Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
6-1-1987

A Decomposition Approach for Balancing Large-
Scale Acyclic Data Flow Graphs

P.R. Chang
Purdue University

C.S.G.Lee
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Chang, P.R. and Lee, C. S. G., "A Decomposition Approach for Balancing Large-Scale Acyclic Data Flow Graphs" (1987). Department
of Electrical and Computer Engineering Technical Reports. Paper 567.
https://docs.lib.purdue.edu/ecetr/567

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages

A Decomposition Approach
for Balancing Large-Scale
Acyclic Data Flow Graphs

P. R. Chang
C. 5. G. Lee

TR-EE 87-23
June 1987

‘School of Electrical Enginéering. |
Purdue University
West Lafayette, Indiana 47907

| A Dec'om}xﬁsitidn Approach ;for ‘Balanc‘ing»'
| ‘vLa,r‘ge-Scale‘ Acyclic Data Flow Graphs

“P. R. Chang and C. S. G. Lee

- School of Electrical‘ E_nginéering’
Purdue University
 West Lafayette, Indiana 47907

TR-EE 87-23

June 1987

- Abstract

In designing VLSI a;rchitectures for a complex computational task, the functional‘”
decomposition of the task into a set of computational modules can be represented as
a directed task graph, and the inclusion of input data modifies the task graph- to an'
acyclic data flow graph. (ADFG). Due to different paths of traveling and computatlon
time of ‘each computatlonal module, operands may arrive at multi-input modules at
dlﬁ'erent arrival times, causing a longer pipelined time. Delay buffers may be inserted
along various paths to balance the ADFG to achieve maximum pipelining. This paper
presents an efficient decoinposition technique which provides a more systematic
approach in solving the optimal buffer assignment problem of an ADFG with a large-'
number of computational nodes. The buffer assignment problem is 4formulated as an
integer linear optimization problem which can be solved in pseudo-polynomial time.

However, if the size of an ADFG increases, then integer linear constraint equations

may grow exponentially, making the optimization problem more intractable. The
decomposition approach utilizes the critical path concept to decompose a directed:
ADFG into a set of connected subgraphs, and the integer linear optimization tech-
nique can be used to solve the buffer assignment problem in each subgraph. In other
words, a large-scale integer linear optimization problem is divided into a number of
smaller-scale subproblems, each of which can be easily solved in'pseudo- polynomlal
time. HExamples are given to illustrate the proposed decomp051t10n techmque

i

Thls work was supported in part by the National Science Foundation Engmeermg Research ‘Center
Grant CDR-8500022. :

1. Introduction

"With the advent of VLSI technology, the rapid decrease in computational costs,

reduced power consumption and physical size, and increase in computational power

suggest that an interconnection of VLSI processors, which are configured and
arranged based on a functional decomposition of the computatlonal task to exploit

~the great: potential of pipelining and multiprocessing, provides a novel and cost- ‘
effective s_olution for many computational problems in pattern recognition [6], signal

processing [12], and robotics [14]-[15]. -This type of computational structure has been .

referred to as a systolic array or system [10]. One of the main advantages of using a
systolic array is that each input data item can be used a number of times once it is
accessed, and thus, a high computation' throughput can be achieved with only a mod-
~est bandwidth. Other advantages 1nclude modular expandablhty, and simple and reg-
) ular data and control flow. '

- In general, a computatlonal task of interest is partitioned or: decomposed into a
set of smaller computational modules, and the interconnection of these computational
modules can be represented as a directed task graph. The inclusion of input data
modifies the task graph to an acyclic data flow graph (ADFG). The nodes of an
ADFG correspond to the computational modules, each- of which can be realized by a
~ linear pipelined functional unit for increasing the system throughput [11]. The

operands or data move along the edges, each of which connects a pair of nodes. “Due .
to different computational time of the modules, data flow (both inputs and results
from one module to another) in an ADFG may occur at different speeds in different

d1rect10ns Thus, operands may arrive at multi-input modules at: different arrival
tlmes, causing -an unnecessary longer pipelined time in the ADFG. A conventional
approach is to insert delay buffers (FIFO queues) at various paths to buffer the inputs
~or the output results from one module to another to achieve a balanced (or synchro—
nous) ADFG. This is exemplified in Figure 1(a) which is a graph and consists of nodes
A, B, and C whose numbers of computing stages are assumed to be, respectlvely, 3,
5, and 6. From the figure, there are two vpa.ths from node A to node C. For path 2,
it takes 5 computing stages before an operandv'arriires at node C, while path 1
requires no computing stages. Node C can not start computation until all of its
operands are available. As a result, the second set of data values can not be fed into

the pipeline in 5 computmg stages because data will only exist in path 1.. So the 3

minimum latency of the pipeline is greater than 5 computing stages. and the max1mum
throughput is less than 1 /5 To eliminate this undesirable behav1or so that successive
- data of an array may pipeline through the ADFG with maximum throughput, a delay
buffer D which is equivalent to 5 computing stages can be inserted in path 1 so that"»
the “length” (or the cost) of path 1 and path 2 will be balanced (Figure 1(b)). Thus,
the latency of the ADFG will be decreased to one computlng stage, and maximum
p1pehn1ng can be achleved Once the balanced ADFG has been estabhshed a

‘systohzatlon procedure can be used to transform the balanced ADFG 1nto a systohc
array [16}

The problem of balancing a d1rected ADFG by 1nsert1ng appropr1ate buﬁers along
appropriate paths to achieve maximum pipelining has been solved previously by. the
cut-set theorem [11]-[12], the local correctness criterion [12], and the graph- theoret1c‘-.
approach. [4]-[5]. - Furthermore, Hwang and Xu [9] showed that the balanced ADFG
can be realized in a two-level pipeline network which is reconfigurable and ‘provides
the flexibility in various vector processing applications. _T_he delay matching may be
handled by programmable buffers, so that proper non-cOmpute delays can be i'nser'ted
in each data flow path. An example is the design of the LINC chip [8], which is an 8-
. by—8 crossbar up to 32 units of programmable delays in each data flow path

This’ paper presents an “efficient decomposition technique which- prov1des a more
systematw approach in solving the optimal buffer assignment problem of an ADFG
- with a large number of computational nodes. Since it is of vital importance to m1n1m— ‘
ize ‘the number of buffers used in ‘a systolic system to minimize the design cost the
opt1mal buffer assignment problem is formulated as an integer linear optlmlzamon
problem, which can be easily solved in computers in pseudo-polynomial time [18].
However, if the number of computational nodes in an ADFG is quite large, then"
integer linear constraint equations may grow exponentially, making the opti,miz,aition'
problem more difficult than it should be. The construction of integer linear constraint
equations in a large-scale ADFG reveals the existence of many redundant integer
linear constraint equations; so, the optimization problem may become intrac,table..
The- redundant integer linear constraint equations come from the path overlapping
between two paths of two different multi-input nodes. They can be removed easily by '
recognizing the overlapping path (or common path) traversed by different paths. In

an effort to reduce the difficulty of optimizing a large number of integer linear con- _:_ _

straint equations, an efficient and systematic decomposition technique is proposed to
recognize all the decomposable subgraphs in an ADFG and generate their associated
integer linear constraint equations. The decomposition approach utilizes the critical
path concept to decompose a directed ADFG into a set of connected subgraphs, and
the integer linear optimization techuique can be used to solve the_buﬁ"er_assignmerlt
problem in each subgraph. In other words, a large-scale integer linear optirnization. '
problem is divided into a number of smaller-scale subproblems, each of which can be
easily solved in pseudo-polynomial time. Examples are given to illustrate the decom-
'pos1t1on approach; and, finally, the proposed decomposition techmque is used to bal-
ance an interconnection of CORDIC (COordinate Rotation Dlgital Computer [1], [20])
- processors for. computmg the robot inverse k1nemat1c position solut1on [15] o '

-4 -
2. F.‘ormul'ation For Bala.n'cing Acyclic Data. Flow Graphs .
In formulatlng the optlmal buffer ass1gnment problem, we shall assume ‘that the
number of computing stages of any computational module of an ADFG is-finite and' ;

that the execution tlme of any stage is a constant, called a basic time unit or stage'
latency. An ADFG is max1mum pipelined if the minimum number of tlme units. -

 needed for obtaining two successive outputs from the p1pel1ne is equal to one ‘basic

time unit. Before giving a formal formulation of the balancing problem, we. concen- v

trate our interests on single input single output (SISO) ADFG’s and 1ntroduce some

necessary deﬁnltlons for formulation:

Deﬁnltlon 1: A weighted ADFG GW = (V E W) correspondlng to an ADFG
G = (V, E) is a ‘weighted direct graph where W is‘a Welght function from E to a set
of non—negatxve real number. V = (vy,vy, ** ,0,) is a finite set of computatlonal
nodes (or modules), and E = (e1;€5, *** ,e,) is a finite set of ‘edges An edge con-

necting node v; to node v, 1s denoted by e (z , _7) | o ’ o ‘

A log1cal Way to convert an ADFG to a correspondlng Welghted ADFG is to asslgn »,
Welghts to each output edge of a computatlonal node such’ ‘that, the Welght as31gned to

each edge equals to the number of the computing stages of the computatlonal node: - '

For example, the weight w(e (t, 7)) asslgned to the edge e(z)]) equals to the

number-of computing-stages of node v;. ‘ ' SR
‘Definition 2: The cost (or weight) of any & th path </5k(, q‘)‘ from n'o‘de’v'v" to

node v, can be deﬁned as the sum of the weights of all edges along the path That is,

wig)= B wlel,)
e(i,9)€d(v,)

- Thus, the cost of a path from node v, to node v, equals to the number of computlng -
stages needed for an operand to travel along the correspondlng path from node v to

node Vg

Deﬁnltlon 3: A Welghted ADFG GW with an 1nput node uo is sa1d to be bal-
“anced if the cost for any two different paths from the 1nput node uo to an arbltrary-

| multl-lnput node u;, is equal

This definition 1nd1cates that a balanced ADFG achleves max1mum plpehn1ng Unfor- o
vtunately, most ADFG’s derlved from given tasks are usually unbalanced To balance
an ADFG, appropriate delay buffers must be inserted along approprlate paths from
-the input node uqy to any partlcular multl-lnput node of 1nterest Thus, any dlﬂ'erent
paths from the input node u, to a multi-input node will have equal costs. The
‘appropriate buffering graph in whlch delay buffers are inserted to balance an unbal-

anced ADFG can be defined as: - - .

-5-

- Definition 4: Let GW =(V ,E,W) be a weighted ADFG and
GB =(V , E ,WB) be a corresponding weighted graph, where the weight WB
cofresponds to the buffering introduced on E. 'Then, GB is called a buffering graph of
GW. Furthermore, an ADFG GW' = (V , E , W) can be composed from GW and _
GB such that w(e(:,) =w(e(s,s)) + wb(e(i,5)) ; for all e(i,5) €E, where .
wb (e (7, 7)) is the weight of the buffers from node v; to node v If GW'is a balanced
ADFG then GB is a balanced buffering graph for GW. ' ’

It can be shown that a buﬁermg graph GB for a corresponding GW always exists,
though it may not be unique. In order to minimize the cost for implementing an
ADFG in a VLSI dev1ce, it is desuable to obtain a balanced buﬁerlng graph Wlth a
minimum number of delay buffers. :

Since the cost for any two different paths from the 1nput node uy to an arbitrary
multi-input node u; must be equal for a balanced ADFG, buffer delays can be» applled‘
to balance the cost for all paths from the input node uqy to a multi-input node wuy.
Assume U = {ug,u,,u,, - = ,u, } is a finite set of all multi-lnput nodes and the
- input and-end nodes in GW and there are my paths from the input node ug to a
multi-input node w, that is, ¢, (ug,u)t , 1 <! < my and 1 <k < n. The critical
path ¢lk¥ (u;) of a multi-input node u, in GW is the path from the input node ug to
the node u;, 1 < k < n, having the “heaviest’” path weight defined as o

w'(u) & w(dy () & max > wle(i,s) (1)
1<SESme o6 A€ ¢i(w) . | » T
No other path from the input node u, to the node w;, can have a path weight greater o
than the critical path weight w®(uy). Thus, the cost of the critical path from the
input node do»to the end node u,, constitutes the initial 'delay time of the pipeline. In
order to balance an ADFG, buffers B(e(z, 7)) are introduced to insert into appropri-
ate paths @ (u;), from the input node u, to a multi-input node wuy, 1 < k< n, to
achieve all paths entermg the node u; to have the same cost. That is,

5w+ x IBe@al @

e, j)€ di(w) ‘ Ble(t, 7)) € pilwi)
The critical path Buffer stages added
= cost of wu; -+ |to the critical path
in GW , of u; in GB

t We use the notation ¢;(u;,u;) to indicate an [th path from node u; to node uk If node t; is the ‘
input node g, then di(ug,up) = ¢,(uk) o » ‘

: o B(e(’:J))€¢ (“t) . o

- ‘Where IB(e (z ,])) | is the Welght or the number of computlng stages in - the buﬁ'erf -
“Ble(¢,7)), 1<l <my and. 1<k <n. The first term in Eq. (2) is a constant and :
jbcan be easily computed The problem of ﬁndlng all critical paths of u, 1 < k<n,is
known to be solvable by applylng Bellman s equation with tlme complexrty of
.'O(|V |2 [13] where N is the number of computatlonal nodes in the GW . :

'_i. Slnce it. is desirable to minimize the initial delay time of the plpehne 8o that it -
equals to w (n) 1o buﬂ'ers B ((7)) should be a531gned to the critical path qb, (n) o

o of the end node Uy, We can state this fact in a lemma.

Lemma. 1 "The cr1t1cal path gi), (un) of the end node Uy i 1ndependent of the~ .

buﬂ'er stage varlables

v _ 'Taklng th1s 1nto cons1derat10n and rewrltlng Eq (2) tve Ah:a‘ve"‘ : R
BT IB ,J))l— s |B (m))l
((2))E¢:(uk)/4> () o 19(8(z))€¢ (“k)/¢ (u,,) R ,

=[*¢<<uk)k—‘: b "'(¢ ,J»]—b(e -
S e(i,j)“egté,,(u;,) ,

_Where b(e n) 1s ‘a computed 1nteger constant, |B (z , _7))| are undetermlned buﬂ'er:
stages, 1 < 1< mk, 1<k<n, and ‘the notation ¢ (u) [(n) denotes set subtrac--

tion and is defined as ¢ uk)/¢, u,) = 9 (ug) — (¢1(uk) N ¢, (n))

Equatron (3) is a set of linear simultaneous equations and can be expressed ina

matrix-vector form as ‘Ax = b, where A is a matrix introduced from the’ paths, x-and

b are unknown buffer stage vector and constant vector, respect1vely The solution x
is' usually not umque, however, we can impose some restnctlons on the problem to
~ become an 1nteger linear optimization problem That 1s, we Would like to m1n1m1ze' ‘
the total number of buffer stages ina balanced buffering graph G’B '

M1n1m1ze the total number of buffer stages in GB

eMnw B @

o Subject to the equality constraints of

o 2 B,) |- oy IBleli,a) I=b(e ,n)
Ble(i, 1)) € bu(ue)/8,2 (u2) | Ble(i , 1) € b, (w)/8,7 (ua) S
| | S o (5)

and

|Ble(@,0) |20, integer B!

where’ 1<lI'<my and 1 <k < n. The above integer lmear programmmg problem'

can be solved in pseudo—polynomlal time [18]

In the above buffer a331gnment problem, the number of buffer stages are obtamed'

from the solution of the integer linear programming problem and the buffers are

placed on the edges in the buffering graph GB corresponding to the GW except the
critical path ¢* (u,) of the end node u,. In order to reduce ‘the total number of

buffer stage variables in the optimal buffer assignment problem, a useful equivalent
transformation on a balanced buffering graph is introduced. A transformation of a
balanced buffering graph GB with re‘spect to a weighted ADFG GW by adjusting the
position and amount of its buffering is said to be an equivalent transformation if .the__
new transformed buffering graph GB' is also a balanced bufferih'g graph (since a bal-
anced buffering graph is not unique) with respect to- the weighted ADFG GW. In gen-
eral, the equivalent transformation has the following three properties: - -

(a) A buffer stage can be moved along a chain which is defined as a d1rected path in
a buffering graph GB such that the incoming and outgoing edge for all nodes
along the path is equal to one, except the starting and ending nodes of the chain.

| (b). Two or more buffers on the same chain can be combined together to form a new:
buffer which has the same number of computing stages as the sum of these
buffers. :

(¢) Combination of properties (a) and (b).

Based on the equivalent transformation of a balanced buffering graph GB, we
can move the buffers along the chains of GB to multi-output nodes (or multi-input
nodes). The new balanced buffering graph GB' has the same properties as the GB,
with the buffers attached to the multi-output. nodes (or multi-input nodes). We say
that the new balanced buffering graph GB' is normalized. As an example, in Figure

2(a), paths A—B—C—D, E—F—D, and E—G—D. are chains, By combining the
buffers along the chains and moving the resultant buffers to the output edges of the
_ | multi-output nodes A and E, we arrive at a new balanced buffering graph GB as

~ shown in Figure 2(b).

- With the equlvalent transformation on a balanced buffering graph, the optimal
buffer assignment problem can be reformulated for the normalized balanced buffering
- graph instead of the balanced buffering graph. This, in effect, greatly reduces the

8-

total number of buﬁer stage variables because these variables are atta.ched to multl-. :

‘ output (or multl-lnput) nodes. While constructing the 1nteger linear programming for- -
mulation for the normalized balanced buffering graph for a weighted ADFG GW it
“can be shown that many redundant integer linear constraint equatlons (1n Eq. (5)) o

exist, maklng the optimization problem more difficult than it should be. The redun-

dant integer linear constraint equations come from the path overlapping between two
paths of two different multi-input nodes. They can be removed easily by recognizing
the overlapping path (or common p‘ath) traversed by the different paths. A path
decompo51t10n ‘technique is utilized to remove redundant integer linear constraint

‘equations. Let ¢;(u;) denote an [th path from the input node ug to a multi-input

mnode -y which passes through some other multl-mput nodes. ‘Among these multi- - o

1nput nodes, a multi-input node u” which is nearest to the node uk is selected to
decompose the path ¢;(u;) into two sub-paths, that i is, ¢;(uz) = ¢l() + gb,(, uk) '

Thus, the integer linear constralnt equatlons of the path ¢,(uk) with respect to the
node w; can be written as: : S

@) Ebm) Bl Enm)

oy w4 N wlel,d)

. e('»J)E ¢l(ut)‘ N - e(i:"j)e‘/})l(u’_:uk)v :
o+ |Be(i,) 1+ 2 IBeG,NI|

Ble(i, 1)) € (") | B@@J»emwﬂun

there 1 <! < my. Using Eq. (2) for the path ¢,(u) to the node u . Eq (7) becomes :

)y w(e(i,7)) +)y | B(e(i,5)) |
e(é,7) € du(ur) Ble(i,7)) € bi(w) |

B S F:1CIC)) N D VAR { C)
Ble(i,) €dle"w) e,) Eedi(u’, w) '
~ Using the result of Lemma 1 and Eqg. (3), Eq.b (8) becomes

s B+ x BleGN]
YB(e(i,]'))Elﬁt(u',u/;)/(ﬁ,;(un) ‘ .] vB(e.(i,'j))‘E ¢l.(u,')/¢{:(un) Lo

REWPINR)) | Be(i,) | | RO
‘B(e (i,9) € ¢,k'(u/;)/¢,;(un) - . . .

= w® (uy) —’wc(d*)'— | E - "((z :J))l
: eft, j)€¢1(u)

With the above procedure for reducing redundant equations, the integer- linear
constraint equations for the normalized balanced buffering graph with respect to a
weighted ADFG GW can be constructed according to the Procedure ILEG (Integer
Llnear Equation Generator) listed below. '

Procedure ILEG (Gw, ILC’E(G’B)). This procedure generates 1nteger hnear -

constraint equations ILCE (GB) for a normalized balanced buﬁerlng graph GB with
respect to a glven weighted ADFG GW with labeled nodes.

Input A Welghted ADFG GW with labeled nodes

Output: A set of integer linear constramt equations, ILC’E(GB) for a normahzed .
balanced buffering graph GB' with respect to the glven welghted ADFG
GW with labeled nodes

Step 1. [Determme all critical paths] Find all the cr1t1cal paths o (uk) and the cost of

each critical path w®(u;) with respect to a multi-input node u;, 1 <k < n,
by applying the Bellman’s equatlon [13].

Step 2. [Asszgn buffer stage varzables] Assign buffer stage variables to the output (or
input) edges which are attached to multi-output (or multi-input) nodes,
except for the output (or input) edges belonging to the critical path' of the
end node u,. Output edges will be preferred if output and input edges are
on the same chain. It is worth pointing out that a2 node may be both multr—

" input and multl-output node.

Step 3. [Generate integer lmear constraint equations| For any path ¢ (wg) with
respect to a multi-input node u;, , 1 <1 < my , 1<k <n,if &, (u,) does not ’
pass through any other multi-input nodes, then we have '

> 1Bl |- . |B ((z,J))I (wa)
B(e(y]))€¢l(uk)/¢ '(un)' _ o _B(E_(i,J'-))E_¢,;(ukl)/¢,;(un) L

: w(e (z", .7)) l

€ di(u)

=[w(y)—
: e(' r_j)

Otherw1se, a multi-input node u” € ¢,(uk) nearest to the node u is selected

for. path decompos1t1on

- 10 -

5 | B(e(:,) |+)Y | Be (i, 1)) |
Ble(i,) € bl , we)/d {u.) Ble(i,4)) € #(w)/#Axx) :
- by | BleGG,o) 1 (10b)

Ble(¢,9) € fi),k'(u/r)/fﬁ,;(un)

o) —w @)= Y wleli,)]
e(i,5) € bulu™, uw)

Note that the paths and their costs between two multi-input nodes may be
found with time complexity O (n®) by using the path-finding algorithm [2].

Step 4. [Output integer linear constraint equations] Qutput the integer linear con-
straint equations from Eq. (10a) or Eq. (10b) and return.

END ILEG

Let us illustrate the above Procedure ILEG by an example. Figure 3(a) shows a
weighted ADFG GW We would like to obtain an optimal normalized balanced
buffering graph GB' corresponding to the GW. : .

Step 1. Nodes G, J, K, and M are multi-input nodes. Then the critical peth for
(a) Node G: ¢: (G) =Path A—C—G , w°(G) = 25. S
(b) Node J: &+ (J) =Path A—C—-G—J, w(J) = 3L
(c) Node K: ¢ (K) =Path A—C—G—-K, w° (K) = 31.
(d) Node M: @+ (M) =Path A—C—-G—J—M, w*(M) = 41.

Step 2. Applying the buffer assignment rules, we obtain the normalized buffering
. graph as shown in Figure 3(b). :

Step 3. The integer linear constraint equations are generated according to Eq. (10a)
or Eq. (10b): ‘
(2) The integer linear constraint equations generated with respect to the
paths associated with node G':

() Path A—B—E—G: |B, |+ |B,|=(25-5-6-2) =12.
(i) Path A~B—G: | B |+ | Bs | = (25—5—6) = 14.

(b) The integer linear constraint equations generated with respect to the
paths associated with node J: ' '
(i) Path A—B—F—J: |B, |+ |B;|=(31-5-6-12)=8. =

(c) The integer linear constraint equations generated -with respect to the
paths associated with node K:

- -11_,

(1) Path A—D—H—K |32 |+ IB6 |- IB8 |_ 31—5——7—6) = 13
(ii) Path A—D—I—K: |B, |+ |B; | = |Bs | = (31—-5—7—10) = 9.
. The above integer linear constralnt equatlons have been generated accordlng,
' to Eq. (10a) “The following case Wlll show" the 1nteger llnear constra1nt equa—_
tlons generated by using Eq. (10Db). ‘ :

(d) In generatlng the: 1nteger linear constralnt equatlons Wlth respect to the s

‘paths associated with node M, we select u = K as the multl-xnput

' node nearest to the node M and in the path qbl (M) from the input node

uq passing ‘through the buffer | B; | to the node M. The path oy) can

. be decomposed into two sub-paths, that is, ¢ (M) & (w) + ¢,(u yM).
Accordlng to Eq (10b) we. have lBs |+ IBg | = (41——31—8) = 2

S’tep 4, ‘Applylng the 1nteger hnear programmmg to mlnlm_lze the total number of o
o :buﬂ'er stages, we have R :
| R

‘Minimize Y |B,- |- -

| i .

S 'subJect to the constralnts of the- 1nteger linear equat1ons generated in Step 3.
- The opt1m1zat1on gives B, |=8, |B2|—9 |B3|—0 |B4|——4
- |B5 |=6,1Bs [=1, IB-, |_o | B l_o |B9 |_2 andthetotalnumber‘,_
of buffer stages is 33. : :

: 3. Formulatlon for Decomp051t10n Approa.ch

o The prevrous sectlon 1nd1cates that the opt1mal buﬁ'er ass1gnment problem can be
- solved by formulating it as an integer linear optimization problem If the task graph
is simple, thenthe buffer assignment problem can be easily solved as illustrated i in the
above example. However, if the number of computat1onal nodes in an ADFG is quite -

“large, then integer linear constramt equations may grow tremendously, makmg the

optimization problem more intractable. Thus, a systematic approach in. reducing the

-computational dlfﬁculty in a large—scale integer linear optimization - for the buffer

~ assignment problem must be devised. A decomposition approach, ‘which ut1hzes the
critical path concept to decompose the task graph into a set of connected subgraphs
from which the /integer linear optimization technique can be used to solve ‘the buﬁ"er
as31gnment problem in each subgraph, Wlll be addressed in’ this sectlon o e
Co Lemma 2. If a multl—lnput node uk € ¢l(Uy) and its cr1t1cal path is qﬁl (uk) 7
then ¢,»(uk) C gbl (u,) that is, ¢;(uz) is the path from the input node uo to the node .

u along the crltlcal path qﬁl (u,,) where Uy, is the end node

Proof We shall prove Lemma 2 by contrad1ct10n Assume that Lemma 2 is not‘ |
true, then there ex1sts a critical path 5, (uk) for node uk which i is. not a path segmentv

-12 -

of the critical path Qsl (u,) for node u, and its cost w (@) is greater than the cost
of any other path from the input node ug to the node ty, that is, we have w(@l (u,c)
> w(¢l (ug, uz)); where ¢1 (ug,uy) is the path from the input node ugy to the node U
along the critical path ¢;(u {u,). Let ¢;(uz,u,) be the remainder of the critical pa.th of
¢p:(uy) that IS,¢,(up) = H(uo,ux) + Gp:(ux, u,). A new path 51(n) can be con-
structed by connecting the»two subpaths, that is, @,) = %k(uk),—k qﬁ_l"(uk,)
However, the cost of §{u,) is greater than the cost of ¢;:(u,), that is, w((F;(u,)) =
w((Felw)) + w(Gilupn) > w(dp{uou) + 0 b)) = (G) = w (uy).
This conclusion contradicts the definition of the critical path, thus, B {u) =

¢1;(uk) @ ¢1(Up)-

o

Definition 5: Let GW = (V E, W) be an undirected gra.ph with N = IV I and
M= IE' A connected component T, of G’W is a maximal connected subgraph,
which is a connected subgraph that is not contamed in any larger connected sub-
graphs. - : I .
Definition 6: A dlrected block 7,, of a directed grarph"GI(V:’r is a directed sub-
graph and its corresponding undirected subgraph =, (ie. 7, = Undirect! (7,,)) is a
connected component of the corresponding ‘undirected graph _ GW
(GW = Undirect(GW")). - | S | PR

The problem of ﬁndlngAall the connected components of an undirected graph GW
may be solved with the time complexity of O (N + M) by using the depth-first search
a.lgorlthm SEARCH (GW T,,) in [3], where GW is an input undirected graph and T
1 <m <m,, are output connected components, where m,, is the number of the
directed blocks in the corresponding directed graph GW' of GW. The problem of
finding the directed blocks 7,, of a given directed graph ew” may be solved by a
modiﬁed_ depth-first search algorithm which is described in the Procedure DBS1
(Directed Blocks Searcherl) listed below

Procedure DBS1 (GW 7). This procedure ﬁnds all the d1rected blocks of a
given d1rected graph Gw'. :

Input: A d1rected graph Gw”.

Output The directed blocks of G’W Ty 1 <m < mg, Wheremv,:c is tvheinurnber of
the directed blocks in GW . L :

TThe notation Undirect (?m) mea}.ns’ taking the direeted arrow of Wm out

-13 -

Step 1. [Obtain the undirected graph of GW *'] Let GW = Undirect.(GW*). Th_at»is,
© remove the directed arrow of GW . . S :

S’tep 2. [Determme undirected connected components of GW] Flnd all the undlrected
connected components, , 1 <m < m,, of GW by the depth-first search

algorithm SEARCH (GW 7rm)

Step 3. [Determune directed blocks| Obtain all the drrected blocks 7, 1 < m’ < mcc,
by assigning the directed arrow back to 1 <m < mg, accordlng to the
input d1rected graph Gw". ' ; e

Step 4. [Output the directed blocks] Output all the d1rected blocks ﬁ’m, 1<m S M.

END DBS1

The connected components Ton from the algorlthm SEARCH (GW M) and the
directed blocks ﬁ’m, 1 <m < m,, from Procedure DBS1 will be used in our decompo—
sition approach in obtaining a set of connected subgraphs from which the integer
linear optimization technique can be applied to each subgraph‘to solve the buffer
assignment problem. Our decomposition approach utilizes the critical path of the end
node u,, i.e., §{u,), as a cut set to partition an ADFG GW into several subgraphs.
The procedure of graph partition and the determination of decomposed subgraphs (or
directed blocks) is called graph ’decornposition»[lg]. The idea of the graph decomposi-
tion approach is first to take the critical path of the given directed graph out. This
creates several edge disjoint Subgraphs with some of the edges not connecting a pair
of nodes because the nodes in the critical path are removed. In order to remedy thls,
nodes that are in the critical path ¢l(u,) and are attached to two or more edgesv
(incoming or outgoing) a_re called the decomp_osed nodes and denoted by 4 (the kth
decomposed node); each of these decomposed nodes @; will be “splitted”’ into‘ several
independent pseudo-nodes ﬁ,’;, 1 <% < dg, which are labeled ‘according to the
attached edges from left to right, and the last pseudo-node ﬁ: ¥ is always assigned to
the kth decomposed node in the critical path ¢ uy,), Where d; is the number of
independent pseudo-nodes for the kth decomposed node. Thus, a new d1rected graph
aw” containing splitted directed subgraphs of the ADFG GW can be obtained by
removing the critical path ¢1;(u,) and “splitting” the decomposed nodes. That is,
oW’ = (G’W/gél"(u,)} U {labeled pseudo-nodes G,1<i<(d—1),1<k < kpn}
where kpy is the number of the decomposed nodes in GW. The determination of the
directed blocks 7, of an ADFG GW when the critical path ¢y w n) iS taken out is
very sumlar to the Procedure DBS1 for finding the directed blocks W of GW”. The
'd1rect,ed blocks 7, and ﬁ’ are always equivalent except for ‘the ex1stence of the
pseudo-nodes, 11,2 The,procedure for determlnlng the directed blocks 7, of an ADFG

-14 -

GW when the cr1t1cal path qbl { u,) of the end node u, is taken ou\L can be descrlbed
in the followmg Procedure DBS2 (Directed Blocks Searcher2):

Procedure DBS2 (GW ,7,,). This procedure finds all the d1rected blocks of
GW when its critical path $p(u .) is taken out.

Input A Welghted graph GW and its cntlcal path qﬁl (U,)vof the end hode u, |

Output: The directed blocks, 7,,, 1 <m<m cc) , of the ADFG GW when the cr1t1ca1
path ¢, | uy,) of the end node u,, is taken out.

Step 1. [Rerrtove the critical path in GW and label the decomposed no'de‘s‘]'.‘
(i) Obtain all the subgraphs from the ADFG GW by removing the critical
-path qﬁ,(u,) of the end node u, and sphttmg the decomposed nodes
i, 1 <k < kpy- ’]
v‘ (ii)v ‘Label the independent pseudo-nodes of the decomposed node 1y, that is

di, 1 <1 < dg, and @, = G 'l EBuk ‘s where @ is the d1rect sum
of the pseudo-nodes coming from the same decomposed node.

Step 2. [Construct GW] Construct a new directed graph aw’ Which is the»splitted

directed subgraphs with labeled pseudo-nodes in Step 1
- kpy (di—1)

GW B GW/qS,* w))U(U U {k})°

Step 3. [Fmd the directed blocks of GW] Apply the Procedure DBSl to. ﬁnd the
directed blocks?r' of GW that is, DSB1 (G’W 7, m)-

Step 4. [Identz'fy and 'merge pseudo—nodes- in each directed block] Determine the
‘labeled pseudo-nodes which come from the same decomposed node and are in
the same directed bl(‘)ck '7‘r" These labeled pseudo-nodes will be merged into

a big labeled pseudo-node by the direct sum operator EB

Step 5. [Determme and output the directed blocks 'ﬂ'm] Obtam T from ?i' by apply— g
- ing the pseudo-nodes mergmg procedure in Step 4 and output ﬁ*
1< m < mcc ' ‘ ‘

END DBS2 _ , ,

Using the Procedure DBS2 (GW 7, ')y We can obtain all the directed blocks of
GW, #,, 1 <m < m,. Furthermore, new subgraphs can be constructed from T
and defined as 7, =7, Upn qﬁl;(u,), for 1 <m < m,,, where the operator. Upn
means performing the set union of 7,, and ¢ u,) (except the pseudo—nodes) and the

direct sum on the pseudo-nodes coming from the same decomposed nodes in 7,, and

-15 -

P wn)s simultaneously. These new subgraphs are called pseudo-con‘nected om-
. ponents of the ADFG GW and will be used to decompose the buffer assignment prob-
lem into several small subproblems. , :

It has been shown in section 2 that the buﬁer‘ stage variables'in- GB are detel'-;
mined from solving the associated integer linear constraint equations which are
obtained from the Procedure ILEG. Let 7?2? be a normalized balanced buffering -
graph for 7, and ILCE (7TB+) be the associated integer linear constraint equations
which are obtained from the Procedure ILEG. Since an ADF G GW may have a large

number of nodes, determ1n1ng the buffer stage varlables in GB from its large number
. mEC

of integer lmear constraint equat1ons may not be de51rable Slnce GB UDN 7er,
- m=1

we would like to use this fact to see whether solving the buffer’ stage var1ables in' each
+ 1 < m. < my,,, separately and independently is equivalent to solvmg the buffer
stage variables in GB. If this is true, then we have divided a large-scale 1nteger
linear optimization problem into m,, smaller-scale subproblems; each of which can be
easily solved. This is stated in Theorem 1. ' ' L
Theorem 1. Let GB and 7?1:7;,' 1 S‘m < m,, be, respectively, the»nOrmaliied
balanced buffering graphs of GW and its pseudo-connected components i
1 <'m < m,. The buffer stage variables in GB can be determined fromtheir ass'oci—
ated integer linear constraint equations, ILCE (7Fl3+) 1<m < mg, sep’arately and
independently. Furthermore, the buffer stage variables determined from the 1nteger'
linear constraint equations, ILCE (ﬂBml), have no relations to the buffer stage vari-
: ables determined from the equations, ILCE (7B.L,), where m1 # m2.

"Proof: In order to prove the above theorem, we follow the procedure for con-
structing the associated integer linear constraint equations for GB and show how they
can be replaced by ILCE (7?1?3;), 1<m< mc';. For convenience, we assume there is a
multi-input node w; in both GB (or the corresponding GW) and 78, (or the
corresponding - 7?13; is the mth pseudo-connected component of GB. Assume
that the associated paths from the input node u, to the node u; in GB (or GW) are
d(ug), 1 <1 < my. TWo“cases are possible: (1) some of these paths pass through
ﬁ; only, and (2) some of them pass through some other pseudo-connected com-
ponents of GB. In case (1), because the paths in GB are also the paths in.?Ff?,',t, we
will obtain the same resulting associated integer linear equations for the p_aths in GB
and the paths in- 7?1§+. In case (2), the paths from the input node uy to the node uy
- may pass through some other pseudo-connected components, but they must intersect .

the critical path- ¢l (n) Of the end node u, at some nodes, and ﬁnally end at the node

uy in 7rB+ It has been shown previously that a mult1—1nput node u” 5 “which is on ‘the
critical path ¢l() and nearest to the node uk, can be selected to- decompose the

path into two subpaths, that is, ¢l(uk) = QS,(u) + ¢ (u __,uk), where gb,(u) is the

16 -

path from the ‘in’put node uy to the node v" and passes through some other pseudo-
connected components, and the entire traversal of the path ¢1. (u*;uk) is in the 7?1’3?;;.
Thus, the associated integer linear equation for the path #;(u;) in GB can be rewrit-
ten as follows: B A o SR
5 w(e (w)) + % Bl] - (11)
e(i,s) € dilws) - Bleid) € fi(w) R v R
=y wle@))+ ¥ |Ble(q) |
e(i,5) € pifu’) CBle(B) € di(u") _
+ oy weEN+ x IBl@a) |
e(’:])e ¢l(u)uk) B(e (i:J.))E¢I(u#,“k)

Using Lemma 1 and Eq. (2), the first two terms on the right hand side of Eq. (11) can

~be written as - ‘ S : -
| Lo wle@)+ 8 Bl (12

e(i,5) € 4i(u") Ble(i,5)) € ¢i(u) L -

=wf(u)+ Y | Be ’J))|
; ' B(())€¢() . o ;
Usmg the result of Lemma 2, the ecritical path to the node u” , O (u *)’, is the path
from the input node u, to the node u’ along the critical path ¢y (u n), that is,

&+ (u () @ (uo,u), which is 1ndependent of the buffer stage varlables Then Eq‘
(12) becomes ' ' o ‘

o ‘b(e (#,9)) + > |B(eb(i,f)) | = w(u) ='a constant ; '(13)
e(i.d) €4i(4) Ble (i) € fifv) o , |

Substituting Eq. (13) into Eq. (11), we have,

Y we(i)+ X% |B(e(i,i)) |=w'(x)+ = (14)
e(,7) € i(w) B(e (7)) € i(w) : :

S w(e(i,n) +) | B(e(i,5)) |
e(:,5) € ¢i(v"u) ' Bl(e(i,9) € dilu",u) - \

Equation (14) 1nd1cates two thmgs First, the assoclated integer lmear equa.tlons -
with respect to the node u; € 7rB depend on the buffer stage variables in 7TB and
are 1ndependent of the buffer stage variables in the other pseudo—connected com-
ponents because qS,(u ,up) € 7rB Second, Eq. (14) can be generated and replaced
by a path in 7rB , that is, the path travels from the input node uo to the node u

__17_

'along the critical path & (un), then from node u to node uy along the path ¢,(u ,uk)‘

in 7rB+. So, for any multi-input node u; belonging to G’B and 7er, it has been shown -

that the associated integer linear equation system for node u; in GB can be replaced,
by the assoclated integer hnear equatlon system for node uy in 7rB+ In other words,
the assoc1ated integer linear equatlon system for GB, i.e., ILCE (GB) can be replaced
by the . assoc1ated 1nteger linear equation systems for 7er, 1e o ILCE (7r3+), '
1<m< Mg« ' o

=
ml:ﬂ
' -Us1ng the results from Theorem 1 and based on the fact that GB UDN 7er,_‘
. M I (,])) I becomes E DY IB(e (z,]) | and the mteger l1near B
Ble(i,5)) €GB - om= 1B(e(z,_7))€7rB,,. ‘ g RN :
optlmlzatlon problem in Eqs (4) and (5) can be rewritten as follows ,
Min Y |Bem))l L ()

m=1 Be(:,j)) € 7TB

subject to the associated 1nteger hnear equatlon systems ILCE (7rB), 1 glm‘ < myg.
~ Because the buffer stage variables in different pseudo-connected components of GB -
are independent, Eq. (15) can be decomposed into the following subproblems:
For each m =1,2, f".v,vmcc:' o . . , |
Min =% | B (i_,j)) |l o (18)

, B(e(w)) € 7hn ‘ I
subject to the associated mteger linear equat1on system ILCE (7TB +)

This graph decomposition approach provides us with ‘a technique to d1v1de a
large—scale integer linear optimization problem into a number of smaller-scale. sub-
- problems (m,, subproblems), each of Whlch can be eas1ly solved in: pseudo—polynomlal-»
time. o

Let us apply the above decompOSItlon approach to solve the same buffer as31gn- ‘

. ment problem in section 2.

Step 1. (a) Decompose the ADFG GW in Figure 3(a) mto subgraphs by removmg
the critical path ¢;«(M) of the end node M.

(b) Label the pseudo-nodes of the decomposed nodes A G J, M that is,
{Al,Az, 3} {GnGz,Gsa o {J1, T3}, and {MI:MZ} : ,
(¢) Construct GW ™ = (GW /¢,:(M) U{Al,Az,Gl,G'z,Gg,Jl,Ml} Note that
' pseudo-nodes A3, Gy Jy and M, are attached' to the critical path
<15,M(M). GW , ¢ (M), and the labeled pseudo—nodes are shown in Flg- '

"‘ - o ure4 (4(a), (b), and 4(c))

-;18-7'

Step 2. ThlS step is the same as' the Procedure DBS2 (GW 7?) | .
- (a) Apply the directed block search Procedure DBSI1 (G’W ﬁ') to ﬁnd the

‘7?' ,1<m < 2, 1n G’W These d1rected blocks are shown 1n Flgure 4 ST

 (4(a) and 40).

(b) Merge the labeled pseudo-nodes that come from the same decomposed

Step 3.

: . Step v4.

node and are in the same directed block 7? 1nto a b1g labeled pseudo— :
node by the d1rect sum operator For example, Gy ‘and Gz are the
labeled pseudo—nodes comlng from the decomposed node G in _7?'1, and -

will be merged into. G 12 =G IEBG 9

' (c)’"'Obtaln 7, from ?fm, m =1, 2, by applylng the pseudo—nodes merglng

, procedure The dlrected block ﬁ'l is shown in’ Flgure 4(d)

Let 7?+ ?I' UDN [(M), 1 <m <2, Whlch are the pseudo—connected com- .

- ponents of GW. 7t and ﬁ"" are shown in Flgure 4 (4 (e) and 4(f) respec- “
' tlvely) o - P R

The correspondmg norma.hzed balanced buﬁenng graphs G’B and 7TB can be

’easﬂy obtalned by the buﬂ'er ass1gnment rules. and have the same graph

structure as GW and 7(',‘;, respectlvely The buffer stage variables -

‘ v‘,Bl,Bg,B3,B4 in 7TB1 as shown in Figure 4()and Bl,Bz,B3,B4,B5

- Step 5.

“in 7rB2 as shown in Figure 4(h) correspond to ‘the buffer stage variables
By, B3, B, B5 and B2, Bﬁ, B-,, Bs, Bg in G’B as shown 1n Flgure 3(b),
_respectlvely P : Y

Generate the associated integer linear equatlons system for 7TB1 and 7T32 by B

~the Procedure ILEG, that is, ILCE (7TB1) and ILCE (71'32) as follows:

Bl +1B) =8 B l+IB? I—'IB4‘I~—'13'

ILCE(WBI"') | B} |+|B3 | =12 , :_ILCE(EJ}{)r | B} |+|B3-|'-'-.|B4 i_g |

|B1|+|B4|—14 | | |B4|+l35|—2

It has stated in Step 4 that B1 ._Bl, le :B3, Bl =B, B41 :B5 and
B! ;Bz,B = By, B = By, B} _Bs, B5 ._B9 Thus, ILOE (7rBl+) and

ILCE (7TB2) become: -

|By |+ 1Bs1=8 :,|32'|'+'|'Be“|*|f38_|7=713'

LCE () By |+ 1B, =12 , LOE(B): |By |4+ 1B, =By |=9
;IBI|+|'BS'|-=14:;--~ BB =2

Step 6

The 1nteger hnear programmmg problem for G’B can be solved by two
separated subproblems ‘ : :

- 19 -

(1) Min > |B; | = Min [|B, |+{Bs |+ [By[+|Bs ”
o B; € nB, ’ .
subject to ILCE (7B]") (found in Step 5).
(2 Min ¥ IBI=*Mm[IBzI+IBBI+IB7I+IBSI+IB9H
) " By e nBQ
~ subject to ILCE (7B,) (found in Step 5). ‘
' The optimization of subproblem (1) yields |.By | =8, |B3 l—— 0, |B4 l—— 4,
| B; | =6, and the optimization of subproblem (2) gives |B,|=9,
| Bs | =4, |B; | =0, |Bg |=0, | Bg | =2. The results and sohition are the
same as given in the example in section 2, but the optlmlzatlon is much fas-
-ter-and- sunpller ' ‘

4. Application to CORDICvPipeline for Robot Inverse Kinematic Solution .

Let us apply the above decomposition approach to solving the buffer assignment
problem of a larger probleni — balancing a CORDIC—based pipelihe'architecture for
computing the robot inverse kinematic position solution [15]. The task of computing
the joint solution of a PUMA-like robot manipu’lator:is shown in Figure 5. The nodes
in Figure 5 represent CORDIC processors. The objective is to balance this task graph :
to achieve maximum pipelining [15]. By using the Procedure DBS2 (GW ,7,,), where
GW is the directed task graph shown in Figure 5, 16 directed blocks, 7,
1 < m < 16, in GW are obtained. From these directed blocks, we can obtain the 16
pseudo-connected componerits, 7(’;,2, 1 <m < 16. The corresponding normalized bal-.
anced buffering graph GB for GW and the 16 pseudo-connected components in GB,
7? , 1 < m < 16, can be created. The associated integer lmear equation systems for

+ , 1 < m < 16, are obtained as follows:

(a) ILCE (7rBl) | B, [=3. "

(b) ILCE(mBf) : |Bys|=1.

(¢) ILCE (7Bj) : |B;|=3.

(d) ILCE(w&f) : |By|—|By|=3, |By|—|By =3,

| Biy |+ | By | =10, |Byy |+ [By | =9, | By |+ By [=8
() ILCE(vrB;f) ¢ By =2 -

(f) ILCE(7Bg) : |By |=15. v

(g) ILCE(ﬂ?;)? | Bs |+ | By | =5, | Bs |+ | By |+ B | =38,

| B | + | By |+ | By |+ | Bys | = 10, v

| Bg |+ | Byy |+ | By |+ | Big | — | Bao | = [Bss | =10,

| Bos | — | Bso | =5, |Bsg |+ |Bss |+ | By | =0.

-20-

" (h) ILCE (7rBs)“ . | By |=4
W OEGH) 1B l-1.
'(j)_:f ILCE(E?{B) B Bze l—5 : Y R T R

) OB ¢ 1B |- 1B l=12, [Bl= Bl =3, 1Byl |Byl=3,

B |+ 1By |- lB36 | =8, | Big |+ |Bos |~ lB41'l_-_'- 10,

l_Bssl'l‘lBe,g |=3, |Bys |+ | B | = |Bu =1, -

S .'-‘VleB41l+lB44l'—1 lB41l‘|'lB45l’—2 o

1 ILCE(WBE) | Boo | + [By, | — lBss l = 4 leg l+ lBsz l— 10

S 5"”lBssl+lB46l~5 . : -v ‘

(m) ILCE(mBi}) : 1By |=1.

() 'ILCE (7B1) o | Bss | =2

(o) ILCE(WBI5)? 3 |By | =4
3 (P) ILCE(WBml : lB43 l— 2. \ ' U T

. “ Each of - the above mteger linear equatlon systems, ILC’E (7rB+), 1 < m < 16,

»'corresponds to an 1nteger linear optlmlzatlon subproblem For example, the mteger'
llnear optmnzatlon subproblem for ILCE (7rB7) is to: o o

Min | B; |
» BEWB']

subject to the assoclated mteger llnear equatlon system ILC’E (7rB7) That 1s, v

. : Mm lBel+lB10l+lB11 l+B12 l+lB13l+lB14l+lB15 l‘l‘les l

+lB3ol+lBszl+lBs4l)

o subject to the assoclated mteger hnear equatlon system. ILCE (7rB7) Tlle topvt'imi'za-
- tion of this subproblem _gives lBe =5, |Byp|=0, |By | =3, |By |=0, "
»lB13l—2 lB14l—lB15l—0 lesl—5 lBsol—"O lBssl—lBul—O andf.»

| B; l = 15 delay buﬁers
‘ B E 7l'B7

_ Slmllarly,v the . 1nteger lmear , optlmlzatlon Subproblemé'(for :ILCE (TFE?I)s
ILCE (7”311) and ILCE (7Bf;) give the: optlmlzatlon solutions {IB1 |-— |B2 =3,

- ‘lB17l— lB19l—10 | By =9, le1l—8} {lB7l*-12 |

'”lle—‘lBgl—-3,lB1sl—Q‘,le7l—8 lesl-—10 lBSGI_O By | =3,
|Bol=1, |Bal=0, [Byl=1, lB45l'*2} and {| By |=14, lBs1l—0 o
| By | =86, |B35 | = 0, | B4 | = 5}, respectwely The numbers of delay buffers in -
-these subproblems are, respectively, ¥ |B | = 33 |B | =43, and o
. . B; € 7rB4 : " By E TI'Bu ‘ .
B |-_ 15 coo
B Eier

-91-

The optimization solution for all the integer linear optimization subproblems
yields a total of 159 buffer stages which agree with the solution given in [15]. This
example shows that the graph decomposition approach can solve a large-scale buffer
assignment problem by decomposing it into a set of smaller subproblems, each of
which can be solved separately as an integer linear optimization problem. The initial
delay time of the CORDIC pipeline is the cost of the critical path from the input node
to the end node and is equal to 18 basic time units. For a commercial CMOS
CORDIC processor [7], a reasonable stage latency is 40 us. Thus, the initial delay
time of the pipeline is equal to 720 us. The balanced ADFG can be realized with 25
CORDIC processors and 159 buffer stages. The resultant maximum pipelined
CORDIC architecture has a pipelined time of one basic time unit or 40 us. The
number of buffer stages can be further reduced if a special buﬂermg device, tapped-
delay-line buffer, is used [15].

5. Conclusion

An efficient graph decomposition technique which provides a systematic approach
in solving the ‘optimal buffer assignment problem of a large-scale ADFG has been
presented and discussed. The optimal buffer assignment problem is formulated as an
integer linear programming problem. The construction of integer linear constraint
equations in a large-scale ADFG reveals the existence of many redundant integer
linear constraint equations, making the optimization more intractable. The redun-
dant integer linear constraint equations come from the path overlapping between two
paths of two different multi-input nodes. The proposed graph decomposition
approach utilizes the critical path concept to decompose an ADFG into a set of con-
nected subgraphs from which the integer linear optimization techmque can be used to
solve the buffer assignment problem in each subgraph. Thus, a large-scale integer
linear optimization problem is divided into a number of smaller-scale subproblems -
which can be easily solved in computers in pseudo-polynomial time. The proposed
graph decomposition technique is illustrated by two examples and its efficiency and
advantages can be seen in the example for balancing a CORDIC pipeline for comput-
ing the robot inverse kinematic position solution. ' - o

6. References

[1] H. M. Ahmed, J. M. Delosme, and M. Morf, “Highly Concurrent Computing
‘Structures for Matrix Arithmetic and Signal Processing,” IEEE Computer, vol.
15, no. 1, pp. 65-82, Jan. 1982. :

[2] A.V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Com-
‘puter Algorithms, Addison-Wesley, 1974, pp. 195-199.

3]

5]

[6]

[10]

[11]

[12]
[13]

14

[15]

-92-

S. Baase, Computer Algorithms: Introduction to Design and Analysis, Addison-
Wesley, 1978, pp. 145-148.

J. D. Brock and L. B. Montz, “Translation and Optimization of Data Flow Pro-
grams,” Proc. of 1979 Int’l. Conf. on Parallel Processing, pp. 46-54, Aug. 1979.

J. B. Dennis and R. G. Gao, “Maximum Pipelining of Array Operations on
Static Data Flow Machine,” Proc. of 1988 Int’l. Conf. on Parallel Processing,
pp. 331-334, Aug. 1983. :

K. S. Fu (editor), VLSI for Pattern Recognition and Image Processing,

Sprmger -Verlag, 1984.

G. L. Haviland and A. A. Tuszynski, “A CORDIC Arithmetic Processor Chip,”
IEEE Trans. Comput., vol. C-29, no. 2, pp. 8-, Feb. 1980.

F. H. Hsu, H. T. Kung, T. Nishizawa, and A Sussman, “LINC: The Link and

Interconnection Chip,” Department of Computer Science, Carnegie-Mellon
University, 1984.

K. Hwang and Z. Xu, ‘“Multipipeline Networking for Fast Evaluation of Vector
Compound Functions,” Proc. of 1986 Int’l Conf. on Parallel Processing, pp.
495-502, August 1986. ‘ D

H. T. Kung, “Why Systolic Architectures?”’ IEEE Computer, pp. 37-46, Jan.
1982.

H T. Kung and M. Lam, “Wafer-Scale Integration and Two-level Pipelined -
Implementation of Systolic Arrays,” J. of Parallel and Distributed Computing,
vol. 1, no. 1, Sept. 1984, pp. 32-63.

S. Y. Kung, H. J. Whitehouse, and T. Kailath, (editors), VLSI and Modern Sig-
nal Processing, Prentice-Hall, 1985. '

E. L. Lawler, Combinatorial Optimization: Networks and Matroids. Holt,
Rinehart and Winston, New York, 1976.

C. S. G. Lee and P. R. Chang, “Efficient Parallel Algorithm for Inverse Dynam-
ics Computation,” IEEE Trans. Syst. Man, Cybern., vol. SMC-16, no. 4, pp.
532-542, July /August 1986. '

C. S. G. Lee and P. R. Chang, “A Maximum Pipelined CORDIC Architecture
for Robot Inverse Kinematic Position Computation,”’ Technical Report TR-EE
86-5, School of Electrical Engineering, Purdue University, January 1986.

Also to appear in IEEE J. of Robotics and Automation.

[16]

[17]

[18]

[19]

[20]

- 93 -
C. E. Leiserson and J. B. Saxe, “Optimizing Synchronous Systems,” J. VLSI
and Computer Systems, vol. 1, 1983, pp. 41-68.

C. Mead and L. Conway, Introduction to VLSI systems, Addison-Wesley, 1980.

C. H. Papadimitrious and K. Steiglitz, Combinatorial Optimization: Algorithms
and Complexity, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1982.

J. A. Starzyk and A. Konczykowska, “Flowgraph Analysis of Large Electronic
Networks," IEEE Trans. on Circuits and Systems, vol. CAS-33, pp. 302-315,
March, 1986.

J. E. Volder, “The CORDIC Trigonometric Computing Technique,” IRE Trans.
Electronic Computers, vol. EC-8, no. 3, pp. 330-334, Sept. 1959.

YR

Figure 1 An Example for Inserting Delay Buffer Stages

- 25 -

® S w

Figure 2 Normalization of a Balanced Buffering Gréph S

. ’- Flgure 3 An Exa.mple fork,]'?;uﬁ'er'Ass;ignﬁlent Problem o

-27-

- Figure 4 Graph Decomposition of the Example in Figure 3

- -28-

0By
B N O A
o e : ~ :
o PR - |PeBel P, By 9., g,{s

Byt : z “
i O

o {T8)

Byo| {BxlBaz -

.Bﬁﬂza B24 1 B,) Bnst
st“’” T U

Figure 5 AnADFG for a PUMA-Type Robot Inverse Kinematic Position ‘Solu'f_,vion: o

	Purdue University
	Purdue e-Pubs
	6-1-1987

	A Decomposition Approach for Balancing Large-Scale Acyclic Data Flow Graphs
	P. R. Chang
	C. S. G. Lee

	tmp.1542052450.pdf.Zv6OM

