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Abstract

Growing demand, increasing diversity of services, and advances in transmission and
switching technologies are prompting telecommunication companies to rapidly
expand and modernize their networks. This paper develops and tests a
decomposition methodology to generate cost-effective expansion plans, with
performance guarantees, for one major component of the network hierarchy-the
local access network connecting customers to the local switching center. The model
captures economies of scale in facility costs, and addresses the central tradeoff
between installing concentrators and expanding cables to accommodate demand
growth. By exploiting the special tree and routing structure of the expansion
planning problem, our solution method integrates two major algorithmic strategies
from mathematical programming-the use of valid inequalities, obtained by
studying a problem's polyhedral structure, and dynamic programming, which can be
used to solve an uncapacitated version of the local access network expansion
planning problem. The computational results for three actual test networks
demonstrate that this enhanced dynamic programming algorithm, when embedded
in a Lagrangian relaxation scheme (with problem preprocessing and local
improvement), is very effective in generating good upper and lower bounds:
implemented on a personal computer, the method was able to generate solutions
that are within 1.2 to 7.0% of optimality. In addition to developing a successful
solution methodology for a practical problem, this paper illustrates the possibility of
effectively combining decomposition methods and polyhedral approaches.

Keywords: Integer programming decomposition, concentrator location,

telecommunications planning, polyhedral methods



1. Introduction

Advances in switching and transmission technologies combined with growing
demand, increasing diversity of services, and deregulation of the
telecommunications industry have prompted telephone companies to rapidly
upgrade and expand their networks. Modernization of the local access networks,
which connect switching centers to customers, is a particularly important priority
since these networks account for over 50% of the total investment in
communication facilities (according to Standard and Poor's Industry Surveys [1992],
the total value of plant in 1990 exceeded 250 billion dollars in the U. S. alone); yet
they are not as technologically advanced as the higher levels-the long-distance and
inter-office networks-in the telecommunications network hierarchy. For instance,
over 80% of the local access networks still use analog transmission over copper
cables. However, recent technology and cost trends in the industry have improved
the economic and technical viability of introducing electronic switching and fiber
optic transmission to increase capacity in local access networks.

The new technologies such as electronic remote units (or multiplexers) introduce
discrete choice decisions and spatial couplings between different parts of the
network, thus vastly increasing the number of possible ways to meet growing
demand. Traditional manual planning methods that consider only the option of
adding more cables to expand capacity are no longer adequate. Since
telecommunication investments are so expensive (total annual investments by U. S.
local exchange companies is approximately $20 billion, Telephony [1991]), a cost
effective network expansion plan can offer considerable economic value. For
instance, Jack, Kai, and Shulman [1992] report savings of over $30 million per year at
GTE using an interactive decision support system to assist network planners.

This paper develops and tests an optimization-based methodology to identify a
minimum cost network expansion plan to meet increasing demand. We formulate
an integer programming model, validated by consulting network planners in
industry, that captures the essential tradeoffs between concentrator location and cable
expansion, and accommodates economies of scale in investment and operating costs.
Although the model approximates the expansion costs as piecewise-linear concave
functions, and does not consider investment timing decisions, it is an important
building block for detailed, multi-period planning systems (see, for example,
Shulman and Vachani [19901). To solve the local access network expansion model,
we develop a decomposition method combining Lagrangian relaxation with a
dynamic programming algorithm that exploits the problem's special tree structure
and routing restrictions. Since the basic problem formulation does not provide
satisfactory lower bounds, we identify several classes of valid inequalities that
strengthen the model's linear programming relaxation. Unlike other cutting plane
methods that use general purpose linear programming codes to solve the enhanced
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formulations (e.g., Hoffman and Padberg [1985]), we modify the dynamic
programming algorithm to directly incorporate the valid inequalities. Our
computational tests using representative data (obtained from industry) demonstrate
that the method generates good upper and lower bounds. Thus, this paper not only
develops an effective solution method for the important practical problem of local
access network design, but also adds to the growing literature demonstrating the
usefulness of polyhedral methods for solving difficult, large-scale optimization
problems.

The rest of this paper is organized as follows: Section 2 presents a formal
definition of the local access network planning problem, reviews our modeling
assumptions, and describes a basic mixed-integer programming formulation.
Section 3 describes an efficient dynamic programming algorithm to solve the
uncapacitated version of the local access network planning problem, develops a
Lagrangian relaxation scheme that uses the dynamic program to solve an
uncapacitated subproblem, and outlines a Lagrangian-based heuristic procedure. In
Section 4 we describe two algorithmic enhancements-a problem preprocessing
procedure to eliminate variables, and a coefficient reduction method to strengthen
the problem formulation. Section 5 presents three classes of valid inequalities, and
shows how to modify the dynamic program to incorporate them. Section 6 describes
our implementation, and presents computational results for three networks
provided to us by a major telephone company. We illustrate how the valid
inequalities dramatically improve the lower bounds (by about 80%) relative to the
basic model, and we study the robustness of the method to changes in demand and
cost parameters. Our results show that the combination of Lagrangian relaxation,
dynamic programming, and polyhedral methods permits us, using a personal
computer, to efficiently find solutions that are within 1.2 to 7.0% of optimality.
Section 7 identifies directions for further work.

2. The Basic Local Access Network Expansion Model

2.1 Problem description
The local access network (also called the feeder loop, central office network,

outside plant, or customer access network) connects customer nodes (control or
distribution points, in telecommunication parlance) to the switching center (also
called the central office). Each customer node is a collection point for individual
customers (possibly hundreds) connected via a subsidiary distribution network.
Balakrishnan et al. [19911 and Jack et al. [1992] describe the technologies and
characteristics of local access networks in greater detail. Most current local access
networks have a tree structure, rooted at the switching center (Shulman and
Vachani [19901). Edges of the tree correspond to physical sections of underground or
overhead cables.
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All communications to and from each customer node flow through the assigned
switching center. Each node has a demand, measured by the required number of
circuits from that node to the switching center. In conventional copper networks,
each circuit requires a dedicated twisted copper pair which we will call a cable. A
node's demand depends on the number and type (e.g., residential or commercial) of
individual customers connected to it. The local access network can satisfy this
demand in two ways: either provide a dedicated cable (from the customer node to
the switching center) for each required circuit, or route the circuits through a traffic
compression device called a concentrator. Concentrators are electronic devices that
combine incoming signals (e.g., analog signals) on several lines into a single
composite signal (e.g., high frequency digital or optical signal) that requires only one
outgoing line. In practice, a variety of devices such as electronic multiplexers,
remote switches, and fiber optic terminals can perform traffic compression (see
Balakrishnan et al. [1991]). We collectively refer to all these different technologies as
concentrators. Our planning model distinguishes between different technologies
through their installation and operating cost functions.

As customer demand increases (for example, due to new construction, customer
movement, or new services), the existing cables and concentrators can no longer
accommodate the required number of circuits from each node. In the expansion
planning problem, we wish to locate new concentrators, selectively expand cable
capacities, and reroute traffic from customer nodes via concentrators in order to
satisfy the projected demand using the minimum possible total network expansion
cost. By routing traffic through concentrators, we reduce the downstream (or central
office side) cable requirements. This tradeoff between installing concentrators and
expanding cable capacities is central to the local access network expansion problem.
We next introduce some notation and formally describe the expansion planning
model and its assumptions.

Notation and problem parameters
Let T denote the given (undirected) rooted tree over which the local access

network expansion problem is defined. The nodes of this network represent
customer nodes and/or potential concentrator locations, and its edges correspond to
cable sections. We index the set of nodes N from 0 to n, with the root node 0
representing the switching center. Let d i denote the projected demand at each
customer node i. The capacity Bij of edge (i,j) is the number of existing cables in the

section connecting nodes i and j. For simplicity, all our subsequent discussions
assume that the existing network does not contain any concentrators; however, our
method extends easily to problems with existing concentrators.

Let Pij denote the (unique) path in the tree connecting nodes i and j. To provide

one circuit from node i to the switching center, we must reserve one cable on each
edge of the path Pi0. Since the existing network does not have adequate capacity to
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meet the projected demand, one or more edges of the current network must have
projected exhaust, i.e., the number of available cables on that edge is less than the
total demand for all nodes communicating through that edge to the switching
center.

Cost structure
Our model minimizes the total cost of installing concentrators and adding cables

to meet the projected demand. The model and solution methodology can also
incorporate additional node-to-concentrator connection costs (e.g., to disconnect the
current circuit and reroute it through a concentrator at a different location) which we
ignore for simplicity. Cable expansion costs vary by edge (depending on the length
and location of the cable section), and has both a fixed and variable component. On
each edge (i,j), we incur a fixed cable cost Gij (e.g., to install additional ducts or poles)
and a variable cable cost eij that might represent, for instance, investment in cables or
maintenance expenses. Concentrator costs also have location-dependent fixed and
variable components. The fixed concentrator cost Fj models land acquisition and
infrastructure investments at node j, while the variable concentrator cost cj reflects

the purchase price and operating expenses of concentrator modules. As we note
later, the concentrator cost also includes the cost of the required high-speed
concentrator-to-switching center connection.

Our solution procedure also applies when concentrator and cable expansion costs
have the more general piecewise-linear, concave structure shown in Figure 1; each
segment in this function might correspond, for instance, to a different concentrator
technology or transmission medium. The true cost of concentrators (or cable
expansion) is a step function of the required capacity since concentrator modules are
available only in discrete units; however, our analysis of actual cost estimates and
information provided by our industrial collaborator suggest that a piecewise-linear,
concave function can adequately approximate this cost especially for long-term
planning purposes (due to rapid technological changes, predicting the costs exactly
for, say, a 5-year time horizon is often very difficult). Although we have
implemented and tested the solution method for problems with concave
concentrator costs, for expositional ease in describing the model formulation and
solution algorithm, we will assume the simpler fixed plus variable cost structure for
both cable expansion and concentrator location. (We do, however, indicate how the
approach will handle concave costs.)

2.2 Modeling assumptions

To reduce the complexity of managing and maintaining the local access network,
planners often impose several restrictions on the permissible expansion options and
routing patterns. Discussions with planners in industry suggest that the following
four modeling assumptions reflect or adequately approximate current practice.
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Shulman and Vachani [1990] and Jack et al. [1992] use similar assumptions in their
successful decision support system for local access network planning.

Assumption Al: Single-level concentration

Traffic originating at any node of the network is concentrated at most once before
reaching the switching center.

Assumption A2: Non-bifurcated routing

A single concentrator (or the switching center) processes the entire demand of each
customer node.

Assumption A3: Contiguity restriction

Every concentrator serves a contiguous region surrounding it, i.e., if a concentrator
at node j serves node i, then this concentrator also serves all other nodes (including
node j) on the connecting path Pij.

Assumption A4: Transmission cost for concentrated traffic

Concentrated traffic (flowing from each concentrator to the switching center) either
consumes a negligible amount of existing cable capacity, or uses a dedicated umbilical
connection (also called a remote-to-host connection) whose cost depends only on the
location and throughput of the concentrator. In the latter case, we can incorporate
the cost of the umbilical connection in the concentrator cost.

Assumption Al reflects current state-of-the-art in local access network design.
Introducing multiple levels of concentration within the local access network is often
uneconomical given the current costs of cables and concentrators. Assumptions A2
and A3 reflect operational convenience. For example, maintaining and repairing
networks with multiple routes from each customer node or non-contiguous
concentrator service regions can be burdensome. Assumption A4 greatly simplifies
the model and improves solution effectiveness, while introducing only minor
distortions in total cost or actual capacity usage. For instance, one digital copper pair,
also called a T1 span, can accommodate up to 96 voice channels (see, for example,
Jack et al. [1992]); thus a customer node that previously required, say, 1000 copper
pairs for analog transmission, requires only 11 T1 spans to transmit compressed
signals from that node. If the "concentrator" includes a fiber optic terminal, the fiber
cable connecting the terminal to the switching center might replace an existing
copper cable.

Since the local access network has a tree structure, assumptions Al and A2
together imply that assigning a concentrator (or switching center) to each node i
completely specifies the routing decisions in the network. We say that node i homes

on node j if a concentrator located at node j processes node i's traffic. In this case, the
traffic from node i is routed on d i cables along the unique path Pij to node j, where it
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is concentrated and transmitted via the remote-to-host connection from node j to
the switching center. Any node whose traffic is not concentrated is said to home on
the switching center; equivalently, we assume that the switching center always has a
concentrator. We permit backfeed or flow away from the switching center, i.e., a
concentrator at node j can also serve downstream nodes that are closer than node j to
the switching center. The contiguity assumption (A3) reduces the concentrator
selection and assignment problem to one of decomposing (and covering) the tree
into subtrees, and selecting one concentrator location within each subtree to serve its
traffic requirements. We use this observation to efficiently solve an uncapacitated
subproblem using dynamic programming.

To illustrate these concepts, consider the local access network shown in Figure 2.
The dashed edges in this network are sections with projected exhaust. For instance,
the current capacity of 1675 units on edge (26, 34) is less than the total demand (2203
units) of nodes 34 and 41. Hence, we must either expand this edge by 528 units in
order to home nodes 34 and 41 on a downstream concentrator (or the switching
center), or install a concentrator at either of these nodes. For instance, a concentrator
at node 34 can serve both nodes 34 and 41. Since we permit backfeed, we can also
home the downstream nodes, say nodes 26, 18, and 12, on this concentrator. Notice
that, if we use this homing strategy, we need not expand edges (26, 34), (18, 26), and
(12, 18) since their existing capacities can accommodate the required backflow. Also,
if node 7 homes on the concentrator at node 34, the contiguity property specifies that
node 13 (and node 19) cannot home on the switching center; this node must either
home on node 34 or on a concentrator located at nodes 13 or 19.

2.3 Basic Integer Programming Formulation
In the local network expansion planning problem we consider, we are given the

projected demand at each customer node, the existing cable capacity in each section,
and the costs for adding cables and installing concentrators at each location. We
need to decide:

* where to locate concentrators, and with what capacity;
* which edges (cable sections) to expand, and by how much;
* how to route the traffic from each node to the switching center; and,
* in a more general model, which concentrator technology to use at each

node.

Our formulation uses the following decision variables:

Assignment xij = 1 if node i homes on node j,
variable 0 otherwise;

Concentrator yj = 1 if we install a concentrator at node j,
location variable 0 otherwise;
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Cable Zi (Zji) = 1 if we expand cable capacity from node i to
installation variable node j (node j to node i),

0 otherwise; and,

Cable ij (sj) = number of cables added from node i to node j

expansion variable (j to i).

We use directed variables to model cable installation and expansion, i.e., although
edges are undirected, we distinguish between expansion in the i-to-j direction and
the j-to-i direction on each edge (i,j). Using directed cable addition variables
increases the formulation size but strengthens the model's linear programming
relaxation, thus improving our algorithm's performance. To emphasize the
direction of flow, we will consider two directed arcs, denoted as <i,j> and <j,i>,
corresponding to each original undirected edge (i,j); both arcs have the same fixed
and variable cable expansion costs as the original edge. We also redefine Pij as the

directed path from node i to node j in the tree. We assume, for convenience, that
each customer node can home on any other node in the network. In practice, we
might prohibit certain node-to-concentrator assignments (e.g., due to proximity
restrictions limiting the maximum distance a concentrator can serve in order to
ensure good transmission quality), in which case we can eliminate the
corresponding assignment variables.

The Local Access Network Expansion Planning Problem has the following basic
mixed-integer programming formulation:

Network Expansion Planning Model [LAN1]

minimize , Fjyj + Z Z (dicj)xij + Gijzi + eijsij (21)
jE N ie N je N <i,j> T <i,j> T

subject to

Assignment constraints:

I xij = 1 all i N, (2.2)
jeN

Concentrator location constraints:

y = xj allje N, (2.3)

Contiguity restrictions:

xij xk i all i,j E N, (2.4)
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Cable capacity constraints:

I d k xkl <
k,leODij

Bij + Sij + Sji all (i,j) T,

Cable installation-forcing constraints:

Sij < Mij Zij

Arc orientation constraints:

zij + Zji 1

Integrality/Nonnegativity constraints:

j Xij, Zig Zji = ori
sij sji 2 0

all <i,j> T,

all (i,j) E T, and

all j N, (i,j)e T, and

all (i,j) e T.

In this formulation,
ki. is the node adjacent to node i on path Pij,
Obij is the set of all node pairs k,l whose connecting path Pkl contains

edge (i,j), and
Mij (Mji) is an upper bound on the maximum required cable expansion on

edge (i,j) in the i-to-j (j-to-i) direction.

The objective function (2.1) minimizes the sum of the fixed and variable
concentrator costs, and the cable installation and expansion costs. Constraints (2.2)
ensure that each node i is assigned to exactly one concentrator (possibly at the
switching center, in which case xi0 = 1). Equation (2.3) specifies that node i contains a
concentrator (yj = 1) if and only if this node homes on itself (i.e., xjj = 1). Constraints

(2.4) models the contiguity restriction, i.e., if node i homes on node j, then node i's
immediate neighbor kij on the connecting path Pij must also home on j. The left-

hand side of the cable capacity constraint (2.5) expresses the total flow on edge (i,j) in
terms of the node-to-concentrator assignments that use this edge; we must add cables
if this flow exceeds the available capacity Bij. If we add cables on arc <i,j> (i.e., if s >
0), constraint (2.6) forces the cable installation variable zij to assume a value of 1, thus
absorbing the fixed cable expansion cost Gij in the objective function. Constraint (2.7)

permits cable expansion on edge (i,j) in either the i-to-j or the j-to-i direction, but not
both.

The parameter Mij in the right-hand side of the forcing constraint (2.6a), which

we call the cable expansion bound, represents the maximum number of additional
cables that any optimal solution can possibly install on arc <i,j>. For instance, if Dij is
the total demand for all nodes k whose path Pkj contains arc <i,j>, we can set Mij =
Max {0, Di0 - Bij } In Section 4.2, we show how to strengthen the formulation by
using tighter values for Mij.
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Let us briefly indicate how we might incorporate piecewise-linear, concave cost
functions (Figure 1) instead of the simple fixed plus linear cost structure. Suppose
the concentrator cost function consists of M linear segments (corresponding to M
different concentrator types or technologies), with increasing fixed costs Fjm and
decreasing variable costs cjm as a function of the technology type m = 1,2,...M. To
capture these costs, we replace yj and xii with disaggregate concentrator location and
assignment variables Yjm and xijm for each segment m = 1,2,...,M. The binary variable

Yjm is 1 if the solution installs a type m concentrator at node j, and is 0 otherwise;
similarly, xijm equals 1 if a type m concentrator at node j serves node i, and is 0

otherwise. We modify constraints (2.2) to (2.5) accordingly. Because the cost
function is concave, we need not introduce explicit concentrator capacity constraints
since the cost minimizing solution will automatically select the appropriate
technology to process the required throughput at each concentrator location. We can
similarly model piecewise-linear, concave cable expansion costs using disaggregate
cable installation and expansion variables.

3. Decomposition Algorithm for the Basic Local Access Network
Planning Model

Formulation [LANI] is a large-scale mixed-integer program whose size increases
quadratically with the number of nodes. Like many other network design problems,
this problem is NP-complete (Balakrishnan et al. [1992]). However, the uncapacitated
version of this problem without existing cable cable capacities is easy to solve using a
polynomial-time dynamic programming algorithm. We, therefore, propose a
Lagrangian relaxation approach that solves an uncapacitated subproblem to generate
good upper and lower bounds. Our solution method consists of three components:
(i) preprocessing and coefficient reduction, i.e., performing some prior analysis to
reduce the problem size and strengthen the formulation; (ii) solving the Lagrangian
subproblems to generate lower bounds on the optimal cost; and (iii) generating good
heuristic solutions from the Lagrangian subproblem solutions. This section first
discusses the dynamic programming method for solving the uncapacitated problem,
and develops the Lagrangian-based lower bounding and heursitic procedures. In
subsequent sections, we describe the preprocessing and coefficient reduction
methods, and propose various additional formulation and algorithmic
enhancements to improve the method's performance.

3.1 Solving the Uncapacitated Local Access Network Planning Problem
Given a tree network without existing cable capacities, and fixed and variable

costs for installing concentrators and cables, the uncapacitated local access network
planning (ULAN) problem seeks the concentrator locations, homing patterns, and
cable expansion plan that meets projected demand at minimum total cost. To
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distinguish the cost parameters for the uncapacitated problem from the original
values, we let j and yj denote the fixed and variable concentrator costs at node j, and

let rij and Eij denote the fixed and variable cable costs on arc <i,j>. Later we will
indicate how, using Lagrange multipliers, we compute the values of these
"uncapacitated" cable and concentrator cost parameters from the original costs.

3.1.1 Simplifying the uncapacitated problem

First, we simplify the uncapacitated problem by transforming all the fixed and
variable cable and concentrator costs into equivalent node-to-concentrator
assignment costs. This transformation exploits the non-bifurcated routing and
contiguity properties, and is valid only when the network does not contain any
existing cable capacities. The assignment cost aij represents the "incremental" cost of

assigning node i to a concentrator at node j. We compute its value as follows:

aij = 4) + d i f i = j, and

= rikij +d{ I CklI+di if i j. (3.1)
1J <k,l>E Pij

When i = j, equation (3.1) sets the self-assignment cost ajj equal to the total cost of

installing a concentrator at node j and serving this node's demand. When i j, the
assignment cost consists of three components: (a) the fixed cable cost on the arc
<i,kij> joining node i to its adjacent node kij on path Pij; (b) the total variable cable
cost on path Pij to create d i circuits from node i to node j; and (c) the total variable

concentrator cost at node j for serving node i's demand. Equation (3.1) has the
following rationale. Since the network does not initially contain any cables or
concentrators, the assignment cost aij must include the variable cable and

concentrator costs to transmit and concentrate node i's demand at node j. If
concentrator costs are positive, the contiguity property implies that the optimal
solution installs a concentrator at node j if and only if node j homes on itself. We,
therefore, include the fixed concentrator cost in the self-assignment cost ajj.
Similarly, the optimal solution expands arc <i,kij> if and only if node i homes on
node j, i * j. Hence, we include this arc's fixed cost in the i-to-j assignment cost aij.

By contiguity, if node i homes on node j, then every intermediate node on the path
Pi must also home on node j. Therefore, when we add the assignment costs for all
nodes on path Pi, we capture the total fixed cable costs for all arcs on this path. These

intuitive arguments justify the following claim:
For the uncapacitated local access network planning problem, the true total
concentrator and cable costs of the optimal expansion plan equals the sum of the
assignment costs incurred by that plan.

Thus, the ULAN problem has the following simple assignment tree packing (ATP)
formulation containing only the binary assignment variables xij:

minimize the total assignment cost = I aij xij
ieNjeN

subject to
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assignment constraints (2.2), contiguity constraints (2.4), and xijE {0,1 } for all i,je N.

3.1.2 Dynamic Programming Algorithm
We can solve the ATP formulation using Barany, Edmonds, and Wolsey's [19861

O(n2) dynamic programming algorithm. This algorithm is related to Kariv and
Hakimi's [1979] algorithm for solving the p-median problem on a tree. Barany et al.
[1986] have also shown that the linear programming relaxation of the ATP
formulation has integer extreme points.

To describe the dynamic program, let us introduce some notation and
conventions. The level of a node i is the number of edges lying on path Pi0o Thus,

the root node (node 0) has level 0, its immediate successors have level 1, and so on.
For convenience, we index the nodes in increasing order of their levels. For any
node i (i • 0) in the tree, let Pi denote its predecessor, and S i the set of all its

immediate successors. Let T(i) denote the subtree rooted at node i formed when we
delete edge (i,pi) from tree T.

Starting at the bottom of the tree, the dynamic programming procedure
recursively calculates, for each node i, the optimal total assignment cost TC(i) of

serving all nodes in subtree T(i) using only homing nodes (concentrators) located

within this subtree. This tree cost TC(i) represents the optimal total network
expansion cost if T(i) is a stand-alone tree. Hence, TC(O) is the optimal cost of the
ULAN problem.

To calculate TC(i), we must first determine where node i should home within its
subtree T(i). For any node j E T (note that j might lie outside T(i)), let HC(i,j) (HC
stands for homing cost) denote the total cost of covering all nodes in subtree T(i),

assuming node i homes on node i. Then,

TC(i) = minimum HC(i,j). (3.2)
jE T(i)

The homing cost HC(i,j) consists of the i-to-j assignment cost aij plus the homing

costs of the subtrees rooted at node i's successors. By contiguity, if node i homes on
node j, then each successor u E Si must either home on node j, or home within its

subtree T(u). Therefore, the following recursive equations permit us to compute
HC(i,j) for intermediate nodes i:

HC(i,j) = aij + ~ min(HC(u,j), TC(u)} if j=i or j T(i), and (3.3a)
uSi

HC(ij) = aij + HC(v,j)+ min{HC(u,j), TC(u)} if j Tv), E S. (3.3b)
UESI\ 1
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Equation (3.3b) applies when node i homes on an internal node j in rooted subtree
T(v) for some successor node v E Si (by contiguity, node v must also home on node

j). Note that if node i is a leaf node, Si = , and therefore HC(i,j) = aij.

To ensure that the required quantities in the right-hand side of equations (3.3) are
available when needed, we compute the values of HC(i,j) for nodes i in a bottom-to-
top sequence. The ULAN dynamic programming algorithm consists of (n+1) stages.
At stage i, for i = n, (n-1), ..., 0, we first compute HC(i,j) for every node j e T. We then

apply equation (3.2) to calculate TC(i), the optimal cost of serving all nodes of subtree
T(i) using only internal concentrators. The final value TC(O) computed at stage 0
gives the optimal value of the ULAN problem. The usual dynamic programming
backtracking procedure gives the optimal concentrator location and node assignment
strategy. The following formal description of the dynamic programming algorithm
summarizes its steps.

DP Algorithm for the Basic ULAN model: [DP1]
For i = n,n-l,...,0,

if i is a leaf node,
HC(i,j) v aij for all j E T, and

TC(i) - HC(i,i) = aii;

else,

for all j E T\T(i), compute HC(i,j) using equation (3.3a);
for all v E Si and all j E T(v), compute HC(i,j) using equation (3.3b);

compute HC(i,i) using equation (3.3a);
Set TC(i) - Minimum HC(i,j);

j E T(i)
next i;

The following argument shows that this dynamic program has complexity O(n2).
For each node u, which has a unique predecessor i, we compare HC(u,j) and TC(u)

(in equations (3.3a) or (3.3b)) for every homing node j E T. Therefore, the algorithm

requires O(n) computations for each node u, requiring a total of O(n2 ) computations.
With minor changes (by defining separate homing costs H(i,j,m) for each piecewise-
linear segment or concentrator technology m at node j), this solution method can
incorporate piecewise-linear, concave concentrator costs.

3.2 The Lagrangian Relaxation Scheme
To solve the original (capacitated) local access network planning problem, we use

a Lagrangian relaxation scheme (see, for instance, Fisher [1981]) that dualizes the

cable capacity constraints (2.5) of formulation [LANI] using Lagrange multipliers uij
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for all edges (i,j) e T (for directed arcs <i,j>, gij = gji by convention). The resulting

Lagrangian problem is:

minimize C di {c j + I kl xij + Fjyj + G ijzij
iE N jN <k,l>e Pij jEN <i,j>E T

+ (eij gij) sij - gij Bij (3.4)
<i,j>E T (i,j)e T

subject to constraints (2.2) - (2.4) and (2.6) - (2.9).

This problem decomposes into two subproblems: an ULAN subproblem, and a cable
expansion subproblem.

321 The ULAN subproblem

The uncapacitated network expansion subproblem, which we denote as
ULAN1 (), contains the x and y variables. Using our notation of Section 3.1.1, the
ULAN1 (g) subproblem has the following equivalent "uncapacitated" cost
parameters: 4j = Fj, yj = cj, Fri = 0, and kdw = Akl. Notice that this subproblem does not

contain fixed cable costs; our later formulation enhancements will strengthen the
Lagrangian relaxation by introducing arc fixed costs in the uncapacitated subproblem.
For any given set of Lagrange multipliers {pk}, solving subproblem ULAN1 (g) using

our dynamic program gives a set of concentrator locations, and node-to-concentrator
assignments that satisfy the contiguity and non-bifurcated routing properties. We
later use this subproblem solution to construct a feasible heuristic solution to the
original problem.

3.2.2 The Cable Expansion Subproblem

The cable expansion subproblem, denoted [CES(g)], determines the optimal
values of the cable installation and expansion variables, zij and sij, for all arcs <i,j>:

[CES(g)]
minimize G Gij zi + I (eij - ij)ij (3.5)

<i,j>E T <i,j>E T
subject to

sij < Mij ij all <i,j> e T, (3.6)

Zij+ zji 1 all (i,j) e T, and (3.7)

zij = or 1, si > O all <i,j> e T. (3.8)

This subproblem decomposes by edge, and is easy to solve. For each arc <i,j>, we first
express the optimal value of sij in terms of zij as follows:

sij = 0 if (eij - pij) > 0, and (3.9a)
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sij = Mij Zij if (eij- ij) < 0. (3.9b)
Substituting for sij in (3.5) gives the following cost coefficients for zij:

Gij(A) Gij + Mij min eij - gij, 0. (3.10)
If Gij(g) and Gji(g) are both nonnegative, we set zij = zji = 0. Otherwise, we set ij = 1
and zji = 0 if Gij(g) < Gji(g), and zij = 0 and zji = 1 if Gji(g) < Gij(g). Again, this
solution procedure extends easily to problems with piecewise-linear, concave
concentrator costs.

For any nonnegative Lagrange multiplier vector g, the sum of the optimal values
of the ULAN and cable expansion subproblems minus the term A, 9ij Bij gives a

(i,e T
lower bound on the optimal cost of [LAN1]. We use subgradient optimization (see,
for instance, Held, Wolfe, and Crowder [19741 or Fisher [1981]) to heuristically adjust
the Lagrange multipliers to maximize the Lagrangian lower bound. Since the linear
programming relaxations for both of our Lagrangian subproblems have integer
optimal solutions (Aghezzaf and Wolsey [19901 have shown this property for the
ULAN problem with piecewise-linear, concave costs), the best possible Lagrangian
lower bound cannot exceed the optimal value of the linear programming relaxation
of formulation [LAN1]. We next describe a method to obtain upper bounds on the
optimal value.

3.3 Lagrangian-based heuristic procedure

Our Lagrangian-based heuristic procedure first constructs a feasible starting
solution using the optimal values of subproblem ULANI(gi), and then applies a local
improvement procedure to further reduce the cost of this starting solution. We
construct the starting solution by "completing" the contiguous, non-bifurcated node-
to-concentrator assignments chosen by subproblem ULAN1 (g), i.e., we compute the
actual cable expansion required to accommodate the node-to-concentrator flows, and
compute the total concentrator and cable cost of this expansion plan. We then apply
a myopic improvement strategy called the Greedy Reassignment Heuristic that
iteratively reassigns nodes to concentrators, one at a time, without violating the
contiguity condition. To preserve contiguity, we need to only consider reassigning
every node i to each of the (I Si I +1) homing nodes of its neighbors. At each iteration,
the greedy heuristic: (i) evaluates the cost impact of all feasible changes in node-to-
concentrator assignments; and, (ii) performs the reassignment that gives the greatest
reduction in total cost. If all feasible reassignments increase total cost, the local
improvement procedure terminates.

To reduce computational time, instead of improving the Lagrangian-based
starting solution after every subgradient iteration, our implementation applies the
greedy method only intermittently (e.g., when the current Lagrangian starting
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solution has lower cost than the previous best starting solution). We also use the
greedy heuristic to generate an initial upper bound, before performing the
subgradient procedure. We consider two different starting solutions for initial
improvement-a centralized solution that homes all demand nodes on the root
node (i.e., this solution employs only cable expansion to satisfy projected demand),
and a distributed solution that locates a concentrator at each node. The better of the
two improved solutions provides the initial upper bound.

4. Modeling and Algorithmic Enhancements I: Variable Elimination
and Coefficient Reduction

Our preliminary computational experience (summarized in Section 6.2) with the
Lagrangian relaxation algorithm for the basic model [LAN1] suggested that, while the
heuristic method generates very good solutions, the Lagrangian lower bounds are
weak. To improve the lower bounds, we developed various modeling and
algorithmic enhancements. This section describes two types of improvements:
problem preprocessing to eliminate certain assignment variables, and reducing the
values of the cable expansion bounds Mij in order to tighten the forcing constraints

(2.6) in formulation [LAN1]. Section 5 describes new inequalities that further
strengthen the Lagrangian relaxation.

4.1 Variable Elimination by Problem Preprocessing
To reduce the size of problem [LAN1], we perform a tradeoff analysis to identify

suboptimal node-to-concentrator assignments a priori. Eliminating the
corresponding assignment variables xij from the problem formulation not only

reduces the problem size and computational effort, but might also improve the
lower and upper bounds.

For each node pair i,j, our preprocessing method determines if node i can home
on node j in an optimal expansion plan by comparing a lower bound LJ on the
incremental cost of assigning node i to node j to an upper bound Uii on the cost of
locating a concentrator at node i (and homing node i on this concentrator). If Lij >
Uii, the i-to-j assignment is provably suboptimal, and we can eliminate the
assignment variable xij from formulation [LAN1].

The lower bound Lij on the incremental cost of assigning node i to node j consists

of two components: an incremental cable expansion cost, and an incremental
concentrator cost. To calculate the incremental cable expansion cost, consider any arc
<k,l> on the path Pij connecting node i to node j. By contiguity, if node i homes on
node j, the total demand, say, Dik of all nodes on the path Pik (nodes i and k

inclusive) must flow through arc <k,l>. Let kl = Max { [Dik-Bkl], 01 denote the excess
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flow on arc <k,l>. Node i contributes Min{~kl, d i} to this excess flow. Hence, Skl =

ekl Min(Okl, di} represents the incremental cable cost if node i homes on node j
(note that we do not include the fixed cable cost Gkl in this incremental cost).

Adding the incremental costs 6kl for all arcs <k,/> of path Pij gives the cable
expansion cost component of the lower bound Lij. For the incremental concentrator
cost, we use the variable concentrator cost cj d i incurred at node j to serve node i's
demand. Thus, the lower bound Lij is:

Lij = I Sk + cjdi for all i,j E N. (4.1)
<k,l>e T P..

If node i is a leaf node of T, and if the current capacity of the incident arc (i,kij) is less
than node i's demand, we can improve the lower bound Lij by adding the fixed cost
Giki j to the right-hand side of (4.1).

The upper bound Uii on the incremental cost when node i homes on itself is the

total concentrator cost to process node i's demand, i.e.,
Uii = Fi + ci di for all i N. (4.2)

If Lij > Uii, the i-to-j assignment is provably suboptimal. For, suppose an optimal

expansion plan assigns node i to a concentrator at node j. Let N(i,j) be the subset of
nodes (including node i) that currently home on node j via node i. For every node
k E N(i,j), canceling the k-to-j assignment saves at least Lij/d i per unit demand,

while reassigning node k to a new concentrator at node i incurs a cost of at most
Uii/d i per unit demand (due to concavity of concentrator costs). Therefore, if Lij >
Uii, we can improve the current solution by installing a new concentrator at node i,
and reassigning all nodes in N(i,j) to this concentrator (all the nodes on path Pij

except node i continue to home on the concentrator at node j), contradicting the
optimality of the given solution.

This preprocessing technique extends easily to piecewise-linear, concave cost
functions (to compute Lij we use the lowest variable cable cost eklm on each arc <k,l>

E Pij, and the lowest variable concentrator cost cjm at node j among all available

technologies m). The preprocessing method not only reduces the number of
variables and constraints in the integer programming formulation but also
strengthens it by decreasing the maximum possible flows (and hence the cable
expansion bounds Mij) on certain arcs.

4.2 Tightening the Cable Forcing Constraints by Coefficient Reduction

To improve the relaxation lower bounds of formulation [LAN1], we first tighten
the cable installation forcing constraints (2.6) by reducing the cable expansion bounds
Mij. Recall that Mij represents the largest possible value of the cable expansion
variable sij in any optimal solution. In Section 2.3, we computed Mij as the
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difference between the total demand that can enter arc <i,j> and its existing capacity.
We refer to this value as the demand-based cable expansion bound, and denote it as

Md . Since this demand-based bound represents the worst-case cable expansion
requirements in any feasible solution, its value can be much larger than the actual
flow routed on arc <i,j> in an optimal solution. Consequently, the cable installation
variables zij often take small fractional values in the optimal linear programming

(or Lagrangian) solution (with nonnegative costs, formulation [LAN1] has an
optimal LP solution with zij = sij/Mij).

To reduce Mij, we compare the cable expansion cost on arc <i,j> with the

concentrator cost at node i to determine the breakeven flow value above which
locating a concentrator at node i is cheaper than routing flow on arc <i,j>. If an
expansion plan routes fij > Bij units of traffic from i to j, it incurs an expansion cost of

at least CEij(fij) = Gij + eij*(fij-Bij) + fij Cmin, where cmin is the smallest variable
concentrator cost taken over all nodes at or beyond node j. Consider the alternate
solution obtained by installing a concentrator at node i, and rehoming all the traffic
that previously flowed through arc <i,j> on this concentrator. This solution incurs a
concentrator cost of CCi(fij) = {Fi + ci*f ij)}. Clearly, if CEij(fij) exceeds CCi(fij), then

installing a concentrator at node i improves the given solution.

Let U i. denote the flow value at which the cost functions CE.j(f) and CCi(f)
intersect assuming Gij < F and ei > cj) as shown in Figure 3. Since routing more
than Uij units of flow on arc <i,j> is suboptimal, we can limit the value of flow on

arc <i,j> to Uij, giving us a cost-based cable expansion bound of M = (Uij - Bij). We
then set the right-hand side coefficient Mij in the forcing constraint (2.6) equal to

min {Md Mi)}. Again, these cost-based upper limits extend to the case of piecewise-

linear, concave costs.

5. Modeling and Algorithmic Enhancements II: Incorporating Valid
Inequalities

To further improve the Lagrangian lower bounds, we add certain valid
inequalities or cuts to the original problem formulation, and modify our solution
method to incorporate the new constraints. These cuts reduce the feasible region for
the Lagrangian (and linear programming) relaxation without eliminating the
optimal integer solution, thus improving the lower bound. For a review of the
underlying ideas and successful applications of this polyhedral combinatorics
solution approach, see Hoffman and Padberg [19851 or Nemhauser and Wolsey
[19881.
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Balakrishnan et al. [1992] have identified several classes of valid inequalities for
the local access network expansion problem, and showed that, under certain
conditions, these inequalities are facets of the integer programming polytope. In this
paper, we focus on a subset of those valid inequalities that are easy to incorporate in
our dynamic programming algorithm for the Lagrangian subproblem. These
constraints relate the assignment variables xij and the cable installation and
expansion variables (zij and sij); adding them to the problem formulation results in a

single, comprehensive Lagrangian subproblem (instead of our previous two
subproblems) that simultaneously determines homing assignments, concentrator
locations, and cable additions.

Sections 5.1 to 5.3 motivate and describe the three classes of valid inequalities that
we implemented. Section 5.4 describes requisite modifications to the dynamic
programming method needed to accommodate these three types of inequalities. Our
computational experience indicates that these inequalities are very effective in
reducing the gap between the Lagrangian lower and upper bounds.

Throughout this discussion, recall that T(i) is the subtree rooted at node i. Let D i

denote the total demand of all nodes in T(i); Pi is the predecessor of node i, and Si is

the set of node i's immediate successors.

5.1 Assignment-forcing Arc Installation Inequalities

Our first class of valid inequalities exploits the contiguity property to relate the
assignment variables xij to the binary cable installation variables zij. Assuming

positive arc expansion costs, any optimal local network expansion plan expands arc
<i,k> only if node i homes on some node j via arc <i,k>. This observation motivates
the following assignment-forcing arc installation inequalities:

E Xij > Zik for all arcs <i,k>. (5.1)
j: <i,k>e Pij

Balakrishnan et al. [1992] generalize these constraints to cutsets of the tree T other
than a single arc <i,k>.

5.2 Bottleneck-Arc Installation and Expansion Inequalities

Our next class of inequalities relate the concentrator location decisions to the
cable installation and expansion decisions. We refer to arc <i,Pi> as a bottleneck arc

and node i as a bottleneck node if the total demand D i in subtree T(i) exceeds the
arc's current capacity Bip i. Let IB denote the set of bottleneck nodes in T. For every

bottleneck node i IB , any feasible expansion plan must either install at least one
concentrator within subtree T(i) or expand arc <i,pi> (or both). Furthermore, if

subtree T(i) does not contain any concentrators, the amount of capacity expansion on
arc <i,pi> must be at least (Di - Bipi). Hence, we can add the following valid

bottleneck-arc installation and expansion inequalities to the problem formulation:
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, Yk + zipi Ž 1 for all i E IB, and (5.2)
ke T(i)

ke Yki) + s~, Ž for allie IB . (5.3)(Di-BiPi){ Z Yk + sipi > D i - Bip i foralli I (5-3)
ke T(i)

Note that, if arc <i,pi> is not a bottleneck arc, then M P = 0 and we can eliminate the

arc installation and expansion variables ipi and Sip i from the problem formulation.

Balakrishnan et al. [1992] generalize constraints (5.2) to subtrees of T other than the
rooted subtrees T(i) for i = 1,2,..., n.

5.3 Subtree-splitting Arc Installation and Expansion Inequalities

Given any feasible expansion plan, we say that subtree T(i) completely homes on
an external node j T(i) if all nodes of T(i) home on node j in that expansion plan.
On the other hand, T(i) partially homes on node j o T(i) if node j serves only a subset
of nodes in T(i) (including node i), and T(i) contains one or more concentrators that
serve the remaining nodes in this subtree. If all nodes in T(i) home on
concentrator(s) within T(i), we say that subtree T(i) is self-sufficient.

The bottleneck inequalities (5.2) and (5.3) apply when subtree T(i) completely
homes on an external node j, in which case the total flow on arc <i,Pi> exactly equals

the total demand subtree D i. On the other hand, when T(i) is self-sufficient, arc
<i,pi> does not carry any flow; the assignment-forcing arc installation inequalities
(5.1) prevent expanding arc <i,pi> in this case. We now consider additional valid

inequalities for situations when subtree T(i) partially homes on a node j e T(i). For
the partial homing case, we do not know the exact flow on arc <i,pi>, but we can

compute upper and lower bounds on this flow. These bounds will vary depending
on the homing patterns in the "successor" subtrees, i.e., the subtrees rooted at node
i's successors. If, for a particular homing pattern, the upper bound (lower bound) is
less (more) than arc <i,pi>'s capacity Bip i, then any solution containing that homing

pattern must not (must) expand arc <i,pi>. We will refer to this class of inequalities

as Subtree-splitting Arc Installation and Expansion Inequalities since they exploit the
dynamic program's strategy of splitting each subtree into its constituent successor
subtrees.

Let dminh denote the smallest leaf node demand in subtree T(h). If T(i) partially

homes on an external node j, then at least one leaf node in T(i) must home on an
internal concentrator (by contiguity); hence, the maximum possible flow on arc
<i,pi> is (D i - dmini). Since node i homes outside T(i), the minimum flow on this
arc is d i. We might use these two bounds to decide if arc <i,pi> must necessarily be
included (if d i > Bip i) or excluded (if Di-dmini < Bip i) when subtree T(i) partially

homes on any external node. We can further sharpen the upper and lower bounds
on arc <i,pi>'s flow by separately considering different combinations of homing
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patterns in the successor subtrees. In general, every successor subtree can: (i)
completely home on node j, (ii) partially home on node j, or (iii) be self-sufficient.
However, since subtree T(i) partially homes on node j, at least one of its successor
subtrees must have a concentrator, i.e., we do not permit every successor subtree to

completely home on node j. Thus, we consider (3 1 Si I - 1) different successor
homing combinations. Each combination or case is characterized by a partition Q =
{Sli, S2i, S3 i} of the successor node set Si: Sl i, S2 i, and S3 i correspond, respectively,

to the subsets of node i's successors whose rooted subtrees completely home on node
j, partially home on node j, or are self-sufficient in the chosen combination. Each
case Q has associated upper and lower bounds on flow along arc <i,pi>; we next show

how to compute these bounds.

Calculating upper and lower bounds on flow on arc ,pi>:

Consider any successor node u E Si, and suppose u E Sl i for a given case Q i.e.,

T(u) completely homes on external node j. Then, the flow out of subtree T(u) exactly

equals the total demand D u in that subtree. If u E S3 i, then subtree T(u) is self-

sufficient, and no flow emanates from T(u). Finally, if T(u) partially homes on an

external node j (i.e., u E T2i) then, as we noted earlier ,the flow out of subtree T(u)
cannot exceed (D u - dminu ) units but must be at least d u units.

Using these minimum and maximum outflows from the successor subtrees, we
can compute upper and lower bounds on arc <i,pi>'s flow as follows:

fmaxi (Q) = di+ I D + {Du-dminu , and (5.4)
iPi i ue Sli uE S2i

fminipi(Q) = di + Du + S d u . (55)
ue Sli ue S2i

If fminipi(Q) is greater than arc <i,pi>'s capacity Bip i, then we can add a valid

inequality specifying that arc <i,pi> must be IN, i.e., zip i = 1 and sipi (fminip i(Q)-

Bipi), whenever the solution selects the homing pattern Q. Similarly, if fmaxipi(Q) is

less than Bipi, we force arc <i,pi> to be OUT, i.e., zpi = spi = 0, for homing pattern Q.

Finally, if fminipi(Q) < Bip i < fmaxipi(Q), then arc <i,pi> is FREE, i.e., we permit Zip i

to be either 0 or 1, but ipi < (fmaxipi(Qi)-Bipi). We can formulate these logical

restrictions as mathematical constraints in terms of the assignment, concentrator
location, and cable addition variables. For instance, to force arc <i,Pi> to be IN for a

case Q (when fminipi(Q) > Bipi), we can add the following subtree-splitting arc

installation inequality:

Y, E x + C uk + 1ipi > (5.6)
ue Sli le T(u) ke T(i) uE S2i ke T(i)
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The first two terms in the left-hand side of (5.6) are both zero if the solution selects a
homing pattern consistent with case Q i.e., all nodes in subtrees T(u) for u E S1 i and

all successors u E S2i home on a node outside T(i), in which case constraint (5.7)
forces cable installation on arc <i,pi>. (We can tighten this subtree-splitting
constraint by including in the first term only assignment variables xlk corresponding

to leaf nodes I in subtrees T(u) for u E Sli; by contiguity, all nodes of subtree T(u)

must home on the external node j if all its leaf nodes home on node j.) The subtree-
splitting constraint strengthens the original problem formulation, thus potentially
improving the Lagrangian (and LP) lower bounds. Similarly, we can formulate a
subtree-splitting arc expansion constraint to enforce cable expansion ipi of at least

(fminipi(Q)-Bipi ) units for all IN arcs <i,pi> under case Q. We can also model the

OUT and FREE restrictions on arc <i,pi>. Since our dynamic programming approach

can implicitly account for these inequalities, we do not require explicit mathematical
representations such as (5.6).

To summarize, for every node i, we consider each of the (31 Si I -1) cases
corresponding to partial homing of subtree T(i). For every case Q we compute the
upper and lower bounds on flow on arc <i,pi> using equations (5.4) and (5.5). By

comparing these bounds with the arc's capacity, we determine if we can restrict arc
<i,pi> to be IN, OUT or FREE for homing pattern Q. In Section 5.4 we indicate how

to incorporate this information in the dynamic program. Note that the subtree-
splitting arc installation inequality (5.6) generalizes our previous bottleneck-arc
installation inequality (5.2). Recall that the bottleneck inequalities apply when the
subtree T(i) completely homes on an external node j. In this case, every successor of
node i must also completely home on node j, i.e., the complete homing pattern

corresponds to a case Q with S1i = Si, and S2i = S3i = 0. Applying equations (5.4) and
(5.5) to this case, we find fmaxipi(Q) = fminipi(Q) = Di; hence, if D i > Bip i, i.e., if arc

<i,pi> is a bottleneck arc, then we must force arc <i,pi> to be IN whenever the
solution completely homes subtree T(i) on an external node j. Since S2 i and S3i are

empty for this special case, the subtree-splitting arc installation inequality (5.6)
reduces to the bottleneck-arc installation inequality (5.2). Similarly, the subtree-
splitting arc expansion inequality (which imposes a lower bound on the arc
expansion variable sipi) generalizes the bottleneck-arc expansion inequality (5.3).

Our discussions thus far have focused on the case when node i homes on an
external node j. Suppose T(i) is self-sufficient, i.e., node i homes on an internal

concentrator at node j E T(v) for some successor v e Si. In this case, we wish to use

the demand parameters to fix or restrict, if possible, the cable installation and
expansion variables for arc <i,v>. Since i homes on j E T(v), the successor subtree

T(v) must also be self-sufficient, but every other successor subtree T(u), for all u E
Si\{v} can either completely home on j, partially home or j, or be self-sufficient.
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Thus, we can separately consider 31 Si I -1 combinations of successor homing patterns.
Using our previous notation, we consider only cases Q with v S i. As before, we
can compute upper and lower bounds on the flow on arc <i,v> for each case. The
lower bound fminiv(Q) has the same form as equation (5.5). However, for the upper
bound fmaxiv(Q) we must add to the right-hand side of equation (5.4) the total

demand of all nodes outside subtree T(i). Again, we use these bounds to determine
if arc <i,v> must be IN, OUT, or FREE for case Q, and impose the corresponding arc
installation and expansion inequalities.

Our subtree-splitting inequalities consider combinations of homing patterns for
the immediate successors of node i. We can further refine this partition of homing
patterns and obtain sharper flow bounds (and, hence, tighter inequalities) by
enumerating the homing patterns for subtrees that are two levels, three levels, and
so on below node i. However, incorporating these inequalities in the dynamic
program adds to the algorithmic complexity of the solution approach. Our
implementation performs quite well with only the first level subtree-splitting
inequalities.

5.4 Modifying the Dynamic Programming Algorithm

Adding the three classes of inequalities-the assignment-forcing, bottleneck-arc,
and subtree-splitting inequalities-to the original formulation introduces additional
linkages between the assignment, concentrator location, and cable addition variables.
Consequently, when we dualize the cable capacity constraints (2.5) using multipliers

{ij}, the resulting Lagrangian subproblem, which we denote as [ULAN2(pg)],
combines the previous uncapacitated network expansion problem [ULAN1(g)] and
the cable expansion subproblem [CES(g)]. This section describes how to modify the
ULAN dynamic programming approach [DP1] of Section 3.1 to solve the new,
integrated Lagrangian subproblem.

To incorporate the new valid inequalities, we exploit the dynamic program's
ability to account for (uncapacitated) arc fixed costs rij. These fixed costs were zero in

the uncapacitated subproblem ULAN1(g) for the basic formulation [LAN1. Adding
the inequalities of Sections 5.1 to 5.3 effectively introduces nonzero arc fixed costs
that vary depending on the homing pattern. Since our cost transformation
(equation (3.1)) includes the arc fixed cost rik in the assignment cost aij only if k E Pij,

we automatically satisfy the assignment-forcing cable installation inequalities (5.1),
i.e., the Lagrangian subproblem solution does not install arc <i,k> if node i does not
home via node k.

We now show how the bottleneck-arc inequalities and the subtree-splitting
constraints determine the value of the arc fixed costs lik. Suppose, for some feasible
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case Q the subtree-splitting inequality for arc <i,k> specifies that this arc must be IN
(since fminik(Qi) > Bik), i.e., Zik must be set to 1, and sik must be greater than or
equal to (fminik(Q)-Bik) if the solution selects the homing pattern Q. Constraint

A

(2.6) together with the upper bound fmaxik(Q) specify an upper limit of Mik =
min {Mik, fmaxik(Q)-Bik) on sik. The variables Zik and ik have coefficients of Gik

and (eik-Pik) in the objective function of subproblem ULAN2(g); when arc <i,k> is

forced to be IN, this subproblem has the following optimal solution:
Zik = 1, and

Sik = fminik(Q)-Bik if (eik-gik) > 0, and
A

= Mik if (eik-gik) < 0.

Effectively, these optimal values contribute an equivalent "uncapacitated" arc fixed
cost of

rik (Q) = Gik + min { (eik-gik) [fminik(Qi)-Bik], (eikj-4ik) Mik }. (5.7a)

Similarly, if the upper and lower bounds force arc <i,k> to be OUT or FREE (i.e., if
fmaxik(Q) < Bik or fminik(Q) < Bik < fmaxik(Q)), we have the following equivalent
fixed costs corresponding to homing pattern Q:

OUT
rik(Q) - 0; or (5.7b)

FREE A

r ik (Q) - min (0, Gik + (eik- 9gik) Mik} (5.7c)

To recapitulate, for every feasible case Q we: (i) compute the upper and lower
bounds fmaxik(Q) and fminik(Q) for arc <i,k>, (ii) compare these bounds with the
existing capacity Bik to determine if arc <i,k> must be IN, OUT, or FREE, and (iii)

accordingly set the uncapacitated fixed cost rik(Q) for arc <i,k> corresponding case Q

equal to either rFk (Q), i(Q)Q), o r i k (Q). Since these arc fixed costs vary by case,
applying our cost transformation (3.1) gives different assignment costs aij(Q) for

different homing patterns Q within subtree T(i). Consequently, the dynamic
program must have the ability to differentiate the homing costs for various cases.

Recall that the dynamic program already treats the self-sufficient case separately;
the tree cost TC(i) denotes the optimal total (assignment) cost of covering all nodes
in rooted subtree T(i) assuming T(i) is self-sufficient. To distinguish between
complete and partial homing of subtree T(i), we replace our original homing cost
HC(i,j) (see Section 3.1.2) with the following two complete and partial homing costs:

CHC(i,j) = Cost of serving all nodes in T(i), assuming all nodes of T(i)
home on an external node j e T(i); and
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PHC(i,j) = Cost of serving all nodes in T(i), assuming node i homes on
(external or internal) node j, and T(i) contains at least one
concentrator.

When T(i) completely homes on an external node j, all its successor subtrees T(u)
for all u E Si also home completely on node j (i.e., case Qc = {Si, , 0}). Thus,

CHC(i,j) = aij(Qc) + E CHC(u,j). (5.8)
ueSi

If arc <i,pi> is a bottleneck arc, equation (5.7a) introduces a positive arc fixed cost

ripi(QC), which the cost transformation (3.1) adds to the assignment cost aij(Qc).

We compute the partial homing cost PHC(i,j) as the minimum homing cost over
all partial homing cases. If j o T(i), the partial homing cases consist of all
combinations of complete homing, partial homing, and self-sufficient successor
subtrees of node i except the case Qc in which every successor completely homes on
node j. If j E T(v) for some v E Si, we consider only cases in which subtree T(v) is

self-sufficient (i.e., v E Si). Let PHC(i,j,Q) denote the partial homing cost for case Q
assuming node i homes on node j. We compute node i's partial homing costs as
follows:

PHC(i,j,Q) = ai(Q) + CHC(u,j) + PHC(u,j) + TC(u),and (5.9)
ue S1i ue S2i uES3

PHC(i,j) = minimum PHC(i,j,Q). (5.10)
all partial homing cases Q

Finally, we compute the tree cost TC(i) as:

TC(i) = minimum PHC(i,j). (5.11)
j E T(i)

Equations (5.8) to (5.10) are the recursive equations for the enhanced dynamic

program to solve the uncapacitated network expansion Lagrangian subproblem
ULAN2(1.). As before, we consider nodes in bottom-to-top sequence to ensure that
the required quantities on the right-hand side of these recursive equations are
available when needed.

To summarize, this section has described several classes of valid inequalities that
strengthen the local access network planning problem formulation. We also
discussed modifications to the dynamic programming algorithm needed to
incorporate these cuts. The next section presents computational results comparing
the performance of the decomposition method, without the cuts and with the cuts
and other model enhancements, for three test networks.
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6. Computational Results

As the discussions in Sections 4 and 5 suggest, we followed an iterative process of
computational testing and algorithmic enhancement-testing the algorithm using
three problems derived from actual networks, gaining insight about its
shortcomings, and devising techniques (preprocessing, coefficient reduction, valid
inequalities) to address these deficiencies. Section 6.1 describes some broad
characteristics of our test networks. We then present computational results using: (i)
the basic model [LAN1], and (ii) the enhanced model with reduced cable expansion
bounds and valid inequalities. To obtain benchmarks for solution time and quality,
we also attempted to solve the mixed-integer formulation and the linear
programming relaxation for all three problems using a general purpose
mathematical programming software package (LINDO). Section 6.2 reports the IP
and LP results, and our initial experience with the basic [LAN] model. Section 6.3
shows the dramatic performance improvement derived from the modeling and
algorithmic enhancements. Section 6.4 reports on several computational tests with
parametrically-scaled demand and cost values for the three network configurations.

6.1 Test Problems
Our computational tests employed three test problems-a 27-node network

(Problem 1), a 25-node network (Problem 2), and a 41-node network (Problem 3).

Each network represents an existing feeder route from a Central office. Our
implementation assumes (for convenience, and without loss of generality) that each
node of the network has at most two successors. Problems 2 and 3 had a total of
three nodes with three successors each; all other nodes had 1 or 2 successors. We
added a zero-demand node (with infinite concentrator cost) and a zero-cost edge to
convert each three-successor node into 2 two-successor nodes.

For each network, telecommunication planners provided us with information
on the projected demand at every customer node, and the current cable capacities.
Figure 2 shows demand and capacity information for the 41-node problem. We
examined the actual, prevailing costs for various transmission and concentration
technologies to estimate the fixed and variable cost coefficients for our model. Cable
expansion costs vary by (i) construction type (aerial, buried, or underground), and (ii)
cable gauge (22, 24 or 26). On each edge, new cables must have the same cable type
and gauge as existing cables on that section. For concentrators, we use a piecewise-
linear, concave function containing three segments, each representing a different
technology. For our test problems, concentrator costs do not vary by node (except for
the root node which has zero concentrator cost).
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6.2 Initial Computational Results
6.2.1 Lagrangian results for the Basic Model [LANI]

We initially implemented the Lagrangian/dynamic programming algorithm for
the basic model [LAN1] in FORTRAN on an IBM 3083. The implementation
incorporated the problem preprocessing method (Section 4.1), and the local
improvement heuristic (Section 3.3) but did not contain the coefficient reduction
method (Section 4.2), or any of the valid inequalities described in Section 5. For all
our tests, we initialized all Lagrange multipliers to value zero, used an initial step
size multiplier (see, for example, Held et al. [1974]) of 2.0, and permitted a maximum
of 100 subgradient iterations (the procedure might terminate earlier if the percentage
gap between the upper and lower bounds reduces to a very small fraction).

Table 1 summarizes the computational results of this initial solution approach.
We measure preprocessing effectiveness in terms of the proportion of assignment
variables xij that the preprocessing technique eliminates (the total number of
possible assignments shown in Table 1 excludes assignments to dummy nodes and
from the root node). The % gap statistic, defined as the difference between the best
upper and lower bounds as a percentage of the lower bound, measures the
Lagrangian algorithm's effectiveness. The CPU times reported in Table 1 correspond
to the total computational time (in seconds) on the IBM 3083, including the time
required for input and initialization, preprocessing, subgradient optimization, and
the local improvement heuristic.

The % gaps range from 64% to 124%, and the algorithm required approximately 8
seconds for the smaller problems (Problems 1 and 2), and 22 seconds for the 41-node
problem (Problem 3). To assess the impact of preprocessing, we performed a separate
set of computational experiments (not reported here) without the provisions for
variable elimination. For Problem 3, preprocessing reduced the % gap from 160% to
124% gap through improvements in both the upper and lower bounds; Problems 1
and 2 had only marginal improvements. For all three test problems, the
preprocessing procedure did not require more than 0.1 seconds of CPU time.

6.2.2 Linear and Integer Programming Solutions for Basic Model

To determine the underlying cause of the large % gaps in Table 1, and to generate
benchmarks for the bounds and computation times, we attempted to solve the
integer programming formulations as well as the linear programming relaxations
for all three test problems using LINDO (a commercial mathematical programming
package, running on the IBM 3083 mainframe). To reduce the formulation size we
substituted the self-assignment variables xjjm for the concentrator installation
variables Yjm (the index m = 1,2,3 represents the three concentrator technologies), and
used undirected cable installation and expansion variables (the directed version of
these variables strengthens the LP relaxation only when we incorporate the
additional inequalities of Section 5); this reformulation reduces the number of
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binary variables by almost half and eliminates the concentrator location constraints
(2.3) and the arc orientation constraints (2.7), without weakening the basic
fomulation. We also used the preprocessing results to eliminate several additional
variables and constraints.

We solved two versions of the basic model-our original formulation with

backfeed, and a restricted version without backfeed. Prohibiting backfeed reduces the
number of assignment variables (and constraints) since a node i can now home only
on downstream nodes j lying on path Pi0; this restriction can also eliminate some

cable expansion variables (and constraints) since fewer edges are likely to have
maximum possible flow values greater than existing capacity. Consequently, the
"without backfeed" problem formulation contained fewer variables and constraints
than the original, unrestricted version. Since prohibiting backfeed restricts the space
of feasible solutions, we expect the corresponding LP lower bound to be higher, but
the optimal with-backfeed integer solution might be cheaper than the without-
backfeed solution.

Table 2 contains statistics on the reduced problem dimensions (ranging from 364
variables and 320 constraints to 2908 variables and 2830 constraints) and the optimal
LP and IP values, with and without backfeed, for each test network. We were able to
optimally solve all 6 linear programming relaxations, and 5 out of the 6 integer
programs. For Problem 3 with backfeed, the branch-and-bound procedure did not
reach optimality even after more than 10 hours of (elapsed) computer time. As
expected, the LP values without backfeed exceed the with-backfeed values-by 12%,
3.6%, and 8%, respectively, for the three problems. However, the optimal integer
solutions were the same. For Problems 1 and 2, the optimal integer solutions
coincide with the best Lagrangian-based heuristic solutions (see Table 1); for Problem
3, the Lagrangian-based solution was only 2.3% more expensive than the best IP
value. Finally, the Lagrangian lower bounds were within 5% of the LP lower bounds
(with backfeed). However, the computation time to solve even the LP relaxation
was, on average, three times the CPU time required for the entire Lagrangian
procedure. Solving the IP by branch and bound required considerably more time.

The results in Table 2 confirm that the Lagrangian-based heuristic generates near-
optimal solutions, but the LP (and, hence, the Lagrangian) lower bounds for the basic
model are weak, and hence do not provide a reliable measure of the quality of the
heuristic solutions. This observation led to our study of various modeling and
algorithmic enhancements described in Sections 4.2 and 5 to strengthen the
relaxation and generate better lower bounds.
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6.3 Improved Computational Results
We implemented the enhanced version of our Lagrangian algorithm (Section

5.4) in the C programming language on a Macintosh II computer (with a Math co-
processor). This final implementation incorporated the following features:

(i) initial heuristic solution, using local improvement on the "centralized"
and "distributed" starting solutions;

(ii) problem preprocessing to eliminate variables;
(iii) the Lagrangian-based heuristic with local improvement;
(iv) cost-based cable expansion bounds; and,
(v) the assignment-forcing, bottleneck-arc, and subtree-splitting inequalities.

We used the same subgradient settings described in Section 6.2. Table 3 contains
summary statistics on the the initial upper bound, the (final) best upper and lower
bounds, the % gap, and the total computation time (elapsed time on Mac II,
including time for input/output, initialization, heuristic, and subgradient iterations)
for the three test problems. Again, we have scaled all the bounds for each problem
with respect to the optimal LP value.

Comparing the results of Table 1 and Table 3 highlights the dramatic reduction in
the % gap due to our enhancements-from 64%, 81%, and 124% to 1.2%, 3.2%, and
7.0%, respectively, for Problems 1, 2 and 3. As before, the Lagrangian-based heuristic
procedure found the optimal solutions to Problems 1 and 2. For Problem 3, the
enhancements to the Lagrangian lower bounding procedure also led to a modest
improvement (1.6%) over the previous heuristic solution (using the basic model);
this improved Lagrangian-based heuristic solution is only 0.66% more expensive
than the best integer solution found using LINDO.

The order-of-magnitude reduction in the % gaps is mainly due to the vastly
improved lower bounds. The new Lagrangian lower bounds are 60 to 95% larger
than the optimal LP values for the basic [LANI] model. These results suggest that,
even though the local access network planning formulation has numerous other
valid inequalities, the cumulative effect of the few classes of cuts that we selected and
implemented far exceeds the potential effectiveness of the remaining, more complex
inequalities.

Although the computation times reported in Tables 2 and 3 are not
commensurate, we estimate that general-purpose branch and bound methods might
require several orders of magnitude more computation time than the composite
Lagrangian relaxation algorithm. Finally, we note that, even with weak lower
bounds, the Lagrangian relaxation procedure generates good starting solutions for
local improvement. For Problems 2 and 3, the Lagrangian-based heuristic was 15 to
20% cheaper than the initial heuristic solution.
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6.4 Computational Results with Demand and Cost Variations
To test the method's robustness as demand and cost parameters change, we

applied the algorithm to problem variations created by scaling the input data,
holding the topology of the three networks fixed. In particular, we tested the
following scaled versions of each problem:

(i) Demand variation: We considered scenarios with uniformly lower or higher
demand values obtained by multiplying the original demand at each node by
a common scale factor. We tested three demand scale factors: 0.5, 2.0, and 5.0;

(ii) Cable expansion cost variation: We uniformly increased or decreased the
variable cable expansion cost by a common scale factor for all edges. We
tested two values of the variable cost scale factor: 0.5 (lower variable cost), and
2.0 (higher variable cost); and,

(iii) Concentrator cost variation: We increased or decreased the fixed concentrator
cost (for every concentrator type) by a fixed amount at all locations. For our
tests, we considered a concentrator fixed cost increase (or decrease) equal to
approximately 50% of a type 2 concentrator's fixed cost.

Table 4 compares the computational results for the 6 variations of each problem
with the base case. For 19 out of the 21 problem instances, the % gap between the
upper and lower bounds is less than 8%. The trends in the best expansion strategies
are consistent with our expectations. For instance, as demand increases,
concentrators become more cost-effective, and hence the number of concentrators
increases. Similarly, as the cable cost increases, the expansion plans tend to replace
cable expansions with additional concentrators. Table 4 also illustrates that, as the
demand scale factor increases, the % gap initially increases and then declines. With
very high demands, the existing cable capacities are negligible compared to the nodal
demands. Consequently, the total cost of an optimal "new" network, ignoring
existing cable capacities (which our dynamic program can find in a single iteration),
does not differ appreciably from the optimal cost of the capacitated problem.
Furthermore, as demand increases, remote homing (i.e., homing node i on another
node j) becomes less attractive relative to local concentration, thus enabling the
preprocessing method to eliminate many assignments and strengthen the
formulation (through lower cable expansion bounds).

These experiments with varying demand and cost data were intended to provide
us with a broad understanding of the robustness of our solution approach. Using a
formal design of experiment analysis with multiple-factor variation would
undoubtedly provide further insight, and might even suggest additional
improvements to our methodology.
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7. Concluding Remarks

This paper has attempted to integrate three essential ingredients of contemporary
applied integer programming research:

(1) an important practical application: Many changes in the telecommunications
industry-technological advances, explosive growth, capital intensive
facilities, and increasing competition-have opened new opportunities to
apply sophisticated, optimization-based decision support techniques for
telecommunication network planning;

(2) decomposition methodology: Since its first successful application for solving
large-scale traveling salesman problems (Held and Karp [1970],[1971]),
Lagrangian relaxation has become a pervasive technique for exploiting special
structure and solving difficult, large-scale discrete optimization models; and

(3) model improvements based on polyhedral combinatorics: Motivated by their
marked success for solving large-scale traveling salesman and many other
problems, polyhedral techniques have become an essential building block for
designing state-of-the-art algorithms for solving several classical integer
programming problems.

We have demonstrated how to exploit the local access network planning
problem's special tree and routing structure, and how to integrate formulation
enhancements with Lagrangian relaxation and dynamic programming. Our
computational results establish the effectiveness of this combined approach for
solving practical problem instances. This project also serves to highlight model-
building issues such as eliciting information on common practice (e.g., the contiguity
property) that can significantly impact algorithmic development, and the tradeoff
between model accuracy (e.g., approximating the true concentrator costs as piecewise-
linear concave functions) and solution effectiveness (time and quality).

Although our model does not consider detailed investment timing decisions and
approximates the cable and concentrator costs, we believe that it is an useful building
block for a practical decision support system to assist local access network planning
activities. Solving a monolithic multi-period planning model is likely to be much
more difficult that its single-period counterpart. Instead, as Shulman and Vachani
[1990] and Jack et al. [1992] suggest, we might employ an iterative framework that first
selects an end-of-horizon target network configuration, and then determines the
optimal evolution plan to reach this eventual target while meeting the demand in
each intermediate period. Our model can generate the target network at each
iteration. Comparing this iterative scheme with other multi-period planning
algorithms is an important research direction.

Modeling multiple services is another potentially fruitful area for investigation,
especially in view of the anticipated diversification of services. Our model applies to
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contexts where we can express the demands for different services (such as voice, data,
and video) in commensurate units, and different services do not impose unique
processing requirements or require different transmission media. With advanced
technologies still under development, the structural differences between the single
(aggregate) sevice model and the muliple services version is still unclear. Finally, as
telephone companies transition from copper to fiber optic-based transmission in the
local network, issues of reliability and connectivity might become more important.
Because of the extremely high bandwith and vulnerability of fiber-optic networks,
the focus of modeling efforts for the next generation of local access networks might
move towards configuring reliable networks at minimum total fixed cost. Some
recent research (e.g., Groetschel, Monma, and Stoer [1992]) has shed some light on
these issues.

Acknowledgments: We wish to thank Marcia Helme, Jeffrey Musser, and Alexander
Shulman for their valuable insights and modeling contributions, and for providing
the linkage with network planners in the field. Much of Richard Wong's work was
completed at Purdue University, West Lafayette, Indiana.
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Table 1

Computational Results for the
(with Preprocessing and

Basic Lagrangian Relaxation Scheme
the Local Improvement Heuristic)

% reduction = No. of assignments eliminated + total no. of possible assignments (excluding
assignments to dummy nodes and from root node).

Bounds for each problem are scaled with respect to optimal value of LP relaxation (Table 2).

**

% gap = (Best Upper Bound - Best Lower Bound) /(Best Lower Bound)

§ CPU time includes time for input and initialization, subgradient iterations, and the local
improvement heuristic.

Statistic Problem 1 Problem 2 Problem 3

Number of nodes 27 25 41

No. of possible assignments* 676 441 1521
% reduction in assignment variables 25% 24% 30%

Best Upper Bound using Lagrangian- 162.72 173.91 212.40
based heuristict

Best Lagrangian Lower Boundt 99.25 96.15 94.91

% gap** 64% 81% 124%

CPU time (seconds on IBM 3083)5 8.4 secs 6.8 secs 22.2 secs

-"--- --_1-----



Table 2

Linear and Integer Programming Results using LINDO
for the Basic Model [LAN1]

Number of variables and constraints shown in
after preprocessing .

Objective function values for each problem are
with backfeed.

table correspond to compact formulation (Section 6.2.2)

e scaled with respect to optimal value of LP relaxation

Branch-and-bound for Problem 3 terminated, without reaching optimality, after 10 hours of elapsed
time on the IBM 3083. The table reports the value of the best incumbent at termination.

Problem 1 Problem 2 Problem 3
# Nodes 27 25 41

# Variables§: Integer/Continuous 814/17 911/18 2870/38

# Constraints§ 781 889 2830

Optimal Value*

* LP Relaxation 100.00 100.00 100.00
* Integer Program 162.72 173.91 207.70 t

CPU secs (on IBM 3083)
* LP Relaxation 14.2 24.3 72.9
* Integer Program 307.8 691.8 t

No. of Iterations

* LP Relaxation (# pivots) 384 1058 1295
* Integer Prog. (# pivots/branches) 47/15898 89/56239

Without Backfeed

# Variables§: Integer / Continuous 421/5 352/12 765/24

# Constraints§ 376 320 711

Optimal Value*
* LP Relaxation 111.98 103.63 108.02
* Integer Program 162.72 173.91 207.70

CPU secs (on IBM 3083) for 2.8/36.1 4.2/72.4 6.2/2862.6
LP Relaxation/Integer Program

§



Table 3

Computational Results for the
Enhanced Lagrangian Relaxation Scheme

% reduction = No. of assignments eliminated + total no. of possible assignments (excluding
assignments to dummy nodes and from root node).

t Bounds for each problem are scaled with respect to optimal value of LP relaxation with backfeed
(Table 2).

% gap = (Best Upper Bound - Best Lower Bound) /(Best Lower Bound)

§ Computation (elapsed) time includes time for input, initialization, heuristic, and subgradient
iterations.

Statistic Problem 1 Problem 2 Problem 3

Number of nodes 27 25 41

% reduction in assignment variables* 25% 24% 30%

Intial Upper Bound t 162.72 208.19 242.16

Best Upper Bound using Lagrangian- 162.72 173.91 209.08

based heuristict

Best Lagrangian Lower Boundt 160.85 168.52 195.36

% gap** 1.2% 3.2% 7.0%

Computation (elapsed) time on 285 secs 223 secs 879 secs.
Mac II 
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