ1
, nγ2

and positions k1, k2 in γ′ such that k1 prefix of
k2 with 〈nγ′ , nγ1

〉 ∈ PD with edge label k1, 〈nγ , nγ2
〉 ∈ PD with edge label k2

and 〈nγ1
, nβ〉 ∈ SDD and 〈nγ2

, nγ〉 ∈ DD.

In MCTAG with dominance links the TAG derivation trees satisfy (MC),
(SIM) and (Dom) while in V-TAG they satisfy only (MC) and (Dom). (With
Lemma 3, this is immediate.) Fig. 6 summarizes the different formalisms.5

Local MCTAG variants:
(TL) (SL)

(MC) tree-local set-local
MCTAG MCTAG

(MC), tree-local set-local
(SIM) MCTAG MCTAG

Non-local MCTAG variants:
(Dom) –

(MC) Vector MCTAG with Vector
Dominance Links (V-TAG) MCTAG

(MC), non-local MCTAG non-local
(SIM) with dominance links MCTAG

Fig. 6. Summary of different MCTAG variants

5 Vector-MCTAG ([Rambow, 1994]) are like non-local MCTAG but without the si-
multaneity requirement.

4 Parsing

The proposed declarative definition of non-local MCTAG can be exploited for
parsing. It allows us to consider the underlying TAG derivation tree and check
whether this derivation tree satisfies (MC) and (SIM). In other words, parsing
can be done in two steps: 1. parsing in the underlying TAG GTAG and 2. check
of (MC) and (SIM) for all derivation trees obtained in the first step. For reasons
of space, we will only briefly sketch this idea.

Concerning the parsing in GTAG, the difficulty is that GTAG is not lexicalized:
In the MCTAG there might be sets of elementary trees with only some trees
containing lexical items, other trees containing the empty word or only nodes
with non-terminal symbols. However, each of these non-lexicalized trees occurs
only in combination with a lexicalized tree. Therefore, we can still guarantee
that the set of elementary tree instances used for parsing a sentence is limited to
c · n where c is a constant and n is the length of the input string. Consequently,
polynomial parsing with GTAG is possible. We assume that the output is a
derivation foest, i.e., a compact representation of the derivation trees.

Once we have this derivation forest, in order to determine the MCTAG deriva-
tions, we have to extract the single derivation trees while deciding which ele-
mentary tree instances belong to the same set instance. In general, this cannot
be done in polynomial time. The question whether an additional condition on
the TAG derivation trees can be checked in polynomial time therefore depends
closely on the question whether, for checking this condition, one needs to com-
pute the grouping of tree instances into set instances.

In order to check (MC), we only need to make sure that all trees from a
Γ ∈ A occur the same number of times. It is actually possible to check (MC)
in polynomial time. Among others, this tells us that lexicalized Vector MCTAG
are polynomially parsable, a result already conjectured in [Rambow, 1994].

For (SIM), in contrast to (MC), we have to group the tree instances into set
instances. This can be done building the different derivation trees while travers-
ing the derivation forest in the order of a simultaneous multicomponent deriva-
tion. This way both, (SIM) and (MC) are checked in once. I.e., we construct en-
tire derivation trees by simulating the MCTAG derivations on the derivation for-
est. The number of possible derivation trees can explode since it includes the com-
putation of the instances of elementary tree sets. This explosion of the number
of possible multicomponent derivation trees was to be expected since the parsing
of non-local MCTAG (i.e., MCTAG satisfying (MC) and (SIM)) is NP-complete,
even in the lexicalized case [Rambow and Satta, 1992,Champollion, 2006].6

To summarize, based on our declarative MCTAG definition, parsing of lex-
icalized MCTAG could be separated into TAG-parsing of the underlying TAG
followed by checking of the constraints (MC) and (SIM). As long as (SIM) is not
considered, parsing is polynomial.

6 Note, however, that this explosion is only the worst case. In a lexicalized MCTAG it
depends on the number of times a terminal occurs in the input. In natural languages
it is rather rare that words (except some functional operators) occur more than once
or twice in a sentence.

5 Conclusion

TAG derivation trees abstract away from the concrete order of derivation steps. A
similar abstraction is not possible with the classical MCTAG definition since the
simultaneity constraint refers to the process of the derivation itself. In this paper,
we propose an alternative declarative definition of MCTAG that characterizes
the trees in the tree language via the properties of the TAG derivation trees
the MCTAG licences. In this way, in MCTAG like in TAG, the TAG derivation
tree can be considered being the central structure of the formalism and the
desired abstraction can be obtained. This declarative MCTAG definition enables
us to see more clearly the differences between classical MCTAG and variants of
them where some of the constraints for the TAG derivation trees need not hold
while others are added. Furthermore, this way of defining MCTAG can also be
exploited for parsing: The parsing of the underlying TAG can be separated from
the constraint checking on the derivation forest given by the TAG parser.

Appendix: Proofs

Proof of Lemma 2: Assume that D as in Lemma 2 satisifes (SL). We assume
that D does not satisfy (SIM) and show that this yields a contradiction. If D
does not satisfy (SIM), then

– either there are nodes n0, n
′

0 in D, n0 6= n′

0 with labels from the same tree
set instance and with 〈n0, n

′

0〉 ∈ DD.
Then with (SL), there must be n1 and n′

1 with 〈n1, n0〉, 〈n′

1, n
′

0〉 ∈ PD (and
therefore n1 6= n′

1) and 〈n1, n
′

1〉 ∈ DD such that n1 and n′

1 have labels from
the same tree set instance.
By induction, with (SL), for all i ≥ 0 there must be ni+1 and n′

i+1 with
〈ni+1, ni〉, 〈n′

i+1, n
′

i〉 ∈ PD, 〈ni+1, n
′

i+1〉 ∈ DD and ni+1 6= n′

i+1 such that
ni+1 and n′

i+1 have labels from the same tree set instance.
Contradiction since the set of nodes in D is finite.

– or there are pairwise disjoint sets of nodes N1, . . . Nm (m ≥ 2) in D with
labels from the elementary tree set instances Γ1, Γ2, . . . , Γm respectively such

that: There are n
(i)
1 , n

(i)
2 ∈ Ni (1 ≤ i ≤ m) such that 〈n

(1)
1 , n

(m)
2 〉 ∈ DD and

〈n
(i)
1 , n

(i−1)
2 〉 ∈ DD for 2 ≤ i ≤ m.

Because of (SL), we can show: whenever there are two different set instances
Γ and Γ ′ that are labels of the node sets N and N ′ respectively such that
there are n ∈ N, n′ ∈ N ′ with 〈n, n′〉 ∈ DD, then for all n′ ∈ N ′ there is a
n ∈ N with 〈n, n′〉 ∈ DD. (This follows immediately from (SL) by induction
on the length of the path from n to n′.)
For the N1, . . . Nm we consequently obtain: for each nm ∈ Nm there is a
n1 ∈ N1 with 〈n1, nm〉 ∈ DD and (by induction) for each n1 ∈ N1 there is a
nm ∈ Nm with 〈nm, n1〉 ∈ DD. Contradiction since (with N1 ∩Nm = ∅) this
would imply that dominance is not antisymmetric.

2

Proof of Lemma 3: The configuration in D is as shown on the right.

First we show the ⇐ part of the iff:
Assume 〈n1, nm〉 ∈ SDD and p1 a prefix of p.
Then by induction the auxiliary tree γ1 derived from γ1 is such that
the foot node f of γm either dominates the foot node of γ1 or it is
even the foot node of γ1 (in this last case, all pi, 1 ≤ i ≤ m are foot
node positions). In both cases, adjoining γ1 to γ0 at position p1 (p1

prefix of p, the address of k) leads to a tree where f dominates k.
Now we show the ⇒ direction of the iff:
Assume that the left side of the iff holds. Then assume that the right
side does not hold and show that this gives a contradiction.

γ0

p1

γ1

p2

. . .

pm

γm

First assume that p1 is not a prefix of p. In this case
(i) either p prefix of p1 and p 6= p1 ⇒ k strictly dominates anything adjoined to
position p1 in γ1, including the foot node f of γm. Contradiction.
(ii) or p no prefix of p1 ⇒ (since p1 no prefix of p either) no dominance relation
between k and the material adjoined to position p1 in γ1. Contradiction.
Then assume 〈n1, nm〉 /∈ SDD. ⇒ there is a i ∈
{1, . . . , m} such that pi is not a spine address. Conse-
quently, the auxiliary tree derived from γi−1 is either as
shown on the right or symmetric to this but with the
foot node on the left of γi, the tree derived from γi.
Adjoining this tree to a tree γ0 derived from γ0 by the
first i − 1 adjunctions yields a tree where no node from
γi dominates a node from γ0. In particular, f does not
dominate k.

X

•

X∗

γi

•

2

References

[Becker et al., 1991] Becker, T., Joshi, A. K., and Rambow, O. (1991). Long-distance
scrambling and tree adjoining grammars. In Proceedings of ACL-Europe.

[Champollion, 2006] Champollion, L. (2006). Lexicalized non-local mctag with domi-
nance links is np-complete. Ms, University of Pennsylvania.

[Joshi and Schabes, 1997] Joshi, A. K. and Schabes, Y. (1997). Tree-Adjoning Gram-
mars. In Rozenberg, G. and Salomaa, A., editors, Handbook of Formal Languages,
pages 69–123. Springer, Berlin.

[Kallmeyer, 2005] Kallmeyer, L. (2005). Tree-local multicomponent tree adjoining
grammars with shared nodes. Computational Linguistics, 31(2):187–225.

[Rambow, 1994] Rambow, O. (1994). Formal and Computational Aspects of Natural
Language Syntax. PhD thesis, University of Pennsylvania.

[Rambow and Satta, 1992] Rambow, O. and Satta, G. (1992). Formal Properties of
Non-Locality. In Proceedings of the TAG+ Workshop, Philadelphia.

[Telljohann et al., 2003] Telljohann, H., Hinrichs, E. W., and Kübler, S. (2003). Style-
book for the Tübingen Treebank of Written German (TüBa-D/Z). Seminar für Sprach-
wissenschaft, Universität Tübingen, Germany.

[Weir, 1988] Weir, D. J. (1988). Characterizing mildly context-sensitive grammar for-
malisms. PhD thesis, University of Pennsylvania.

