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A b str a c t

In designing V LSI architectures for a com plex com putational task, the functional 

decom position of the task into a set of com putational m odules can be represented as 

a directed task graph, and the inclusion of input data m odifies the task graph to an 

acyclic data flow graph (A D FG ). D ue to different paths of traveling and com putation 

tim e of each com putational m odule, operands m ay arrive at m ulti-input m odules at 

different arrival tim es, causing a longer pipelined tim e. D elay buffers m ay be inserted 

along various paths to balance the A D FG to achieve m axim um pipelining. This paper 

presents an efficient decom position technique w hich provides a m ore system atic 

approach in solving the optim al buffer assignm ent problem of an A D FG w ith a large 

num ber of com putational nodes. The buffer assignm ent problem is form ulated as an 

integer linear optim ization problem w hich can be solved in pseudo-polynom ial tim e. 

H ow ever, if the size of an A D FG increases, then integer linear constraint equations 

m ay grow exponentially, m aking the optim ization problem m ore intractable. The 

decom position approach utilizes the critical path concept to decom pose a directed 

A D FG into a set of connected subgraphs, and the integer linear optim ization tech­

nique can be used to solve the buffer assignm ent problem in each subgraph. In other 

w ords, a large-scale integer linear optim ization problem is divided into a num ber of 

sm aller-scale subproblem s, each of w hich can be easily solved in pseudo-polynom ial 

tim e. Exam ples are given to illustrate the proposed decom position technique.

T h is w o r k  w a s su p p o r te d  in  p a r t b y  th e N a tio n a l S c ie n c e F o u n d a tio n  E n g in e e r in g  R e se a r c h C e n te r  

G r a n t C D R -8 5 0 0 0 2 2 .



1 . In tr o d u c t io n

W ith the advent of V LSI technology, the rapid decrease in com putational costs, 

reduced pow er consum ption and physical size, and increase in com putational pow er

suggest that an interconnection of V LSI processors, w hich are configured and 

arranged based on a functional decom position of the com putational task to exploit 

the great potential of pipelining and m ultiprocessing, provides a novel and cost- 

effective solution for m any com putational problem s in pattern recognition [6], signal 

processing [12], and robotics [14]-[15]. This type of com putational structure has been 

referred to as a sy s to lic array or system [10]. O ne of the m ain advantages of using a 

systolic array is that each input data item can be used a num ber of tim es once it is 

accessed, and thus, a high com putation throughput can be achieved w ith only a m od­

est bandw idth. O ther advantages include m odular expandability, and sim ple and reg­

ular data and control flow .

In general, a com putational task of interest is partitioned or decom posed into a 

set of sm aller com putational m odules, and the interconnection of these com putational 

m odules can be represented as a directed task graph. The inclusion of input data 

m odifies the task graph to an acyclic data flow graph (A D FG ). The nodes of an 

A DFG correspond to the com putational m odules, each of w hich can be realized by a 

linear pipelined functional unit for increasing the system throughput [ll]. The 

operands or data m ove along the edges, each of w hich connects a pair of nodes. D ue 

to different com putational tim e of the m odules, data flow (both inputs and results 

from one m odule to another) in an A D FG m ay occur at different speeds in different 

directions. Thus, operands m ay arrive at m ulti-input m odules at different arrival 

tim es, causing an unnecessary longer pipelined tim e in the A D FG. A conventional 

approach is to insert delay buffers (FIFO queues) at various paths to buffer the inputs 

or the output results from one m odule to another to achieve a balanced (or synchro­

nous) A D FG. This is exem plified in Figure 1(a) w hich is a graph and consists of nodes 

A , D , and C  w hose num bers of com puting stages are assum ed to be, respectively, 3, 

5, and 6. From the figure, there are tw o paths from node A  to node C . For path 2, 

it takes 5 com puting stages before an operand arrives at node C , w hile path 1 

requires no com puting stages. N ode C can not start com putation until all of its 

operands are available. A s a result, the second set of data values can not be fed into 

the pipeline in 5 com puting stages because data w ill only exist in path 1. So the 

m inim um latency of the pipeline is greater than 5 com puting stages and the m axim um  

throughput is less than l/5. To elim inate this undesirable behavior so that successive 

data of an array m ay pipeline through the A D FG w ith m axim um throughput, a delay 

buffer D  w hich is equivalent to 5 com puting stages can be inserted in path 1 so that 

the “length” (or the cost) of path 1 and path 2 w ill be balanced (Figure 1(b)). Thus, 

the latency of the A D FG w ill be decreased to one com puting stage, and m axim um  

pipelining can be achieved. O nce the balanced A DFG has been established, a



systolization procedure can be used to transform the balanced A D FG into a systolic 

array [16]. ■

The problem of balancing a directed A D FG by inserting appropriate buffers along 

appropriate paths to achieve m axim um pipelining has been solved previously by the 

cut-set theorem [ll]-[l2], the local correctness criterion [12], and the graph-theoretic 

approach [4]-[5]. Furtherm ore, H w ang and X u [9] showed that the balanced A D FG 

can be realized in a tw o-level pipeline netw ork w hich is reconfigurable and provides 

the flexibility in various vector processing applications. The delay m atching m ay be 

handled by program m able buffers, so that proper non-com pute delays can be inserted 

in each data flow path. A n exam ple is the design of the LINC chip [8], w hich is an 8- 

by-8 crossbar up to 32 units of program m able delays in each data flow path,

This paper presents an efficient decom position technique w hich provides a m ore 

system atic approach in solving the optim al buffer assignm ent problem of an A D FG 

w ith a large num ber of com putational nodes. Since it is of vital im portance to m inim ­

ize the num ber of buffers used in a systolic system to m inim ize the design cost, the 

optim al buffer assignm ent problem is form ulated as an integer linear optim ization 

problem , w hich can be easily solved in com puters in pseudo-polynom ial tim e [18]. 

H ow ever, if the num ber of com putational nodes in an A D FG is quite large, then 

integer linear constraint equations m ay grow exponentially, m aking the optim ization 

problem m ore difficult than it should be. The construction of integer linear constraint 

equations in a large-scale A DFG reveals the existence of m any redundant integer 

linear constraint equations; so, the optim ization problem m ay becom e intractable. 

The redundant integer linear constraint equations com e from the path overlapping 

between tw o paths of tw o different m ulti-input nodes. They can be rem oved easily by 

recognizing the overlapping path (or com m on path) traversed by different paths. In 

an effort to reduce the difficulty of optim izing a large num ber of integer linear con­

straint equations, an efficient and system atic decom position technique is proposed to 

recognize all the decom posable subgraphs in an A DFG and generate their associated 

integer linear constraint equations. The decom position approach utilizes the critical 

path concept to decom pose a directed A JD FG into a set of connected subgraphs, and 

the integer linear optim ization technique can be used to solve the buffer assignm ent 

problem in each subgraph. In other w ords, a large-scale integer linear optim ization 

problem is divided into a num ber of sm aller-scale subproblem s, each of w hich can be 

easily solved in pseudo-polynom ial tim e. Exam ples are given to illustrate the decom ­

position approach; and, finally, the proposed decom position technique is used to bal­

ance an interconnection of CO RD IC (Coordinate Rotation D igital Com puter [l], [20]) 

processors for com puting the robot inverse kinem atic position solution [15].
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2. Form ulation For Balancing A cyclic D ata Flow G raphs

In form ulating the optim al buffer assignm ent problem , w e shall assum e that the 

num ber of com puting stages of any com putational m odule of an A D FG is finite and 

that the execution tim e of any stage is a constant, called a basic tim e unit or stage 

latency. A n A DFG is m axim um pipelined if the m inim um num ber of tim e units 

needed for obtaining tw o successive outputs from the pipeline is equal to one basic 

tim e unit. Before giving a form al form ulation of the balancing problem , w e concen­

trate our interests on single input single output (SISO ) A D FG ’s and introduce som e 

necessary definitions for form ulation:

D efinition 1: A w eighted A D FG G W  =  (V -., E  , W ) corresponding to an A DFG 

G  = [V  , E ) is a w eighted direct graph w here W  is a w eight function from E  to a set 

of non-negative real num ber. V  =  (v 1 ,v 2 , ' ' ' ,v n ) is a finite set of com putational 

nodes (or m odules), and E  = (e1,e2, • • , e n ) is a finite set of edges. A n edge con­

necting node to node V j is denoted by e  ( i , j) .

A logical w ay to convert an A DFG to a corresponding w eighted A D FG is to assign 

w eights to each output edge of a com putational node such that the w eight assigned, to 

each edge equals to the num ber of the com puting stages of the com putational node. 

For exam ple, the w eight w (e (i , j)) assigned to the edge eft , j) equals to the 

num ber of com puting stages of node v,-.

D efinition 2: The cost (or w eight) of any k  th path ^(up ,v q ) from node v p to 

node v q can be defined as the sum of the w eights of all edges along the path. That is,

w {h ) = E w (c_(»y)>.
e(*. ,»,)

Thus, the cost of a path from node v p to node v q equals to the num ber of com puting 

stages needed for an operand to travel along the corresponding path from node v p to 

node V g .

D efinition 3: A w eighted A D FG G W w ith an input node u0 is said to be bal­

anced if the cost for any tw o different paths from the input node u 0 to an arbitrary 

m ulti-input node u k is equal.

This definition indicates that a balanced A DFG achieves m axim um  pipelining. U nfor­

tunately, m ost A D FG ’s derived from given tasks are usually unbalanced. To balance 

an A D FG, appropriate delay buffers m ust be inserted along appropriate paths from  

the input node u 0 to any particular m ulti-input node of interest. Thus, any different 

paths from the input node u 0 to a m ulti-input node w ill have equal costs. The 

appropriate buffering graph in w hich delay buffers are inserted to balance an unbal­

anced A D FG can be defined as:



D efinition 4: Let G W  —  (V  , E  , W ) be a w eighted A DFG and 

G B =  (V  , E  , W B ) be a corresponding w eighted graph, w here the w eight W B  

corresponds to the buffering introduced on E . Then, G B  is called a buffering graph of 

G W . Furtherm ore, an A D FG G W  —  {V  , E  , W  ) can be com posed from G W  and 

G B such that w  (e (i , j)) = w (e (i, j)) + w b  (e (t, j))  ; for all e (i , j)  E E , w here

w b  (e  ( i , j)) is the w eight of the buffers from node u* to node V j. If G W  is a balanced 

A D FG , then G B  is a balanced buffering graph for G W .

It can be show n that a buffering graph G B for a corresponding G W  alw ays exists, 

though it m ay not be unique. In order to m inim ize the cost for im plem enting an 

A DFG in a V LSI device, it is desirable to obtain a balanced buffering graph w ith a 

m inim um num ber of delay buffers.

Since the cost for any tw o different paths from the input node u Q to an arbitrary 

m ulti-input node u k m ust be equal for a balanced A D FG, buffer delays can be applied 

to balance the cost for all paths from the input node u 0 to a m ulti-input node u k . 

A ssum e U  =  {u0, u l ,u 2 , , un} is a finite set of all m ulti-input nodes and the 

input and end nodes in G W  and there are m k paths from the input node u Q to a 

m ulti-input node u k , that is, 4 >i{u o iu k )\ , 1 < l < and 1 < k < n . The c r itica l  

p a th , (fit’ (u k ) of a m ulti-input node u k in G W  is the path from the input node u Q to 

the node u k , 1 < k <  n , having the “heaviest” path w eight defined as

w c (u k ) 4 w c ((f) ,- M )  = , m ax
1 <  / < m k

E
e(* ,i)e <t>i{uh)

w (e (i , j) ) (1 )

N o other path from the input node u 0 to the node u k can have a path w eight greater 

than the critical path w eight w c (u k ). Thus, the cost of the critical path from the 

input node u 0 to the end node u n constitutes the initial delay tim e of the pipeline. In 

order to balance an A D FG , buffers B (e (i,j)) are introduced to insert into appropri­

ate paths < j> [{uk ) , from the input node u 0 to a m ulti-input node u k , 1 < k < n , to 

achieve all paths entering the node u k to have the sam e cost- That is,

S  «'(e(*'.i'))+ S  I B (e  | (2)
e (*  ,y )E  < l> t{uk ) B (e [ i ,j)) e  < j> i{uk )

The critical path Buffer stages added
cost of u k + to the critical path

in G W of u k in G B

f W e u se th e n o ta t io n ,u k ) to  in d ic a te a n  /  th  p a th  fr o m  n o d e U j to  n o d e U ^  . If n o d e U 2 * is th e  

in p u t n o d e Uq , th e n  ( f> i[u Q ^u k ) =  < j> i{uk ) .



= w c (u k ) + E I if(e (z , y)) I
B (e (i , j) ) e  t^ iu k)

w here \ B (e (i , j) ) | is the w eight or the num ber of com puting stages in the buffer 

B [e  ( i , j) ) , 1 < l <  m k and 1 < k < n. The first term in Eq. (2) is a constant and 

can be easily com puted. The problem of finding all critical paths of u k , 1 < k < n , is 

know n to be solvable by applying Bellm an’s equation w ith tim e com plexity of 

0 (  |A T |2) [13], w here N  is the num ber of com putational nodes in the G W .

Since it is desirable to m inim ize the initial delay tim e of the pipeline so that it 

equals to w c (u n ), no buffers B {e(i ,j) ) should be assigned to the critical path ( j>t > (u n )

of the end node u n . W e can state this fact in a lem m a.

Lem m a 1. The critical path < f>t * (un) of the end node is independent of the 

buffer stage variables.

Taking this into consideration and rew riting Eq. (2), w e have

' -E . ■ :/i- |B(e(i,j)) |- >: |H lo!»'-i))l w

S(e (* , y)) € K ) -B(e(*.i)) 6

= [ w c {u k ) - E w (e(f,y)) ] = 6(e ,n)

.... «(*'.;)£

w here b  (e , n ) is a com puted integer constant, | B (e  (z , j)) | are undeterm ined buffer 

stages, 1 < / < m k , 1 < k <  n , and the notation denotes set subtrac­

tion and is defined as < /> i{uk )/< f> i; {u n }  =  < f> i(uk ) {4 > i{uk ) Pi (un))>

Equation (3) is a set of linear sim ultaneous equations and can be expressed in a 

m atrix-vector form as A x  — b, w here A  is a m atrix introduced from the paths, x  and 

b are unknown buffer stage vector and constant vector, respectively. The solution x  

is usually not unique, how ever, w e can im pose som e restrictions on the problem to 

becom e an integer linear optim ization problem . That is, w e w ould like to m inim ize 

the total num ber of buffer stages in a balanced buffering graph G B ,

M inim ize the total num ber of buffer stages in G B

= M in S  ':.EEv'(4)-

‘* ft ' • •

Subject to the equality constraints of



E - .
B {e  ( t , j)) e  < f> ,>  M /t ,* '(« » )

and

| B (e  ( i , j) ) | > 0, integer (6)

w here 1 < l <  m k and 1 < <: < ». The above integer linear program m ing problem

can be solved in pseudo-polynom ial tim e [18].

In the above buffer assignm ent problem , the num ber of buffer stages are obtained 

from the solution of the integer linear program m ing problem and the buffers are 

placed on the edges in the buffering graph G B corresponding to the G W  except the 

critical path <^* (u n ) of the end node u n . In order to reduce the total num ber of

buffer stage v a r ia b le s  in the optim al buffer assignm ent problem , a useful equivalent

transform ation on a balanced buffering graph is introduced. A transform ation of a 

balanced buffering graph G B  w ith respect to a w eighted A D FG G W  by adjusting the 

position and am ount of its buffering is said to be an equivalent transform ation if the 

new transform ed buffering graph G B is also a balanced buffering graph (since a bal­

anced buffering graph is not unique) w ith respect to the w eighted A D FG G W . In gen­

eral, the equivalent transform ation has the follow ing three properties:

(a) A buffer stage can be m oved along a chain w hich is defined as a directed path in 

a buffering graph G B such that the incom ing and outgoing edge for all nodes 

along the path is equal to one, except the starting and ending nodes of the chain.

(b) Tw o or m ore buffers on the sam e chain can be com bined together to form a new 

buffer w hich has the sam e num ber of com puting stages as the sum of these 

buffers.

(c) Com bination of properties (a) and (b).

Based on the equivalent transform ation of a balanced buffering graph G B , w e 

can m ove the buffers along the chains of G B to m ulti-output nodes (or m ulti-input 

nodes). The new balanced buffering graph G B has the sam e properties as the G B , 

w ith the buffers attached to the m ulti-output nodes (or m ulti-input nodes). W e say 

that the new balanced buffering graph G B is n o rm a lize d . A s an exam ple, in Figure 

2(a), paths A — B — C — D , E — F — D , and E — G — D are chains. By com bining the 

buffers along the chains and m oving the resultant buffers to the output edges of the 

m ulti-output nodes A and E , w e arrive at a new balanced buffering graph G B as 

show n in Figure 2(b).

W ith the equivalent transform ation on a balanced buffering graph, the optim al 

buffer assignm ent problem can be reform ulated for the norm alized balanced buffering 

graph instead of the balanced buffering graph. This, in effect, greatly reduces the

E  I B (e  ( i ,j) )

B (e (i . j)] 6  (« » ) '
n

| J3(e (z , j)) I = 6(e , n )

. (5 )
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total num ber of buffer stage variables because these variables are attached to m ulti- 

output (or m ulti-input) nodes. W hile constructing the integer linear program m ing for­

m ulation for the norm alized balanced buffering graph for a w eighted A D FG G W , it 

can be show n that m any redundant integer linear constraint equations (in Eq. (5)) 

exist, m aking the optim ization problem m ore difficult than it should be. The redun­

dant integer linear constraint equations com e from the path overlapping between tw o 

paths of tw o different m ulti-input nodes. They can be rem oved easily by recognizing 

the overlapping path (or com m on path) traversed by the different paths. A path 

decom position technique is utilized to rem ove redundant integer linear constraint 

equations. Let < !> i{u k ) denote an l th path from the input node u Q to a m ulti-input 

node u k w hich passes through som e other m ulti-input nodes. A m ong these m ulti- 

input nodes, a m ulti-input node u w hich is n e a re s t to the node u k is selected to 

decom pose the path < f> i(uk ) into tw o sub-paths, that is, < P i{uk ) =  < j> i(u ) +  < f> i(u , u k ). 

Thus, the integer linear constraint equations of the path < f> i{uk ) w ith respect to the 

node u k can be w ritten as:

E ■'«<(*(*'./)):+  £ l«!'iv.yi)i ; m

eft ,] ) £  fa [v t) (*', j)) €

E «'(*(*,i)) + E V w (e(f,y))
e (*  ,j)  e  < £ ;(« * ) e (i ,j) C : « > /(« *  . « i)

+ ^  | I £ , In l.' (*' • •> ')) I
J 3 (e (t .y ) ) £  < £ ,(« * ) B {e :(i,j))e < i> ,{u ‘ ,u t )

w here 1 < l <  m k . U sing Eq. (2) for the path 4 >t (u ) to the node u , Eq. (7) becom es 

E ™ (e (i,j)) + E 1 B (e (i,j)) j

=  w c{u * )+  E , \B {e (i,j)) \+  (8)

£  | B (e  (t, j)) | +  E
B {e { i,jj)  €  > “ * ) e  ( i , j) E

U sing the result of Lem m a 1 and Eq. (3), Eq. (8) becom es

E  |^ B (e  (z  , i»  ]+  E  ;  |y B (e  (z , j»  |

B (e (i ,y ) ) e  M u ‘ . « t) /^ ,* {« n )  B (e (t , j) ) €  ^ ( * (“ * ) /^ (• (« „ )
n n



- E  \B (e (i,j)) | (9)
B(e(.» ,y)) e ^*K )/^*K )

= [ ™ CK ) w c (u * ) - E w (e { i ,j) ) }

e{* ,-j) £ Mu* • uk).

W ith the above procedure for reducing redundant equations, the integer linear 

constraint equations for the norm alized balanced buffering graph w ith respect to a 

w eighted A D FG G W  can be constructed according to the Procedure ILEG (Integer 

Linear Equation G enerator) listed below .

P r o c e d u r e IL E G  (G W  ,IL C E (G B )). This procedure generates integer linear 

constraint equations IL C E (G B  ) for a norm alized balanced buffering graph G B w ith 

respect to a given w eighted A DFG G W  w ith labeled nodes.

In p u t: A w eighted A D FG G W  w ith labeled nodes.

O u tp u t: A set of integer linear constraint equations, IL C E (G B  ), for a norm alized 

balanced buffering graph G B w ith respect to the given w eighted A D FG 

G W  w ith labeled nodes.

S te p 1. [ .D e te rm in e a ll c r itica l p a th s ] Find all the critical paths 4 > ^(uk ) and the cost of 

each critical path w c (u k ) w ith respect to a m ulti-input node u k , 1 < k < n , 

by applying the Bellm an’s equation [13].

S tep 2. [Assign, b u ffe r  s ta g e va r ia b le s] Assign buffer stage variables to the output (or 

input) edges w hich are attached to m ulti-output (or m ulti-input) nodes, 

except for the output (or input) edges belonging to the critical path of the 

end node u n . O utput edges w ill be preferred if output and input edges are 

on the sam e chain. It is w orth pointing out that a node m ay be both m ulti- 

input and m ulti-output node.

S te p 3. [G e n e ra te in te g e r lin e a r c o n s tra in t e q u a tio n s] For any path 4 > i(uk ) w ith 

respect to a m ulti-input node u k , 1 < / < m k , 1 < k < n, if < f> i(uk ) does not 

pass through any other m ulti-input nodes, then w e have

S  | B(e(» ■,/)).| -  £  | B(e(i ,j))| (10a)
B{e{i,j)) e i>i(ui)/i>l{un) B{e{i , j)) E <j>{uk)/<j>{u^)

n k n

= [ w c (u k ) - E w(e(f , i)) ] 
e (* > j) €

:

O therw ise, a m ulti-input node u 6 4 >i(u k ) nearest to the node u k is selected 

for path decom position
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E I B (e(i,j)) |+  E / \B (e (i,j)) \

B(e(i, j)) 6 B{e{i , j)) e i>l*{u')/i>tiun)
7 1 n

-  E  I B {e (i,j)) | (10b)
B(e(i;j)) e

tC Tl>

= [ w c (u k ) - w c (u * ) - E  w (e(* >i)) ] •
e(i,j) € </'/(«* , tii)

N ote that the paths and their costs betw een tw o m ulti-input nodes m ay be 

found w ith tim e com plexity 0(n3) by using the path-finding algorithm [2].

S te p 4. [O u tp u t in te g e r lin e a r c o n s tra in t e q u a tio n s ] O utput the integer linear con­

straint equations from Eq. (10a) or Eq. (10b) and return.

E N D  IL E G

Let us illustrate the above Procedure ELEG by an exam ple. Figure 3(a) show s a 

w eighted A DFG G W . W e w ould like to obtain an optim al norm alized balanced 

buffering graph G B corresponding to the G W .

S te p 1. N odes G , J , K , and M  are m ulti-input nodes. Then the critical path for

(a) N ode G : (G ) = Path A -C -G  , w c (G ) =  25.

(b) N ode J :  =  Path A — C — G — J , w c (J ) = 31.

(c) N ode K : </>2‘ (K ) =  Path A — C — G — K , w c (K ) = 31.

(d) N ode M : (M ) = Path A -C -G -J -M , w c (M ) = 41.

S te p 2. A pplying the buffer assignm ent rules, w e obtain the norm alized buffering 

» graph as show n in Figure 3(b).

S te p 3. The integer linear constraint equations are generated according to Eq. (10a) 

or Eq. (10b):

(a) The integer linear constraint equations generated w ith respect to the 

paths associated w ith node G :

(i) Path A -B -E -G : | B x \ + | B 4 \ = (25-5-6-2) = 12.

(ii) Path A — B — G : \ B x \ + | B 5 \ =  (25-5-6) = 14.

(b) The integer linear constraint equations generated w ith respect to the 

paths associated w ith node J :

(i) Path A — B — F — J : \ B x \ + | J33 | = (31-5-6-12) = 8.

(c) The integer linear constraint equations generated -w ith respect to the 

paths associated w ith node K :
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(i) Path A — D — II— K : \B 2 | + | B 6 | - | B 8 \ = (31-5-7-6) = 13.

(ii) Path A — D — I — K : \ B 2 \ +  \ B 7 \ -  \ B 8 \ =  (31-5-7-10) = 9.

The above integer linear constraint equations have been generated according 

to Eq. (10a). The follow ing ease w ill show the integer linear constraint equa­

tions generated by using Eq. (10b).

.(d) In generating the integer linear constraint equations w ith respect to the 

paths associated w ith node A f, w e select u =  K  as the m ulti-input 

node nearest to the node M  and in the path < f> i(M ) from the input node 

u 0 passing through the buffer | B 7 | to the node A f. The path <^/(A 4) can 

be decom posed into tw o sub-paths, that is, 4 > i(M ) = <^/(u ) + < f> i(u ,A f). 

A ccording to Eq. (10b), w e have | B 8 | + | B g | = (41— 31— 8) = 2.

S te p 4. A pplying the integer linear program m ing to m inim ize the total num ber of 

buffer stages, w e have:

: ' 9

M inim ize IA I
t==l y “:-

subject to the constraints of the integer linear equations generated in S te p  3 . 

The optim ization gives | | = 8, 13 B 2 | — 9 } | B 3 | = 0, | 5 4 | = 4,

| S 5 I = 6, | S 6 | = 4, | B 7 1 = 0, |S 8 | = 0 , \B g I = 2, and the total num ber 

of buffer stages is 33.

3 . F o r m u la tio n  fo r  D e c o m p o s itio n  A p p r o a c h

The previous section indicates that the optim al buffer assignm ent problem can be 

solved by form ulating it as an integer linear optim ization problem . If the task graph 

is sim ple, then the buffer assignm ent problem can be easily solved as illustrated in the 

above exam ple. H ow ever, if the num ber of com putational nodes in an A D FG is quite 

large, then integer linear constraint equations m ay grow trem endously, m aking the 

optim ization problem m ore intractable. Thus, a system atic approach in reducing the 

com putational difficulty in a large-scale integer linear optim ization for the buffer 

assignm ent problem m ust be devised. A decom position approach, w hich utilizes the 

critical path concept to decom pose the task graph into a set of connected subgraphs 

from w hich the integer linear optim ization technique can be used to solve the buffer 

assignm ent problem in each subgraph, w ill be addressed in this section.

Lem m a 2. If a m ulti-input node u k € and its critical path is <% («*),

then 4 > i^uk ) C ^»(un), that is, 4 > lk{u k ) is the path from the input node u0 to the node 

u k along the critical path ^ ‘(un), w here u n is the end node.

P r o o fs W e shall prove Lem m a 2 by contradiction. A ssum e that Lem m a 2 is not 

true, then there exists a critical path <^» (u k ) for node u k w hich is not a path segm ent
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of the critical path < f> ^ (un) for node u n and its cost u;(<^*(uj.)) is greater than the cost 

of any other path from the input node u 0 to the node u ,k , that is, w e have w (^^ (u k)) 

> w (4 > l-(u0, u k )) , w here < j> i’(u o i u k ) is the path from the input node u 0 to the node u k  

along the critical path Let be the rem ainder of the critical path of

that is, 4 > [* (un) - < f> i* {u0 ,u k ) + ^ (u k )u n ). A new path ^;(u n  ) can be con­

structed by connecting the tw o subpaths, that is, u n  ) —  ^ i* (uk) + < j)l> (uk ,u n ). 

H ow ever, the cost of <^ *( u n  ) is greater than the cost of ^*(uR), that is, w ((^> l* (un )) =

w (($ i;(u k )) + w (( (P i:(u k > u n )) >  w (0 i;(u o > u k )) +  w {4 > ifok ,u n )) =  w ((f> i* [un)) = wc(nn). 

This conclusion contradicts the definition of the critical path, thus, ?>/.*(% ) =

< f> ik{u k ) Q

□

D efinition 5: Let G W = (V ,E ,W ) be an undirected graph w ith N  = | V  [ and 

M  —  \ E  |. A connected com ponent 7 T m  of G W  is a m axim al connected subgraph, 

w hich is a connected subgraph that is not contained in any larger connected sub­

graphs.

D efinition 6: A directed block 7fw of a directed graph G W is a directed sub­

graph and its corresponding undirected subgraph 7rm (i.e. 7 Tm  = U n d ire c t 1' (7fm )) is a 

connected com ponent of the corresponding undirected graph G W  

(G W  =  U n d ire c t(G W * )).

The problem of finding all the connected com ponents of an undirected graph G W  

m ay be solved w ith the tim e com plexity of O  (iV + M ) by using the depth-first search 

algorithm  SEA RCH (G W , ixm ) in [3], w here G W  is an input undirected graph and 7rm , 

1 < m < m c c , are output connected com ponents, w here m c c is the num ber of the 

directed blocks in the corresponding directed graph G W of G W . The problem of 

finding the directed blocks 7 fm  of a given directed graph G W m ay be solved by a 

m odified deptln-first search algorithm w hich is described in the Procedure D BS1 

(D irected Blocks Searcherl) listed below :

Procedure D BS! (G W * , 7 ?m ). This procedure finds all the directed blocks of a
$

given directed graph G W  .

*
Input: A directed graph G W

O utput: The directed blocks of G W  * , 7 ?m , 1 < m < m c c , w here m c c is the num ber of
$

the directed blocks in G W .

^ T h e n o ta t io n  U n d irec t ( jfm ) m e a n s ta k in g  th e  d ir e c te d  a r r o w  o f 7 fm  o u t .



S te p 1. [O b ta in  th e u n d ire c te d g ra p h  o f G W  ] Let G W  = U n d ire c t [G W  ). That is, 

rem ove the directed arrow of G W  .

S te p 2 . [D e te rm in e u n d ire c te d  c o n n e c te d  c o m p o n e n ts o f G W \ Find all the undirected 

connected com ponents, 7rm , 1 < m < m cc, of G W  by the depth-first search 

algorithm  SEA RCH [G W

S te p 3. [D e te rm in e d ire c te d  b lo c k s] O btain all the directed blocks 7fm , 1 < m  < racc,

by assigning the directed arrow back to 7Tm , 1 < m < m cc, according to the
* . • , 

input directed graph G W  .

S te p 4. [O u tp u t th e d ire c te d , b lo c k s) O utput all the directed blocks 7?m , 1 < m < m cc.

E N D  D B S  1

The connected com ponents 7Tm from the algorithm SEARCH (G W , 7Tm ) and the 

directed blocks 7fm , 1 < m  < m cc, from Procedure D BS1 w ill be used in our decom po­

sition approach in obtaining a set of connected subgraphs from w hich the integer 

linear optim ization technique can be applied to each subgraph to solve the buffer 

assignm ent problem . O ur decom position approach utilizes the critical path of the end 

node u n , i.e., </>p( un), as a cut set to partition an A D FG G W  into several subgraphs.

The procedure of graph partition and the determ ination of decom posed subgraphs (or 

directed blocks) is called graph decom position [19]. The idea of the graph decom posi­

tion approach is first to take the critical path of the given directed graph out. This 

creates several edge disjoint subgraphs w ith som e of the edges not connecting a pair 

of nodes because the nodes in the critical path are rem oved. In order to rem edy this, 

nodes that are in the critical path ^«(u n  ) and are attached to tw o or m ore edges 

(incom ing or outgoing) are called the decom posed nodes and denoted by (the k tb . 

decom posed node); each of these decom posed nodes u k w ill be “splitted” into several 

independent pseudo-nodes u k , 1 < i ^ < d ^ , w hich are labeled according to the

attached edges from left to right, and the last pseudo-node u ^ is alw ays assigned to 

the k th decom posed node in the critical path 4 > i* (un ), w here d f. is the num ber of 

independent pseudo-nodes for the kth decom posed node. Thus, a new directed graph 

G W * containing splitted directed subgraphs of the A DFG G W  can be obtained by 

rem oving the critical path < j> i‘(u n ) and “splitting” the decom posed nodes. That is,

G W * = (G W /< f> i’(u n  )) U {labeled pseudo-nodes u lk , 1 < i <  (d k —  l), 1 <  k <  kD N },

w here kpjy is the num ber of the decom posed nodes in G W . The determ ination of the

directed blocks 7fm of an A D FG G W  w hen the critical path ^*(un ) is taken out is
| ^

very sim ilar to the Procedure D BS! for finding the directed blocks 7?m of G W  . The 

directed blocks 7fm and H 'm are alw ays equivalent except for the existence of the 

pseudo-nodes, u k . The procedure for determ ining the directed blocks 1fm of an A D FG
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G W  w hen the critical path < j> i,[ 'un ) of the end node u n is taken out can be described 

in the follow ing Procedure D BS2 (D irected Blocks Searcher2):

Procedure D B S 2 (G W ,7fm ). This procedure finds all the directed blocks of 

G W  w hen its critical path < j)^ ( u n  ) is taken out.

Input: A w eighted graph G W  and its critical path <^* (u n  ) of the end node u n .

O utput: The directed blocks, 7fm , 1 < m  <  m cc, of the A DFG G W  w hen the critical 

path < f> i ♦( u n  ) of the end node u n is taken out.

S te p 1. [R e m o ve th e c r itic a l p a th  in  G W  a n d  la b e l th e d e c o m p o se d  n o d e s]

(i) O btain all the subgraphs from the A DFG G W  by rem oving the critical 

path u n  ) of the end node u n and splitting the decom posed nodes

^Jfc> 1 ^ — ^D N ‘

(ii) Label the independent pseudo-nodes of the decom posed node u k , that is

U k , 1 < * <  d k , and u k = w here ® is the direct sum

of the pseudo-nodes com ing from the sam e decom posed node.

S te p 2 . [C o n s tru c t G W  ] Construct a new directed graph G W w hich is the splitted

directed subgraphs w ith labeled pseudo-nodes in S te p 1
^D N {d k  —  l)

g w * =(GWM-(u „))U(,U UI - {»»}■)-
• n A ;=l t=l

S te p 3. [F in d th e d ire c ted  b lo c k s o f G W * ] A pply the Procedure D BSl to find the 

directed blocks lt 'm  of G W * , that is, D SBl (G W * , t 4).

[ Id e n tify a n d m e rg e p se u d o ^n o d e s in e a c h d ire c ted b lo c k ] D eterm ine the 

labeled pseudo-nodes w hich com e from the sam e decom posed node and are in 

the sam e directed block tm . These labeled pseudo-nodes w ill be m erged into

a big labeled pseudo-node by the direct sum  operator ® .

[D e te rm in e a n d  o u tp u t th e d ire c te d  b lo c ks 7fm ] O btain 7fm from 7fm by apply­

ing the pseudo-nodes m erging procedure in S te p 4 and output 7fm , 

1 < m < m cc.

E N D  D B S 2

U sing the Procedure D BS2 (G W  , 7fm ), w e can obtain all the directed blocks of 

G W , 7fm , 1 < m < m c c . Furtherm ore, new subgraphs can be constructed from vfm 

and defined as = .T tm U lD N  0 /n*( u n  ), for 1< m  <  m c c , w here the operator LW  

m eans perform ing the set union of and .< f> ^  *( u n  ) (except the pseudo-nodes) and the 

direct sum on the pseudo-nodes com ing from the sam e decom posed nodes in 7fm and

S te p 4.

S te p 5.
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^^sim ultaneously. These new subgraphs are called pseudo-connected com ­

ponents of the A JD FG G W  and w ill be used to decom pose the buffer assignm ent prob­

lem into several sm all subproblem s.

It has been show n in section 2 that the buffer stage variables in G B are deter­

m ined from solving the associated integer linear constraint equations w hich are 

obtained from the Procedure ILEG. Let K B ^ be a norm alized balanced buffering 

graph for 7?* and IL C E  (t t b^) be the associated integer linear constraint equations 

w hich are obtained from the Procedure ILEG . Since an A DFG G W  m ay have a large 

num ber of nodes, determ ining the buffer stage variables in G B  from its large num ber

of integer linear constraint equations m ay not be desirable. Since G B  = U p /v
m — 1 •

w e w ould like to use this fact to see w hether solving the buffer stage variables in each 

7 T B * , 1 < m  <  rn c c , separately and independently is equivalent to solving the buffer 

stage variables in G B . If this is true, then w e have divided a large-scale integer 

linear optim ization problem into m c c sm aller-scale subproblem s, each of w hich can be 

easily solved. This is stated in Theorem 1.

Theorem 1. Let G B and 7TB 1 < m  <  m c c , be, respectively, the norm alized 

balanced buffering graphs of G W and its pseudo-connected com ponents 7fj£, 

1 < m  < m c c . The buffer stage variables in G B  can be determ ined from their associ­

ated integer linear constraint equations, ILCE {t t b^), 1 < m < m c c , separately and 

independently. Furtherm ore, the buffer stage variables determ ined from the integer 

linear constraint equations, /LC 'E (t t b^), have no relations to the buffer stage vari­

ables determ ined from the equations, ILCE (k b*2 )1 w here m l ^ m 2.

P r o o f: In order to prove the above theorem , w e follow the procedure for con­

structing the associated integer linear constraint equations for G B  and show how they 

can be replaced by ILCE (t t b*), 1 < m < m cc. For convenience, w e assum e there is a 

m ulti-input node u k in both G B (or the corresponding G W ) and t t b^ (or the 

corresponding 7f+). 7 is the m th pseudo-connected com ponent of G B . A ssum e

that the associated paths from the input node u Q to the node u k in G B (or G W ) are 

4 > l(uk ), 1 < l < m k . Tw o cases are possible: (1) som e of these paths pass through 

7TB + o n ly , and (2) som e of them pass through som e other pseudo-connected com ­

ponents of G B . In case (1), because the paths in G B are also the paths in 7TBw e 

w ill obtain the sam e resulting associated integer linear equations for the paths in G B  

and the paths in 7TBIn case (2), the paths from the input node u0 to the node u k  

m ay pass through som e other pseudo-connected com ponents, but they m ust intersect 

the critical path 4 > ^(un ) of the end node u n at som e nodes, and finally end at the node 

u k in 7rB*. It has been show n previously that a m ulti-input node u , w hich is on the 

critical path <^/*(uR) and nearest to the node u k , can be selected to decom pose the 

path into tw o subpaths, that is, 4 > i(uk ) —  < f> i(u ) + < f> i(u ,u k ), w here ) is the
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path from the input node u0 the node u and passes through som e other pseudo- 

connected com ponents, and the entire traversal of the path 4 )i iu iu k ) ’ls ’m the t t b 

Thus, the associated integer linear equation for the path ) 'n G B  can be rew rit­

ten as follow s:

J ] w (e (i,j)) + E I B (e (i,j)) | (11)
e{i,j)e4iM B{e{i,j))e<l>i[uk)

= E w(e(t,i)) + E I B {e{ i,j) \ 

e(*,y) € M u ‘) £ «!>,(«*)

> E w i€ (*‘>i)) + E ; l5(e(ui))!
e  (* ,j) e  B(e[i,j))e<j>i(u’,uk)

U sing Lem m a 1 and Eq. (2), the first tw o term s on the right hand side of Eq. (11) can 

be w ritten as

E w (e(i,y)) + E I B (e (i,j)) | (12)
e { i,j) £  < j> i{u * ) B (e  (i,j)) €  < j> i(u * )

—  w c  (u *) -f- E I £f(e («,j)) I

B(e{i,j)) 6

ifc ifc *

U sing the result of Lem m a 2, the critical path to the node u , <^* (u ), is the path 

from the input node u 0 to the node u along the critical path ^*(«n), that is, 

^ (u * ) =  ^-(u q ^u *), w hich is independent of the buffer stage variables. Then Eq. 

(12) becom es

E w {e (i,j))+  E < | B (e (i,j)) \ =  w c (u * ) = aconstant (13)

e (i,j) .e .~ M *0 B (e(i,j)) 6

Substituting Eq. (13) into Eq. (11), w e have,

E u>(e(t,i)) + E IB (e (i,j)) I = w C {u ) + C14)
c (* ,y ) e  4 > iM  B (e (i,j))  e < l> i(uk )

E  ■ " w {e{ i,j)) +  E  |£ (e (z ,y )) |

e { i,j)e  h {^ ,^k )  B (e  { i,j)) £

Equation (14) indicates tw o things: First, the associated integer linear equations 

w ith respect to the node u k E 7rB * depend on the buffer stage variables in 7 T B + and 

are independent of the buffer stage variables in the other pseudo-connected com ­

ponents because fa in *  ,u k ) E 7TB+. Second, Eq. (14) can be generated and replaced 

by a path in 7TBthat is, the path travels from the input node u 0 to the node u
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along the critical path < f> i* (un ), then from node u to node u k along the path d > i(u ,u k ) 

in 7 T B So, for any m ulti-input node u k belonging to G B  and 7t b£> it has been show n 

that the associated integer linear equation system for node u k in G B  can be replaced 

by the associated integer linear equation system for node u k in 7TBIn other w ords, 

the associated integer linear equation system for G B , i.e., IL C E  {G B ), can be replaced 

by the associated integer linear equation system s for n B ^ , i.e ., IL C E  

1 < m < m c c .

□

■

U sing the results from Theorem 1 and based on the fact that G B —  U d n  i
-uV .-:■ m = i ■

: m c c

\B {e{ i,j)) | becom es £  |£(e (*,./)) |, and the integer linear
B {e (i,i))e G B  m =l B(e(t,j')) g is*

optim ization problem in Eqs. (4) and (5) can be rewritten as follow s:

m c c

M in £ £  \B {e (i,j)) | (15)
m -l B{e(i,j)) £ nut

subject to the associated integer linear equation system s IL C E  [ irB ^) , 1  < m  < m cc. 

Because the buffer stage variables in different pseudo-connected com ponents of G B  

are independent, Eq. (15) can be decom posed into the follow ing subproblem s:

For each m  =1,2, ••• ,m c c :

M in ^ I -B(«(*ii)) I (16)
-B(eU ,y)) e «?,>:

subject to the associated integer linear equation system IL C E  (t t b +).

This graph decom position approach provides us w ith a technique to divide a 

large-scale integer linear optim ization problem into a num ber of sm aller-seale sub- 

problem s (m c c subproblem s), each of w hich can be easily solved in pseudo-polynom ial 

tim e.

Let us apply the above decom position approach to solve the sam e buffer assign­

m ent problem  in section 2.

S tep 1. (a) D ecom pose the A D FG G W  in Figure 3(a) into subgraphs by rem oving 

the critical path </>^(M ) of the end node M .

■ (b) Label the pseudo-nodes of the decom posed nodes A , G , J , M , that is, 

{A l,A 2,A 3} ,{G l,G 2 ,G 3 ,G 4} ,{J 1,J 2} ,a .n d {M 1 ,M 2 } .

(c) Construct G W * = (G W /^(M )) U {A 1,A 2,G 1,G 2,G '3,Jr1,M 1}. N ote that 

pseudo-nodes A 3, G 4, J 2 , and M 2 are attached to the critical path 

MM). G W , <^»(M ), and the labeled pseudo-nodes are show n in Fig­

ure 4. (4(a), 4(b), and 4(c))



S te p 2 . This step is the sam e as the Procedure D BS2 {G W ,lfm ).
' ' • ' £ I

(a) A pply the directed block search Procedure D BSl {G W  , J ?m ) to find the 

1 ^, 1 < m  < 2 , in G W * . These directed blocks are show n inFigure 4

(4(a) and 4(b)).

(b) M erge the labeled pseudo-nodes that com e from the sam e decom posed 

node and are in the sam e directed block ltm into a big labeled pseudo­

node by the direct sum operator. For exam ple, G x and C 2 are the 

labeled pseudo-nodes com ing from the decomposed node G in and

w ill be m erged into G 1 2 = G f1® G 2.

(c) O btain 7fm from m  =  1, 2 , by applying the pseudo-nodes m erging 

procedure. The directed block is show n in Figure 4(d).

S te p 3. Let t T* = U D N  <^(M ), 1 < m  <  2, w hich are the pseudo-connected com ­

ponents of G W . If? and I f? are show n in Figure 4 (4(e) and 4(f) respec­

tively).

S te p 4 . The corresponding norm alized balanced buffering graphs G B  and k b? can be 

easily obtained by the buffer assignm ent rules and have the sam e graph 

structure as G W and 7f*, respectively. The buffer stage variables 

B \ , B \ in k b? as show n in Figure 4(g) and B  x , B ? , B $ , B % , .Bf

in irB £ as show n in Figure 4(h) correspond to the buffer stage variables 

B x , B z , B 4 , Bs and B 2 , B 7 , B 8 , B g in G B as show n in Figure 3 (b),

respectively.

S te p 5. G enerate the associated integer linear equations system for k b? and K B ?  by 

the Procedure ILEG , that is, IL C E  {k b?) and IL C E  {k b?) as follow s:

\B l \ +  ]B l \ =  8  \B ?  | +  | B l \ - \B l  | ~  13

IL C E  (t t s ^): | B l | + | B 31 | = 1 2  , IL C E  {k b?): \ B ?  | +  | B | \-\b \ j =  9

I 1+15] | = 14 \B l \+ \B g | = 2

It has stated in S te p 4 that B x B ?  = B z, B ^ ■ =  B 4 , B ?..■= B 5 and

B l =  B 2 , B l =  B 6, B l = B 7 , B \ = B & , B l = P9. Thus, IL C E  {k b?) and 

IL C E  {k b 2 “) becom e:

| B x | + | B 3 I = 8 I B 2  I -h | -B6 I | =

IL C E{k b?): \B x \+  I B 4 I = 12 , IL C E  {k b?): \B 2 \ +  j B 7 \ - \B % | - 9

\B l \+ \B i\^U  | B 8 | + | B 9 | = 2

S te p 6 . The integer linear program m ing problem for G B can be solved by tw o 

separated subproblem s:

- 1 8  -
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(1) M in >]) | B i I =►  M in [ | B t | + | B 3 | + | B 4 | + | S 5 |]
b , e u b  i '

subject to ILCE (t t Bi ) (found in S te p 5).

(2) M in \B i | =►  M in [ | B 2 | + | £ 6 | + | B 7 | + | B 8 | + | i?9 | ]
B , €  T T f/.j

subject to IL C E  {n B 2 ) (found in S te p 5).

The optim ization of subproblem (1) yields \B 4 | = 8, | B 3 | — 0, | B 4 | = 4, 

| B s | = 6, and the optim ization of subproblem (2) gives | B 2 | — 9, 

| | = 4, \ B 7 | = 0, | B 8 | = 0, | B g | — 2. The results and solution are the

sam e as given in the exam ple in section 2, but the optim ization is m uch fas­

ter and sim plier.

4 . A p p lic a t io n  to  C O R D IC  P ip e lin e  fo r  R o b o t In v e r se  K in e m a tic  S o lu t io n

Let us apply the above decom position approach to solving the buffer assignm ent 

problem of a larger problem —  balancing a CO RD IC-based pipeline architecture for 

com puting the robot inverse kinem atic position solution [15]. The task of com puting 

the joint solution of a PU M A -like robot m anipulator is show n in Figure 5. The nodes 

in Figure 5 represent CO RD IC processors. The objective is to balance this task graph 

to achieve m axim um pipelining [15]. By using the Procedure D BS2 (G W  , 7fm ), w here 

G W is the directed task graph show n in Figure 5, 16 directed blocks, lfm , 

1 < m < 16, in G W  a,re obtained. From these directed blocks, we can obtain the 16 

pseudo-connected com ponents, 7f*, 1 < m <16. The corresponding norm alized bal­

anced buffering graph G B for G W  and the 16 pseudo-connected com ponents in G B , 

1 < m < 16, can be created. The associated integer linear equation system s for 

7ns*, 1 < m  < 16, are obtained as follow s:

(a) IL C E  { itB \} : | £ 4 | = 3.

(b) IL C E { 7TB+) : |S 16 | = 1.

(c) IL C E {™ + ) : |B 5 | = 3.

(d) IL C E  (irB 4 ) : \B X \-  \B 1 7 | = 3, | B 2 | - | R 17 | = 3,

| B 1 7 | + | B 1 9 | = 10 , | B 1 7 | -f | B 2 0 1 = 9, | B 1 7 | + ] B 2 l | =

(e) ILCE {k b?) : | B 3 | = 2.

(f) IL C E  {k b?) : \B 2 2 \ =  15.

(g) ILCE (k b?) : |S 6 | + | B 10 | = 5, \B 6  | + | B n  | + | 5 12 | = 8,

\B 6 \+ \B n |+ |S 13 |+ |B 15 | = 10,

I -B6 | + \B n  1+ |s13| + \b 14 I- |5301- |b 33 1 = 10,

\B 2 3 I- 1^30 1 = 5, |B 30 |+ \B 3 3 |+ \B 3 4 1=0.



- 2 0  -

(h) ILCE(k b£) : | B 24 | =  4.

(i) IL G E  ^B i)  : |B25| =  1.

(j) ILCE{k b ?q ) : |B 26| = 5.

(k) aG E(^) : |B 7 | - | B 36 | = 12 , | B 8 | - | B 18 | = 3 , | | - [B 18 | = 3

I B 18 | +  | B 27 | — | B 36 | = 8 | B 18 | +  | B 28 | —  | B 41 I -  10,

IB 36 I +  I A **9 I = 3 > | B 36 [ +  | B 40 J — 1B4i | = 1,

\B 4 1 \+ \  B 44 I = 1 , I S 41 I +  I ^45 I =  2-

(l) ILCE{k b?2) : | B 29 | +  I B Z I I - | B 35 j = 4  , I S 29 I H - I B 32 | =  1 0 ^ :-; ':

I -® 35 I +  I -®46 I = 3 *

(m ) iL C E \im &  : |b 37 1 = 1. ;;

(n) IL C E  (7$ 1 4 ) : | B 3 8  [ =  2.

(o) il c e (k b&) : |b 42 j =  4 . ■

(p) IL C E  (TTBie) : I # 4 3  I =  2-

Each of the above integer linear equation system s, ILCE {k b+), 1 <  m  <  16, 

corresponds to an integer linear optim ization subproblem . For exam ple, the integer 

linear optim ization subproblem  for ILCE ('k b -j ') is to:

M in ^ |b , 1 ;■ v";

■ . B, G  7rk-; : ■

subject to the associated integer linear equation system ILCE (k b?'). That is,

M in ( | B 6 | + | B 10 | + | B n | +  B 12 I + IB \Z | + | B u  I .+ I ^ 1 5 I ,+ I A 23 I

+ I b 30 I + | B 33 I + | B 34 |)

subject to the associated integer linear equation system ILCE {t x b^). The optim iza­

tion of this subproblem  gives [ B 6 | = 5, | B io I = 0, I ^ 1 1 I “ 3 > I -® 12 I ^

|B 13 1 = 2, | B 14 I = I B is | = 0, | B 23 I = 5, J B 30 1=0, | B 33 | = |B 34 | = 0, and

X I A I = 15 delay buffers.
. Bi E nBi ■

Sim ilarly, the integer linear optim ization subproblem s for ILCE (k b4), 

ILCE^ix ), and ILCE^k b^) give the optim ization solutions {| B x | = | B 2 | = 3 ,

| B 17 | = 0 , | B 19 | = 10 , I B 20 1 = 9, ■' ■ 1-®2i I = . {I B-j J = 12 ,

J B 8 I =  I B g | =  3  , j B 1 8 1 =  0 , | B 2 7 J —  8  , | B 2 g I =  IQ  , | B 3 6  J  '? =  0  , J -B 3 9 I =  3  ,

|B 4 0 I =  1 , | B 4 1 1 =  0  , | B 4 4 I =  1 , I B 4 5 I =  2 } , a n d  ( | B 2 9 | = 4 , | B3i [ = 0 ,
I B 3 2 j = 6 , | B 3 5 | = 0 , | B 4 6 j = 5}, respectively. The num bers of delay buffers in

these subproblem s are, respectively, X I A I = 33 > X I 1 A I “ 43, and

Bt E 3t #4 B i E n B n

| = 1 5 . ,
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The optim ization solution for all the integer linear optim ization subproblem s 

yields a total of 159 buffer stages w hich agree w ith the solution given in [15]. This 

exam ple show s that the graph decom position approach can solve a large-scale buffer 

assignm ent problem by decom posing it into a set of sm aller subproblem s, each of 

w hich can be solved separately as an integer linear optim ization problem . The initial 

delay tim e of the CO RD IC pipeline is the cost of the critical path from the input node 

to the end node and is equal to 18 basic tim e units. For a com m ercial CM O S 

CO RDIC processor [7], a reasonable stage latency is 40 /J -s . Thus, the initial delay 

tim e of the pipeline is equal to 720 p s . The balanced A D FG can be realized w ith 25 

CO RD IC processors and 159 buffer stages. The resultant m axim um pipelined 

CO RD IC architecture has a pipelined tim e of one basic tim e unit or 40 [ is . The 

num ber of buffer stages can be further reduced if a special buffering device, tapped- 

delay-line buffer, is used [15].

5 . C o n c lu s io n

A n efficient graph decom position technique w hich provides a system atic approach 

in solving the optim al buffer assignm ent problem of a large-scale A D FG has been 

presented and discussed. The optim al buffer assignm ent problem is form ulated as an 

integer linear program m ing problem . The construction of integer linear constraint 

equations in a large-scale A D FG reveals the existence of m any redundant integer 

linear constraint equations, m aking the optim ization m ore intractable. The redun­

dant integer linear constraint equations com e from the path overlapping betw een tw o 

paths of tw o different m ulti-input nodes. The proposed graph decom position 

approach utilizes the critical path concept to decom pose an A D FG into a set of con­

nected subgraphs from w hich the integer linear optim ization technique can be used to 

solve the buffer assignm ent problem in each subgraph. Thus, a large-scale integer 

linear optim ization problem is divided into a num ber of sm aller-scale subproblem s 

w hich can be easily solved in com puters in pseudo-polynom ial tim e. The proposed 

graph decom position technique is illustrated by tw o exam ples and its efficiency and 

advantages can be seen in the exam ple for balancing a CO RD IC pipeline for com put­

ing the robot inverse kinem atic position solution.
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Path 1

Path 2

Path 1

Path 2

Figure 1 A n Exam ple for Inserting D elay Buffer Stages
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(a ) (b)

Figure 2 N orm alization of a Balanced Buffering G raph
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(d ) r t i (e) jt, ( f ) % ,

(S) nBi+
(h ) j c b 2+

Figure 4 G raph D ecom position of the Exam ple in Figure 3
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