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We propose a new method that is aimed at denoising images having textures. The method
combines a balanced nonlinear partial differential equation driven by optimal parameters,
mathematical morphology operators, weighting techniques, and some recent works in harmonic
analysis. Furthermore, the new scheme decomposes the observed image into three components
that are well defined as structure/cartoon, texture, and noise-background. Experimental results are
provided to show the improved performance of our method for the texture-preserving denoising
problem.

1. Introduction

A major topic in the image processing community is concerning the extraction of features.
Some of the current research has been aimed at decomposing an image into various auxiliary
images, each representing a specific set of characteristics such as edges, contours, structure,
noise, texture, among others. In this context, an important application is the denoising
problem, where many models assume that a noisy image f is the sum of two components,
f = u + v, so that u contains the structure and the objects of the image (cartoon) while v
contains the oscillatory characteristics; that is, texture and noise.

In most cases, when an image has only few regions defined by texture, the term v is
discarded, being characterized by the equation v = f − u; that is, the models in this category
assume that component v is only defined by noise, such as is the case of nonlinear models
based on adaptive smoothing, anisotropic diffusion, variational methods, and inverse scale
space flow [1–8]. On the other hand, there are models that simultaneously explicit both terms:
structure u and oscillatory v, so that f = u+v. This simultaneous decomposition was initially



2 Mathematical Problems in Engineering

proposed by Meyer [9] from the study of a generalized space to model oscillatory patterns
having zero mean, such as noise and texture, which has been recently studied and refined
as in [10–16]. In this way, in both described cases, if the observed image f has noise and a
high texture concentration, then the term u will not faithfully represent the recovered image
(without noise), since a good part of the fine details of the image (texture) is oscillatory; so
consequently they will be annexed to the noise component v. In all those models, texture and
noise are treated equally, which makes it difficult to identify the oscillatory component v. For
example, for real images, it is practically impossible to obtain satisfactory results using some
f = u + v decomposition model, due to the complex structure and irregular detailing in this
category of images.

In order to overcome these problems there is even a third strand of studies that
considers a combination of the mentioned techniques allied with recent approaches of
harmonic analysis, as in [17–19]. New hybrid models have been proposed with a view to
integrate the main advantages of different methods that minimize noise, such as [20–24].
Nevertheless, as most of these models are directly based on curvelets or wave atoms, they
tend to make a reconstructed image a bit opaque, besides reproducing oscillating (Gibbs)
phenomena, which is an oscillation problem in the frequency domain.

To solve this problem, in this paper we propose a methodology capable of restoring a
noisy image having a high concentration of textures and fine details. The proposed model
not only keeps the oscillatory well-placed characteristics in the image but also maintains
more sensitive textures like intrinsic contours, and edges. Moreover, motivated by [9, 13],
we propose a representation of a given image f into three terms, f = u + ṽ + w, with u
representing the structure or cartoon of the image, ṽ only the texture and intrinsic contours
andw the noise and background. In this sense, another great advantage of our method is that
it was constructed so as to satisfy this decomposition.

The proposed scheme seeks to combine the ideas described in [2, 25], that is, a
nonlinear PDE (Partial Differential Equation) balanced with an automatic selector of best
parameters, based on recent works by [18, 19, 26] on wave atoms, with mathematic
morphology operators, such as the top-hat transform one described in [27] and also with the
ideas introduced here to synthesize each component of the new decomposition in three terms.

The remainder of the paper is outlined as follows: in Section 2 we briefly describe
our method since we use a combination of different approaches in order to treat textured
images with noise. We motivate and present our denoising framework in Section 3. Our
method is then validated experimentally and statistically in Section 4. We finally summarize
and conclude our work in Section 5.

2. The Proposed Method

2.1. Description of the Problem

Let f be the observed image with noise and h the original image (without noise), represented
by the functions f : Ω → R and h : Ω → R, where Ω is a rectangular region of R

2. Here, we
assumed that both f and h can be periodically extended to the R

2, so as to have f, h ∈ L2(R2).
We supposed that the noise is additive, that is,

f(x) = h(x) + n(x), x ∈ Ω, (2.1)

where n represents the Gaussian type noise with mean 0 e variance σ2
n.
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Furthermore, we assumed that the original image h is composed of a structure and an
oscillatory pattern component such as texture and irregular details.

The objective here is to minimize the noise level of the input image f ; that is, the
impact of noise n(x) should be minimum in the output image, making it visibly closer to the
original image h. The texture and intrinsic contours built-in the image must be maintained
and highlighted so that output images u, ṽ, and w satisfy

h ∼= u + ṽ, n ∼= w (2.2)

and represent the following features of f :

(i) u: structure, skeleton, or cartoon,

(ii) ṽ: texture, intrinsic contours, and irregular details,

(iii) w: noise and background.

2.2. The Proposed Scheme

Let f be the observed image contaminated with noise as in (2.1). The proposed algorithm can
be described as an integrated system having six essential stages, being the first (step 1), the
second-to-last (step 5), and the last (step 6) stages of the algorithm where output images are
produced, while remaining stages (steps 2, 3, and 4) are where support images are generated
that help output components which were synthesized in the previously mentioned steps. All
these steps are presented according to the following description.

(1) Classical image decomposition. The image decomposition f is calculated into two
components, u and v, so that f = u + v, where u contains the skeleton or cartoon
of f and v contains the oscillating elements of the image such as noise, irregular
details, and texture.

(2) Denoising texture-noise component.An iterative procedure is applied to remove noise
present in component v, thereby producing an auxiliary component v1 that contains
intrinsic contours, parts of the texture, and parts of the edges of v.

(3) Oriented texture support component. An auxiliary image v2 is produced containing
the warped oscillatory patterns of v such as regions characterized by the texture or
oscillating details more subtle.

(4) Fuzzy representation of edges and textures. A specific morphological filter is applied in
v2 to obtain a fuzzy edge-texture representation ωv2

: Ω → [0, 1] of the image v2.

(5) Output of component having only texture. A combination of component v1, obtained in
step 2, with the component v2, obtained in 4, is done, producing a compound image
of only texture, intrinsic contours, fine and irregular details, but not the noise. The
mentioned image is here identified as ṽ.

(6) Output of restored image and residual component. A composition of the component
u, obtained in 1, is done with the component ṽ, generated in the previous step.
In addition, the image w characterized by noise and background (residue) can be
obtained, thus satisfying a decomposition of three terms.

Figure 1 shows all the steps previously described while the Figures 2, 3, 5, 6, 7 and 8 show
details of each of those steps, respectively. In the next section we will describe each of these
steps.
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Figure 1: Illustrative diagram of the proposed algorithm.

3. Description of the Proposed Method

3.1. Classical Image Decomposition

In the first step of the proposed method, the idea is to decompose the initial image f into
two components u and v, with f = u + v, such as previously described in this paper.
For this purpose, we used the nonlinear anisotropic PDE, proposed by Barcelos et al. [2],
with selector of best parameters present in [25]. It is a nonlinear parabolic PDE formulated
as from a combination of the classical model from Perona and Malik [6], with the model
from Alvarez et al. [1], and with the model proposed by Nordström [8]. Its differential is
to eliminate noise through a smoothing process that preserves image edges and contours
using automatic detectors. This nonlinear model is presented and detailed in the next
section.

In this step, the algorithm aims to smooth the observed image f by applying PDE
[2], obtaining as a result the component cartoon u. Then, we do a simple operation f − u
to determine the component having texture and noise, that is, v := f − u. As the objective
is to obtain u and v well characterized as to structure and texture/noise, respectively, the
smoothing process is intensified, being possible to control diffusion velocity through the
inclusion of PDE base parameters.

An alternative to implement this step of the algorithm is to use any model that is
capable of a good image smoothing, such as [1, 3, 5–8]. Another good alternative is to use a
simultaneous cartoon-texture decomposition model, which can be found in [9–14, 16].

The justification to use the nonlinear PDE proposed in [2] is that, from the
computational point of view, it is more practical, because besides results being similar to
others in literature, it is necessary for use in another step of the our method.

The numerical algorithm used to implement this step of our scheme follows from [2].



Mathematical Problems in Engineering 5

(a) (b) (c)

Figure 2:Details of step 1. (a) Input image f with noise, (b) structure/cartoon u, and (c) oscillatory patterns
v (noise/texture).

3.2. Denoising Texture-Noise Component

The purpose of this step is to remove noise from component v (obtained in previous step) in
order to minimize the loss of edges, intrinsic contours, textures, and fine details. Again, we
used the nonlinear model [2], but now the applied equation is helped by the best parameter
selector proposed in [25]. The adopted model is based on the following nonlinear parabolic
equation:

∂v(t)

∂t
= g

∣∣∣∇v(t)
∣∣∣div

(
∇v(t)

∣∣∇v(t)
∣∣

)
− λ

(
1 − g

)(
v(t) − v

)
, (3.1)

v(x)(0) = v(x),
∂v(x)(t)

∂−→n

∣∣∣∣∣
∂Ω×R+

= 0, x ∈ Ω, t ∈ R+, (3.2)

where v represents the initial image having texture and noise, v(t) is its version on scale t,
g = g(|∇Gσ∗v

(t)|) is a nonnegative and nonincreasing function called diffusivity term,Gσ∗v
(t)

determines the convolution of signal v(t) with the Gaussian function Gσ , and λ is a weighting
parameter. Here, the symbol | · | denotes the Euclidean norm while the constant σ denotes the
standard noise deviation of the image v.

Generally, the diffusivity term g, besides being nonincreasing and nonnegative, is such
that g(0) = 1, g(s) → 0 when s → ∞ and g(|s|) ∈ [0, 1]. In this paper we choose g based
on the Perona and Malik [6] diffusivity term, together with the ideas of Alvarez et al. [1] and
Barcelos et al. [25]:

g(s) = g
(∣∣∣∇Gσ ∗ v(t)

∣∣∣
)
=

1

1 + k
∣∣∇Gσ ∗ v(t)

∣∣2 (3.3)

with

Gσ = Gσ

(
x, t̂

)
=

1

2σπt̂
exp

(
−|x|2

2σt̂

)
, (3.4)
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where k = k(σ) ≥ 0 is a σ-dependent constant and t̂ is a scalar variable related to the space
of the scale produced by the Gaussian (3.4). The best choice for the scale t̂ will be better
described in following pages.

With the intent to automate the computation of (3.3) and to avoid antiquated choices
for k, we adopt it according the ideas in [25], that is,

k(σ) =

⎧
⎨
⎩
a1 exp(a2 σ), σ ∈ [0, 201],

b1 exp(b2 σ), σ ∈ (201, 350],
(3.5)

where a1, a2, b1, and b2 are constants such as in [25]. Such a choice brings great advantages
such as eliminating an entry parameter in the application of the model and obtaining a good
choice for the diffusivity term (3.3). In (3.3), k works as an edge selection parameter: for a
fixed image with a high k value, false edges may be identified while with a small k value,
only prominent edges will be selected.

The equation (3.1) can be seen as a balancing between smoothing and “keeping close
to component v”. This balancing is managed by the diffusivity term g, which is used as an
edge detector and also to control diffusion velocity. It can be observed that in homogeneous
regions of the image we have |∇Gσ ∗ v(t)| small, which implies in g ∼ 1. Then, (1 − g) ∼ 0
and also the reaction term (v(t) − v) act in a practically insignificant way in the application of
(3.1). Consequently, the diffusion process done by the first parcel of (3.1) is intense; that is, the
smoothing will be incisive in these regions. In contrast, for contour regions where |∇Gσ ∗v

(t)|

is big we have g ∼ 0 and (1 − g) ∼ 1, implying that the reaction term (v(t) − v) proposed by
Nordström [8] will retain strongly the initial features of the image v under analysis.

The first great advantage of using the nonlinear model (3.1) instead of the classical
models in literature (see [1, 3, 6–8]) is that it applies a balanced diffusion controlled by
sensitive detector of contours, and since the image v can be simultaneously characterized for
texture, irregular details, and noise, only regions where there are no contours will be subject
to equation diffusion (3.1). Thus, a large part of the texture, edges, and intrinsic contours will
be kept in this process. In contrast, it is true that part of those irregular details (warped texture
and fine details) will be smoothed in the process. Nevertheless, this deficiency is bypassed
by our algorithm in the oriented-texture support component synthesizing step, described in
the next section.

The second great advantage is that there are only two parameters in the numerical
solution of the model given in [2] to be determined: the constant k and the best scale for t̂,
which can be automatically computed.

In [25], the authors linked the t̂ scale of the Gaussian kernelGσ with the noise standard
deviation σnoi of the initial image v = v(x)(t=0), which resulted in an estimate for optimal time
T to stop the evolutionary process (3.1), given by

T =
σ2
noi

a
, (3.6)

where σ is the standard deviation of image v with noise and a = σ, with σ being the constant
present in the Gaussian kernel (3.4).

Encouraged by the authors of [25], we take the optimal smoothing time t̂ as in (3.6),
that is, t̂ = T . Having the optimal stopping time T , it is possible to automatically obtain
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(a) (b)

Figure 3: Details of step 2. (a) Input image v and (b) intrinsic contours and parts of the texture, here
represented by v1. Note in v1 that although there are texture losses close to the neck and background, face
intrinsic contours are preserved, such as eyes, mouth, and hair.

(unless the temporal step Δt) the number of iterations of the model and also the best scale
t̂ for the Gaussian function (3.4). The advantage of being able to automatically obtain the
incoming parameters of the model (3.1) makes it pretty efficient and practical, considerably
minimizing user intervention at this step of the algorithm. On the other hand, it is true that
optimal time T is directly related to the standard noise deviation σnoi. For synthetic images,
it is possible to calculate σnoi, but for real images it is usually not. In the latter case we try to
estimate σnoi based on the visual quality of the image.

To implement the numerical equation (3.1), the idea is to construct an iterative process
whose stopping criteria is based on optimal time T (3.6), as presented in [2]. In this case, T
is used in the Gaussian function (3.3), as was previously described. Also, the N number of
iterations is calculated based on T , which is given by

N =
T

Δt
. (3.7)

3.3. Oriented Texture Support Component

That is one of the most important steps of the proposed method, because it is in it that we
extract the oriented texture and most of the oscillatory details of the image. To do this, we use
a recent study of wavelet variants presented in [18, 19] for texture analysis, which became
known as wave atoms.

Wave atoms are a variant obtained through a 2Dwavelet packet obeying the important
parabolic scaling relation wavelenght ∼ (diameter)2, which improves the sparse representation
of certain oscillatory patterns when compared to more traditional expansions, such as
wavelets, gabor atoms, or curvelets. To be more precise, it means that the warped oscillatory
functions (oriented textures) have a significant sparse expansion in wave atoms than in other
representations of the literature.

Compared to other transforms, wave atoms have two great advantages: the ability to
arbitrarily adapt in localities defined by a certain pattern and the ability to sparsely represent
anisotropic patterns aligned with the axes. Wave atoms composition elements have a high
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direction sensibility and anisotropy, which makes them ideal to apply wherever the intention
is to identify regions characterized by oscillatory patterns such as texture, as is the case here
presented.

In the following, based on [18], we will give a brief explanation about wave atoms
mathematical precedents. For more details, also see [19, 28].

Consider wave atoms given by ϕµ, with subscript µ = (j,m,n) = (j,m1, m2, n1, n2). The
five quantities above are integer values and index a point (xµ, ωµ) in a space-phase such as
xµ = 2−jn, ωµ = π2jm, c12

j ≤ maxi=1,2|mi| ≤ c22
j , where c1 and c2 are two positive constants.

According to [18], the elements of a frame of wave packets ϕµ are called wave atoms when

∣∣ϕ̂µ(ω)
∣∣ ≤ CM · 2−j

(
1 + 2−j

∣∣ω −ωµ

∣∣
)−M

+ CM · 2−j
(
1 + 2−j

∣∣ω +ωµ

∣∣
)−M

∣∣ϕµ(x)
∣∣ ≤ CM · 2j

(
1 + 2j

∣∣x − xµ

∣∣
)−M

, ∀M > 0.

(3.8)

To construct wave atoms for our problem, we first considered the case of a family 1D

of wave packets ψ
j
m,n(x) ≥ 0, m ≥ 0, n ∈ N, in the scope of above same conditions. Let φ be

a continuous real function given in [−7π/6, 5π/6], such that for |ω| ≤ π/3, φ((π/2) −ω)2 +

φ((π/2) +ω)2 = 1, and φ(−(π/2) − 2ω) = φ((π/2) +ω).
Considering ψ0

m(t) = 2Re{exp(iπ(m + 1/2)t)ν((−1)n(t − 1/2))}, with ν(t) =

(1/2π)
∫
φ(ω) exp(iωt)dω, the Fourier transform of ψ0

m is given by

ψ̂0
m(ω) = exp

(
−
iω

2

)[
exp(iαm)φ

(
ǫm

(
ω − π

(
m +

1

2

)))

+ exp(−iαm)φ

(
ǫm+1

(
ω + π

(
m +

1

2

)))]
,

(3.9)

where ǫm = (−1)m, αm = (π/2)(m + (1/2)). In this case, φ must be such that
∑∞

m=0 |ψ̂
0
m|

2 = 1.

Thus, we can write functions that make up the base as ψ
j
m,n(x) = ψ

j
m(x −

2−jn) = 2j/2ψ0
m(2

jx − n), whose coefficients can be obtained by cj,m,n =
∫
ψ
j
m,nv(x)dx =

(1/2π)
∫
exp(i2−j − nω)ψ̂

j
m(ω)v̂(ω)dω. Here, v represents the observed signal.

According [18], the extension to two-dimensional case (2D version) can be computed

by ϕ+
µ(x1, x2) := ψ

j
m1,n1

(x1)ψ
j
m2,n2

(x2), ϕ
−
µ(x1, x2) := Hψ

j
m1,n1

(x1)Hψ
j
m2,n2

(x2), where µ = (j,m,n)
and a second equation is based on Hilbert transform relative to these wavelet packets.

Therefore, the combination ϕ
(1)
µ = (ϕ+

µ + ϕ−
µ)/2 and ϕ

(2)
µ = (ϕ+

µ − ϕ−
µ)/2 make up a wave atom

frame.
For the denoising problem, it is recommendable to use wave atom shrinkage, which

is formulated in most cases by vc =
∑

µ θ(c
(1)
µ (v))ϕ

(1)
µ + θ(c

(2)
µ (v))ϕ

(2)
µ , where θ = θγ is a

thresholding function, here adopted by

θγ =

⎧
⎨
⎩
x, |x| ≥ γ,

0, |x| < γ,
(3.10)

where γ begin the threshold value.
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In this work we use wave atom shrinkage to extract oriented texture from image
component v. We take a transform based on wave atoms as follows:

v2 := T̃γv = (WA)−1θγ(WA)(v), (3.11)

where WA denotes the wave atom transform (we use the version 2D), (WA)−1 the inverse
transform (see [18, 19]), θγ is the threshold function (3.10) mentioned earlier, and v2 is

the output component. Here, the nonlinear operator T̃ will keep and highlight important
characteristics of the examined image v such as warped texture, oscillating details, and
irregular patterns.

The implementation of our wave-atoms shrinkage transform consists of the execution
of three steps. First, we apply wave atom transform WA. Next, we remove some
insignificant coefficients from the wave atoms through thresholding (3.10). Finally, we
apply the inverse transform WA−1 in order to reconstruct the signal containing remaining
wave atoms coefficients. For a computational discretization of wave atoms present in
the proposed model, we used the WaveatomLab packet, which can be found on the site
http://www.waveatom.org/.

3.3.1. Wave Atoms × Other Systems

The main advantage of methods based on wavelet variants is space-frequency localization
and multiscale view of the features of surfaces. However, it is known that traditional
wavelets are not good to analyze surfaces with “scratches” or textures, due to wavelets
ignoring properties defined by geometric features of edges and textures, which leads to
strong oscillation along these “scratches”.

In contrast, curvelet transforms, such as [29, 30], are multiscale geometric transforms,
which constitute an optimal sparse representation of objects characterized by singularities
C2. Nevertheless, they do not work so efficiently when the objective is to represent oscillating
textures; that is, they are not efficient to characterize surfaces having warped textures such as
fingerprints, photographs, among other types of images.

Curvelets are good for representing edges while wave atoms are good for representing
oscillatory patterns and textures. Wave atom texture-shape elements not only capture the
coherence along the oscillations like curvelets but also take into consideration patterns across
the oscillations (see Figures 4(a) and 4(b)). Since the objective is to characterize surfaces
with oriented textures, we have a great advantage in applying wave atom transforms for
this purpose.

3.4. Fuzzy Representation of Edges and Textures

In this step of the process, the method is to produce a fuzzy representation (in [0, 1]) of the
features, contours, and principally of oriented texture (nonintrinsic) of the support image
v2 generated in the previous step. For this purpose, we first apply a morphological filter to
simultaneously remove background and heterogeneous regions of v2, seeking to highlight
the oscillatory characteristics of that image. Next, the algorithm normalizes the image; that
is, it translates the preprocessed image to the interval [0, 1]. Here, the main idea was to use a
morphological filter as is presented here in after.
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∼ 2−j

∼ 2−j/2

(a)

∼ 2−j/2

∼ 2−j

(b)

Figure 4: Elements of the curvelets and wave atoms. (a)A digital curvelet [29] and (b) a digital wave atom
[18].

(a) (b)

Figure 5: Details of step 3. (a) Input image v and (b) oriented texture and irregular details v2. Note that
contrary to what happened in Figure 3(b), all oriented texture is highlighted in v2; however, intrinsic
contours (details of face) are lost or left with no definition.

3.4.1. Mathematical Morphology

For the treatment of the image v2, we used an approach based on morphological filters,
which has been showing to be a powerful tool for analyzing the structure of an image as
well as for investigating the geometry of objects that constitute an image. As the objective
here is to maintain oscillatory features of component v2, a good alternative to doing this
is to use a combination between the analyzed image and its version obtained by an
opening or closing operator. Those combinations create a class of transformations called Top-
hats.

According to [27], the open Top-hat transform WTH of an image I is defined by

WTH(I) = I − γ(I), (3.12)
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(a) (b)

Figure 6: Details of step 4. (a) Input image v2 and (b) highlight of oriented texture of v2 with background
correction (in the scale [0, 1]), here denoted by ωv2

.

while the close Top-hat transform BTH is given by

BTH(I) = ρ(I) − I, (3.13)

where γ and ρ are opening and closing operators, respectively. For details, see [27].
In this step of the algorithm, the objective is to emphasize the texture and

simultaneously remove heterogeneous parts of the image. In such case, we opted to use
a Top-hat transform. Precisely, we applied transformation (3.13) to the image v2, obtained
in the previous step, to highlight its oscillatory features at the same time as correcting its
background. Resulting image will have oscillatory details characterized by shades of gray
very close to the black while the interior of the objects and background will be characterized
by shades of gray close to the white.

To finish this step, we convert the preprocessed image to the interval of shades of gray
[0, 1]. The output image obtained in this process is here denoted by ωv2

. The ωv2
component

is a fuzzy representation of contours, and warped texture, which serve as a guide to generate
final component ṽ defined by oriented texture, intrinsic contours and irregular details of the
initial image.

3.5. Output of Component Having Only Texture

This step is aimed to synthesize final component ṽ representing all oscillatory features
of the image, excepting noise. This component must be composed of the oriented texture
(nonintrinsic), intrinsic contours, edges, and irregular details.

To do this, the idea is to combine auxiliary components generated in steps 2 and 4, that
is, the component defined by intrinsic contours and parts of texture v1 and the component
ωv2

, characterized by the fuzzy representation of oriented texture from v, respectively.
Motivated by the ideas of [1, 2, 6], we introduced an efficient weighted technique between
ωv2

and v1, so that absent characteristics of each component could be compensated by other
components. More precisely, the texture contained inωv2

will be superimposed on the regions
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(a) (b) (c)

Figure 7: Details of step 5. (a) Input image v1, which is characterized by intrinsic contours, (b) fuzzy
representation ωv2

of warped texture, and (c) combination of features of v1 with ωv2
, resulting in the final

component ṽ defined by oscillatory patterns of observed image f , except noise.

where there is an absence of this information in support image v1. Therefore, the second
component of our decomposition in three terms ṽ is given as follows:

ṽ(x) := ωv2(x) · v1(x), x ∈ Ω, (3.14)

where the above product is computed pixel by pixel.
Here, the proposed idea is very similar to that used by the diffusivity term g studied

in step 2, which balances and attributes weights to each pixel according to its classification in
the image.

This highlighting among pixels does not contribute for a variation in the range of the
input image v1, since ωv2

belongs to initial range [0, 1].
Because of having applied the closing top-hat transform (3.13), pixels that represent

texture in ωv2
will be closer to zero while those that represent background and homogeneous

regions will be close to one. On the other hand, in component v1 there are no pixels
having high variations, since noise was previously eliminated. Moreover, the component v1

preserves the edges and intrinsic contours of the observed image f , which does not happen
with term ωv2

. Therefore, the main advantages of each component can be used: oriented
texture of ωv2

and intrinsic contours of v1.

3.6. Output of Restored Image and Residual Component

The last step of the propose scheme consists of obtaining the recovered image h̃ and the image
composed of noise and backgroundw. Moreover, this step finishes the decomposition process
of initial image f in terms of the three components previously described: u (structure), ṽ
(texture), and w (noise and background).

As component u represents the structure/cartoon of the observed image f and ṽ the
warped texture, edges, and intrinsic contours (but not noise), according to the classic Meyer
model [9], it is sufficient to add both to obtain the restored image. The great advantage is
that noise was removed by applying the previous steps, as much as for u as for ṽ. Then,
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in this case,

h̃(x) := u(x) + ṽ(x), x ∈ Ω, (3.15)

where the sum is done pixel by pixel.
The characterizing noise is done by calculating the residue between the restored image

h̃ and observed image f , that is,

w(x) := f(x) − h̃(x), x ∈ Ω, (3.16)

where the sum is calculated term by term. In this case, this operation defines not only noise
added to f but also small fragments in the background of the image.

Finally, besides generating reconstructed image h̃, the algorithm also satisfies the
decomposition of three terms f = u + ṽ + w or of an classical decomposition of two

components f = h̃ +w (see Figure 8).

4. Experimental Results

Now we present some experiments obtained by our scheme, where images in a grayscale
defined in the standard interval [0, 255] were used. All the tested images are constituted by
matrices of dimension 256 × 256. In the case of synthetic images, it is possible calculating the
standard deviation of the noise σnoi. However, for real images, σnoi must be estimated in some
other way. Thus, in step 2 we choose σnoi based on the visual quality of v. On the other hand,
σnoi can be provided by the user in the step 1 since the goal here is smoothing the image f .

In order to validity our approach with respect to the tested methods, we used the
statistical measure PSNR (peak signal-to-noise ratio), which is measured in dB.

In the first step of the algorithm, we use (3.1) supported by (3.3) and (3.5), where
(motivated by [25])we adopt λ = 1 and the temporal stepΔt = 0.1 in all examples considered.
The number of iterations N and the standard noise deviation σnoi must be given because
they vary with each experiment. In the second step we again use the equation described in
the previous step and, once again, we adopted λ = 1. Here, the number of iterations N is
determined by (3.7), while Δt and σnoi (for real images) continue being input parameters. In
the third step, the only input parameter is the threshold value γ while in the fourth step we
adopt two types of structuring elements in the top-hat transform: disk or ball. In the fifth and
sixth steps there are no parameters to be determined or provided. In the case of images in
Figure 3, N = 50, σnoi = 25 while in Figure 4, Δt = 0.1. In Figure 5, we take γ = 0.23 and in
Figure 6 a disk with radius 4.

In Section 4.1 we emphasize the decomposition technique in three terms previously
mentioned. In Section 4.2 we evaluate the good performance of the proposed scheme in
comparison to other recent models in literature.

4.1. Restoring and Decomposition Using the Proposed Scheme

In the following, we show two experiments done on images having different levels of
complexity: a highly-detailed real image and one of fingerprint.
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(a) (b)

(c) (d)

Figure 8: Details of final step 6. (a) Input image u, (b) texture ṽ, (c) recovered image h̃, obtained by the
addition of u to ṽ, and (d) residual w containing noise and small details of observed image f . Here,

the reconstruction process of each component validates the decomposition of three terms f = h̃ + w =
u + ṽ + w.

Our first experiment mentions the real image of Barbara. Here the image contaminated
with noise (SNR = 9.1) contains important features to be preserved such as textures on
the legs, in the region near the neck, in the background, and intrinsic contours of the
face. Figure 9(a) presents a noisy image f . The image in Figure 9(c) shows component
u characterized by the structure/cartoon of f obtained in the first step of our algorithm
(σnoi = 15 and N = 30). Taking Δt = 0.15, σnoi = 5 in the second step, adopting
γ = 0.06 for the third step, and choosing a ball with radius 12 and height 10 in the
fourth step, the algorithm generates Figure 9(d), ṽ containing restored oscillatory details,
excepting noise. Both intrinsic contours and oriented texture of f are present in ṽ; that
is, there was no significant loss of any type of oscillatory features. We can see that
Figure 9(c) as in Figure 9(d), the images remain well defined in the visual perception sense
of classical decomposition models such as [9, 13]. In Figure 9(b) we present the recovered

image h̃ and in Figure 9(e) the component w containing the noise and the background.
We can note that our algorithm works efficiently with noise removal, preserving texture
and contours, besides producing, from a visual point of view, a well-defined three-term
composition.
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(a) (b)

(c) (d) (e)

Figure 9: Decomposition into three components. (a) Observed image f , (b) image recovered using
proposed method, (c) structure/cartoon u, (d) texture and intrinsic details ṽ, and (e) noise and residual
parts w. Here, f = u + ṽ +w.

In the second experiment we take a synthetic image of fingerprint having a
considerable noise level (SNR = 4.5). Figure 10(a) represents a version with noise. Figures
10(b), 10(c), and 10(d) denote the three components of the evaluated decomposition:
structure/cartoon u, texture ṽ, and noise background w, respectively, while Figures 11(a)
and 11(b) show the original image and the restored image obtained with our scheme (step
1—σnoi = 25,N = 200; step 2—Δt = 0.06; step 3—γ = 0.16; step 4—B = ball with radius 10 and
height 3), respectively. As to visual quality, the restored image Figure 11(b) is fairly close to
the original image Figure 11(a). Furthermore, the residual imagew = f − (u + ṽ) represented
by Figure 10(d) detailed only noise and parts of the background of the observed image f , not
maintaining any type of texture traces of the fingerprint.

4.2. Comparison to Some Existing Methods

To attest to the good performance of the proposed method, we compared it to recent models
in literature. Parameters adopted in each of the models tested were chosen according to the
best visual quality obtained from each one of those models, in addition to computation of
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(a) (b)

(c) (d)

Figure 10: Decomposition into three components. (a) Noisy image f , (b) structure/cartoon u, (c) texture
and intrinsic details ṽ, and (d) noise and backgroundw. All three components satisfy f = u + ṽ +w.

(a) (b)

Figure 11: Restoring the image f . (a) Original image h (without noise) and (b) recovered image h̃.
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(a) (b) (c)

(d) (e) (f)

Figure 12: Comparison to models existing in literature. (a)Noisy image, (b) denoising by curvelets, (c) by
wave atoms, (d) by adaptive fidelity term, (e) by nonlinear diffusion combined with curvelet, and (f) by
proposed scheme.

PSNR between the original image and the compared image. Classical models that remove
noise but do not cover treating texture were not considered.

Figure 12(a) shows a noisy part (SNR = 9.97, PSNR = 18.58) from Barbara’s image.
Figures 12(b) and 12(c) were obtained using curvelet transform [29, 30] (PSNR = 19.04) and
wave atoms transform [18, 19] (PSNR = 20.89), respectively. Here, both techniques were
supported by the hard threshold. In the image using curvelet, texture was not appropriately
recovered. Moreover, pseudo-Gibbs phenomena was present. In contrast, the wave atom
transform correctly restored texture but produced a blurred image. Figure 12(d) shows the
image restored by the model based on adaptive fidelity term [22] (with C = 0, PSNR = 20.95)
while Figure 12(e) shows the version recovered by the model described in [20] (0.0005
step size, 11 iterations and PSNR = 21.06), which combines nonlinear anisotropic diffusion
with curvelet shrinkage. Although the model based on adaptive fidelity term has recovered
texture, some important image details were excessively smoothed as with face and hand.
Furthermore, a diffusion-based curvelet shrinkage did not produce any type of intensive
smoothing but retains part of the noise in the reconstructed image, besides the PSNR
being higher. Figure 12(f) (PSNR = 22.12) is the image restored by the proposed scheme
using the same parameters mentioned at the beginning of this section. In this case, both
texture and image details (intrinsic contours) are recovered, besides achieving a satisfactory
minimizing of the noise level without excessive smoothing. Furthermore, the PSNR from the
proposed method presented the biggest value in comparison with considering techniques.
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(a) (b) (c)

(d) (e)

Figure 13: Components removed using each of the methods. (a) Residual by curvelets, (b) by wave atoms,
(c) by adaptive fidelity term, (d) by nonlinear diffusion combined with curvelet, and (e) by proposed
scheme.

Figures 13(a), 13(b), 13(c), 13(d), and 13(e) show residues in relation to Figure 12(a) obtained
by Figures 12(b), 12(c), 12(d), 12(e), and 12(f), respectively. As mentioned before, we can
see that the curvelet transform (Figure 13(a)) removed part of the texture. Contrasting this,
the wave atoms transform (Figure 13(b)) maintained the texture but extracted some features
from the image. In residue Figure 13(c) generated by the model [22] there is no texture;
nevertheless, it can be seen that all intrinsic contours of the image stay annexed to the residue.
This does not happen in component Figure 13(d) extracted by model [20], since part of the
texture and details of the image were retained in the same proportions of the residue, but, a
considerable part of the texture was removed in the process. Finally, component Figure 12(f)
extracted by our algorithm shows that only noise and few relevant details were left annexed
to the residue, therefore attesting to the efficiency of the proposed method.

5. Conclusion

In this work we gather important mathematical techniques for image processing and we
combine these techniques to generate an efficient algorithm for decomposition and noise
removal in image processing. The new method has as its aim treating images contaminated
with noise, having a high texture concentration, intrinsic contours, and irregular patterns. The
scheme combines elementary techniques, such as classic morphological operators, with more
sophisticated harmonic analysis models, such as wave atoms. Moreover, the scheme has, in
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some of its processing steps, a best parameter automatic selector. Based on the proposed
method, we propose an efficient decomposition standard to separate the observed image
into three well-defined components, as was shown previously. One of the advantages of
this type of decomposition is that there is possible, from the degraded image, the individual
treatment of each component, which allows a range of image processing applications such as
image segmentation and digital inpainting. Experimental tests show the efficiency of the new
method, even when compared to recent harmonic analysis techniques and to models based
on nonlinear diffusion for the processing of images with texture.
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