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In this paper, we present a solution approach for the inventory-routing problem. The inventory-routing prob-lem is a variation of the vehicle-routing problem that arises in situations where a vendor has the ability to
make decisions about the timing and sizing of deliveries, as well as the routing, with the restriction that cus-
tomers are not allowed to run out of product. We develop a two-phase approach based on decomposing the set
of decisions: A delivery schedule is created first, followed by the construction of a set of delivery routes. The
first phase utilizes integer programming, whereas the second phase employs routing and scheduling heuristics.
Our focus is on creating a solution methodology appropriate for large-scale real-life instances. Computational
experiments demonstrating the effectiveness of our approach are presented.
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1. Introduction
The inventory-routing problem (IRP) is of special
interest because it integrates two components of sup-
ply chain management: inventory control and vehi-
cle routing. These two issues have traditionally been
dealt with separately, but their integration can have a
dramatic impact on overall system performance.
The IRP arises where a vendor-managed resupply

policy (VMR) is being used. Vendor-managed resup-
ply, or vendor-managed inventory, refers to an agree-
ment between a vendor and his customers in which
the customers allow the vendor to choose the timing
and size of their deliveries. In exchange for this free-
dom, the vendor agrees to ensure that the customers
do not run out of product. In a more traditional
relationship, in which customers call in their orders,
large inefficiencies can occur as a result of the tim-
ing of the customers’ orders. If the vendor negotiates
a switch in policy though, this can become a distinct
advantage because he can combine deliveries to make
more efficient use of resources. It can also be to the
advantage of the customers because they no longer
have to dedicate resources to inventory management
and often receive cost incentives to make the switch.
Executing a vendor-managed inventory policy in an
effective way, however, is not a simple task, particu-
larly with a large number and variety of customers.
Determining a distribution strategy that minimizes
long-term distribution costs is the inventory-routing

problem and is the problem addressed in this paper.
Our focus is on designing and implementing a solu-
tion approach capable of solving practical instances of
the IRP.
This paper is organized as follows. In §2, we will

discuss in more detail the industry problem that moti-
vated our interest in the IRP, and in §3 we will
formally define the inventory-routing problem and
briefly review the relevant literature. In §4, the two-
phase approach we have developed for solving the
IRP is introduced with the Phase I and Phase II
methodology covered in greater depth in §§5 and 6,
respectively. Section 7 reviews sample computational
results, and the final section highlights general con-
clusions and plans for later research.

2. Industry Problem
Our research is motivated, in part, by work done with
Praxair (www.praxair.com), an international indus-
trial gases company. Praxair’s production process
involves taking air and separating it into its compo-
nent parts, such as oxygen, hydrogen, nitrogen, and
argon. The gases are transported in their liquid form
in trucks from the plants to the customers. The trucks
are product specific because they are engineered to
safely carry a particular type of gas.
Praxair has negotiated a vendor-managed resup-

ply policy with most of their customers and wants
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to take better advantage of this relationship. How-
ever, even though customers let the vendor choose
when to deliver, the delivery is often restricted to
occur within customer-defined time windows. There
are also substantial differences in how much time
is required at a customer between the time a truck
arrives and when delivery can begin due to customer-
specific traits such as the location of the tank and
bureaucratic procedures. Timing and sizing deliver-
ies is further complicated by the existence of operat-
ing modes. Operating modes occur when customers
do not consume product at the same rate 24 hours a
day, 7 days a week. Instead, they have different usage
rates associated with blocks of time during each day.
Each customer can have different time blocks as well
as different rates.
In terms of size, Praxair has about 60 produc-

tion facilities and over 10,000 customers across North
America. Some customers require a delivery once
every three months, but others require multiple truck-
loads of product in a single day. These latter cus-
tomers make delivery planning especially difficult.
Only a limited number of resources are available

for distribution, which dramatically impacts the com-
plexity of creating efficient delivery schedules. Both
the number of trucks and the number of drivers
is limited, and driver availability particularly com-
plicates the planning activities. Driver constraints
include restrictions on the number of hours each
day that can be spent driving, and, at some pro-
duction facilities, drivers have predetermined start
times. These and other complexities often make find-
ing just a feasible delivery schedule a nontrivial
task.
This description of the IRP as it exists at Praxair is

representative of the problem and its complexities at
many other companies and in many other industries.
Other industries with similar issues and complex-
ities practicing vendor-managed inventory policies
include
• the petrochemical industry;
• suppliers for supermarkets (Purpura 1997, Ra-

dice 1999), such as HEB Grocery (Ross 1998);
• department store chains, including Walmart

(Mongelluzzo 1998);
• home products, such as Rubbermaid (Brumback

1995);
• the clothing industry, where VMR is encouraged

by the American Apparel Manufacturers Association
(Nannery 1994); and
• the automotive industry (parts distribution).
The number of these industries seems to be increas-

ing, along with the need for approaches to the IRP
that handle the additional constraints and influen-
tial complexities present in practical versions of the
problem.

3. Inventory Routing

3.1. Problem Definition
To develop a strategy for managing a vendor-
managed resupply policy, we start by examining the
core of this problem that is the IRP.
The IRP is a variation of the well-studied vehicle-

routing problem (VRP). The vehicle-routing problem
is a daily problem. Customers place orders and the
delivery company assigns the orders for that day to
routes/trucks so as to minimize total distance trav-
eled. In the IRP, however, the delivery company, not
the customer, decides how much to deliver to which
customers each day. There are no customer orders.
Whereas vehicle-routing problems typically deal with
a single day, inventory-routing problems have to deal
with a longer horizon. All decisions made today must
be made keeping in mind their impact on what has
to be done in the future.
More specifically, the IRP is concerned with the

repeated distribution of a single product from a single
facility to a set of N customers over a given planning
horizon of length T , possibly infinity. Customer i con-
sumes the product at a given rate Ui (volume per day)
and has the capability to maintain a local inventory of
the product up to a maximum of Ci. The inventory at
customer i is I 0i at Time 0. A fleet of M homogeneous
vehicles, with capacity Q, is available for the distribu-
tion of the product. The objective is to minimize the
average distribution costs during the planning period
without causing stockouts at any of the customers.
Three decisions have to be made:
• when to serve a customer,
• how much to deliver to a customer when served,

and
• which delivery routes to use.
This basic model of the problem assumes that usage

is deterministic and that there is an unlimited amount
of the product available at the plant. Deliveries are not
restricted by customer-specified time windows, and
the usage rate of product, Ui, is assumed to be a con-
stant rate through the day.
There are some variations in how the basic inven-

tory-routing problem is defined, with most of the
variation stemming from how inventory costs are
handled. In the case where the customer is not part of
the same company as the vendor, like at Praxair and
many of our other examples, and the objective is to
minimize distribution costs for the vendor only, it is
not relevant to include inventory holding costs at the
customers in modeling the problem. Therefore, these
costs are not present in our definition of the problem.

3.2. Related Work
We will not review all of the related literature here.
There are several extensive literature reviews, such as
those included in Ball (1988), Campbell et al. (1998),
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Dror et al. (1985), and Nori (1999). We will instead
highlight certain concepts and trends to show how
our approach fits into the literature.
Most of the research on the IRP is in one of three

directions:
• single-day model using deterministic or stochas-

tic demand;
• multiday model using deterministic or stochastic

demand; or
• permanent routing, usually for long-term plan-

ning purposes.
The early work focused on single-day models,

where the IRP is optimized in single-day slices. Mini-
mizing distance over a horizon of one day was found
to be very myopic, postponing all deliveries except
those necessary today. It leaves too many deliver-
ies for future days, eventually creating infeasibilities,
and overlooks good opportunities today. Single-day
approaches simplify the problem greatly though,
which made them popular initially. Examples include
Beltrami and Bodin (1974), Federgruen and Zipkin
(1984), and Golden et al. (1984).
More recently, multiday models, like the one

we are proposing, have become more prevalent.
Though they are computationally more intensive,
they tend to produce better-quality solutions. In mul-
tiday models, one of the key features that distinguish
solution approaches is how long-term effects of short-
term decisions are modeled and how customers are
selected for a short-term version of the problem.
One of the more prominent bodies of work in solv-

ing the inventory-routing problems for a small num-
ber of days was created by Dror, Ball, and Golden
(Dror et al. 1985, Dror and Ball 1987) and was
extended to consider more of the long term by Jaillet,
Bard, Huang, and Dror in Jaillet et al. (2002), Bard
et al. (1998a, b). We will discuss this work in some
detail because it has many similarities with ours, but
also has some stark contrasts. Because the actual prob-
lem involves stochastic usage rather than constant
usage, Dror et al. (1985) use a normal random variable
with known parameters to represent customer usage.
Given these parameters, they compute an optimal
replenishment day for each customer (considering the
customer in isolation). On this day, the customer will
have a low inventory before delivery, but still has a
positive probability that he will not run out of prod-
uct before the delivery. In Jaillet et al. (2002), only
those customers with optimal replenishment days
within the next two weeks are considered. An allo-
cation problem is solved, creating small changes for
some customers in the day they will receive deliv-
ery from the optimal replenishment day to another
day to prevent too large of a demand on any day in
the two-week horizon. After the customers are allo-
cated to days, the result is a set of daily vehicle-
routing problems where the delivery quantity used is

a quantity that approximates what will be necessary
to “fill” each customer on that day. This approach
is embedded within a rolling-horizon framework, in
which only the first week of the schedule is used
before the problem is resolved. The rolling-horizon
framework allows the schedule for the first week
(which is actually implemented) to be influenced by
the future in the form of the second week.
Permanent routing, or periodic routing, involves

creating a p-day schedule that can be repeated indefi-
nitely. These approaches, as described in Christofides
and Beasley (1984) and Gaudioso and Paletta (1992),
are better for making strategic decisions such as deter-
mining fleet size rather than short-term planning. The
true stochastic nature of the problem makes these
approaches unsuccessful and inefficient in the short
term.
Other relevant results include the evaluation by

Gallego and Simchi-Levi (1990) of the long-run effec-
tiveness of direct shipping (separate loads to each cus-
tomer). They conclude that direct shipping is at least
94% effective over all inventory-routing strategies
whenever minimal economic lot size is at least 71% of
truck capacity. The effectiveness deteriorates as eco-
nomic lot size gets smaller. Because our primary con-
sideration is instances of the IRP where there is a large
variety in customer capacity and consumption, it will
not be efficient to consider direct shipping for all cus-
tomers here.
In the last few years, several researchers have

started to focus even more on the stochastic nature
of product usage. In Kleywegt et al. (2002a, b) the
stochastic inventory-routing problem (SIRP) is intro-
duced and modeled as a Markov decision process and
approximate dynamic programming approaches are
developed. Although the initial results are interesting
and promising, the solution approach is still compu-
tationally prohibitive for realistic instances of the IRP.
Furthermore, in practice it is difficult to obtain the
necessary probability distribution information to rep-
resent the problem correctly.

4. Problem Decomposition
Our approach combines a number of existing ideas
and complements these with insights obtained from
witnessing how IRPs are solved in practice.
To keep computation times within acceptable lim-

its, we have adopted a fundamentally determinis-
tic approach. However, recognizing the stochastic
characteristics of the input data and the long-term
nature of the problem, we embed our approach in a
rolling-horizon framework. Another key aspect of our
approach is that we want to carefully consider the
long-term impact of short-term decisions. As a result,
we want to solve the problem over a planning hori-
zon that is as long as possible, subject to the condition
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that we want to be reasonably sure that the available
data accurately represent the expected product con-
sumption during the planning period. The selection
of an appropriate planning horizon may differ widely
across products, facilities, and industries. The longer
the planning horizon we can consider, the higher the
quality and reliability of the schedule produced for
the first few days.
In our rolling-horizon framework, we plan on using

only the first j days of the k-day schedule being con-
structed. The value of j should be relatively small so
as to be able to take advantage of new and updated
information on inventory levels and usage rates. The
value of j will typically be about two days for vendors
to give drivers some advance notice of their sched-
ules.
As in Jaillet et al. (2002), we decompose the solution

process into two phases. We make decisions hierarchi-
cally: first, decisions for the longer k-day horizon, and
second, decisions for the shorter j-day horizon (the
portion of the plan that will actually be executed). The
first phase will focus on assigning customer deliver-
ies to days in the planning horizon; the second phase
will focus on constructing delivery routes. How these
two phases are structured, though, is fundamentally
different from what is proposed in Jaillet et al. (2002).
(An early version of our approach can be found in
Campbell et al. 1998.)
Basing the assignment of deliveries to days based

on information about the day that an individual cus-
tomer runs out of product, as in Jaillet et al. (2002)
does maximize the volume deliverable to a customer,
but is not necessarily the best option in terms of long-
term distribution costs because it does not recognize
the synergies that may exist between customers. It
may happen that two customers that are geographi-
cally close (and thus can be served on a single trip),
will never be routed together because of their initial
inventories and their usage rates (optimal replenish-
ment days differ). If the problem is addressed dif-
ferently, as we propose to do, they may be routed
together, and this weakness corrected. We focus much
more on proximity of customers in deciding the
replenishment day. This is a fundamental change from
how the IRP has been solved previously, and we think
a fundamental improvement.
Phase I considers a coarse approximation of the

problem, with daily decisions, over a k-day planning
horizon. Based on the results of Phase I, Phase II con-
siders a model with decision accuracy in terms of
minutes rather than days for the first j days. The deci-
sions made in Phase I are not set in stone when we
move to Phase II, but are used as guiding suggestions.
Details of Phase I are provided in §5 and details of
Phase II are provided in §6.

5. Phase I: Planning
In Phase I, we use an integer program to determine
a high-level base plan for the next k days indicating
which customers to serve on each day and suggest-
ing how much to deliver to them. In this section, we
introduce the model, discuss how we modified it to
make it solvable in a limited amount of time, and
then discuss how it can be extended to include several
complexities common in practice.

5.1. Model
Central to the Phase I integer program are two param-
eters: LLt

i =max�0� tUi − I 0i + liUi�, a lower bound on
the total volume that has to be delivered to customer i
by the end of day t; and ULt

i = tUi +Ci − I 0i − liUi, an
upper bound on the total volume that can be deliv-
ered to customer i by the end of day t. The definitions
of LLt

i and ULt
i are self-explanatory, except possibly

for the use of liUi. The value li represents the fraction
of a day it takes to travel to customer i, so liUi is the
product usage during this time. The idea is that the
lower bound should be enough so that the customer
will last until he can be reached the next day, and the
upper bound should not be larger than the amount
that can fit at the customer with time to return to the
depot by the end of the day. Because the timing is
actually set in Phase II, the use of the li terms is of
importance primarily for the customers that are far
from the depot. Let dt

i represent the delivery volume
to customer i on day t. To ensure that no stockout
occurs at customer i and to ensure that we do not
exceed the inventory capacity at customer i, we need
to require

LLt
i ≤

∑

1≤s≤t

ds
i ≤ULt

i ∀i ∀t� (1)

To model resource constraints with some degree of
accuracy and to have a meaningful objective func-
tion, we found it necessary to introduce the notion of
“delivery routes” even in Phase I. However, it should
be noted that when we refer to a “route” in the integer
program, we will be referring only to a set of cus-
tomers without enforcing a specific ordering among
them; i.e., for the set of customers �A�B�C� we do not
distinguish between Routes A–B–C, A–C–B, C–A–B,
B–A–C, B–C–A, and C–B–A. We estimate the distance
required to visit the customers in the set to be the
length of the optimal traveling-salesman tour through
the customers.
Now, let R be the set of delivery routes, let Tr

denote the duration of route r (as a fraction of a day),
and let cr be the cost of executing route r (which we
assume depends on the duration of the route r). Fur-
thermore, let xtr be a 0-1 variable indicating whether
route r is used on day t �xtr = 1) or not (xtr = 0) and let
dt
ir be a continuous variable representing the amount
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of product delivered to customer i on route r on day t
(replacing the use of the variable dt

i ).
The total volume that can be delivered on a single

day is limited by a combination of capacity and time
constraints. Because vehicles are allowed to make
multiple trips per day, we cannot simply limit the
total volume delivered on a given day to be the sum
of the vehicle capacities. The resource constraints can
be modeled by (recalling that our fleet has M vehicles
of capacity Q)

∑

i� i∈r

dt
ir ≤Qxtr ∀r ∈R ∀t (2)

and
∑

r� r∈R

Trx
t
r ≤M ∀t� (3)

These constraints ensure that we do not exceed the
vehicle capacity on any of the selected routes and that
the time required to execute the selected routes does
not exceed the time available.
The basic integer programming model is thus

given by

min
∑

t

∑

r

crx
t
r� (4)

LLt
i ≤

∑

1≤s≤t

∑

i� i∈r

ds
ir ≤ULt

i ∀i ∀t� (5)

∑

i� i∈r

dt
ir ≤Qxtr ∀r ∈R ∀t� (6)

∑

r� r∈R

Trx
t
r ≤M ∀t� (7)

xtr ∈ �0�1�� (8)

5.2. Phase I: Solving the IP
The Phase I integer program as presented above is
not very practical for two reasons: the huge num-
ber of possible delivery routes and, although to a
lesser extent, the length of the planning horizon. To
make the integer program computationally tractable
we consider a small (but good) set of delivery routes
and aggregate periods toward the end of the planning
horizon.

5.2.1. Clusters. Our approach to reduce the num-
ber of routes is based on allowing customers to be on
a route together only if they are in the same cluster .
A cluster is a group of customers that can be served
cost effectively by a single vehicle for a long period
of time.
The following approach is used to identify a good

set of disjoint clusters covering all customers:
(1) generate a large set of possible clusters;
(2) estimate the cost of serving each cluster; and
(3) solve a set-partitioning problem to select

clusters.

Observe that the selection of clusters only has to be
done once as a preprocessing step before the actual
planning starts. It does not have to be rerun before
every execution of the Phase I integer program. In
practice it makes sense to recluster when new cus-
tomers have been added or there have been signifi-
cant changes to customer usage patterns.
• Cluster Generation. The number of clusters that

can be generated may be huge. Therefore, we have
developed several heuristic rules, mainly based on
usage considerations, to limit the number of possible
clusters. For example, five customers that all need
a full-truckload delivery per day will not be com-
bined to form a cluster, because we want a clus-
ter to be deliverable by a single vehicle. Likewise,
two customers whose combined inventory capacity
is significantly less than the size of a truck will
not be a cluster either because we want the routes
created by the cluster to have a chance to make full-
truckload deliveries. Other criteria include basic dis-
tance requirements such as making sure the distance
for the TSP tour through all the customers in the clus-
ter is below some threshold to ensure that customers
in a cluster are geographically close. For feasibility
reasons, we always generate clusters containing each
customer by itself.
• Estimating Cluster Cost. The cost used for a clus-

ter is the distribution cost for serving the customers in
the cluster for a month, or another period of time suf-
ficient for all customers to receive a delivery and get
an idea of the long-term costs of this particular com-
bination of customers. The cost of serving a cluster
should not only depend on the geographic locations
of the customers in the cluster, but also on whether
the customers in the cluster have compatible inven-
tory capacities and usage rates. Therefore, to evaluate
the cost of a cluster, we need a model that considers
all of these factors.
Because we generate a large number of clusters, we

also need a costing procedure that is fast, but able to
provide an accurate estimate of the cost of serving the
cluster. We decided after evaluating several models to
use the following simple integer program that has the
key features represented.
Let cr denote the cost of an optimal route r through

a subset of customers in a cluster. Let yir be a variable
indicating the total volume delivered to customer i on
route r in the planning period, and let zr be a variable
indicating the number of times route r is executed in
the planning period. Again r is a subset of customers,
and R is the set of all routes for the cluster. We will
use T for the duration of the cluster-costing model.
This leads to the following:

min
∑

r� r∈R

crzr� (9)
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subject to

∑

i� i∈r

yir ≤min

(

Q�
∑

i� i∈r

Ci

)

zr ∀r ∈R� (10)

yir ≤min�Q�Ci�zr ∀i ∈ r ∀r ∈R� (11)
∑

r� i∈r

yir = T Ui ∀i� (12)

zr integer� yir ≥ 0� (13)

This model ensures (1) that the total volume deliv-
ered on route r in the planning period is less than
or equal to the minimum of the vehicle capacity and
the total storage capacity times the number of times
route r was executed, (2) that we do not deliver more
to a customer than the minimum of the vehicle capac-
ity and its inventory capacity times the number of
times route r was executed, and (3) that the total vol-
ume delivered to a customer in the planning period
is equal to its total usage during the planning period
of length T .
• Set Partitioning. We want to choose a group of

clusters such that each customer is in only one cluster
and the total cost is minimized. This is a classic set-
partitioning problem in which the clusters are the sets.

5.2.2. Reducing the Customer Set. For practi-
cal instances of the Phase I integer program, even
with the use of clusters, the number of routes can
still be huge. This happens primarily when several
low-usage customers are located near other customers
in the same cluster. These low-usage customers lead
to many routes with approximately equal cost and
structure. For example, if A, B, and C are low users,
near each other, and near D, and D is far from the
depot, routes D, A–D, B–D, C–D, A–B–D, A–C–D,
B–C–D, and A–B–C–D all look reasonable and have
almost equal cost. If neither A nor B needs a delivery
any time soon, though, we really only need to con-
sider D and C–D. Eliminating nonurgent low-usage
customers from consideration can cause a huge reduc-
tion in the number of routes in the Phase I inte-
ger program. Therefore, we will carefully restrict the
set of customers to be considered. Unlike other pro-
posed approaches in the literature, we will not cut
down the set of customers by only considering those
requiring an impending delivery. We broaden the set
under consideration to capitalize on good routing
combinations that reduce long-term costs. We will
continue to generate routes only among customers in
the same cluster, but we will use the following guide-
lines to decide which of these customers should be
considered in each IP.
• Critical and Impending Customers. First, we will

classify the customers into two sets: critical and not
critical. Critical customers will be those that have a

large impact on the efficiency of the schedule, includ-
ing those customers with high demand or very distant
customers. We will always want to consider critical
customers when making our plan. They consume a
large percentage of resources and thus have a signifi-
cant impact on the schedule.
Second, we can classify the remaining customers

into two sets: impending and not impending.
Impending customers are those, given their current
inventory level and usage rates, that require a deliv-
ery in the next several days. The idea is that it will
not really be beneficial to consider all of the customers
that do not need a delivery soon. We will clearly
always want to include impending customers in the
Phase I integer program.
• Balance Customers. Reducing the customer set just

to critical and impending customers has a dramatic
effect on the number of variables. The Phase I inte-
ger programs become much easier to solve, as we
anticipated, but the solutions are not always quite
what we want. For example, consider the situation
such as the one described earlier, where there is a
customer D far from the depot, who is critical. The
only customers near D are A, B, and C. If neither
A nor B nor C are critical or impending and D can-
not receive a full truckload, there will not be a good
choice for how to visit D among the routes in the
Phase I integer program. There is no opportunity for
balancing the load. We are not taking advantage of all
of the good routing opportunities we wanted to find.
There is a middle ground, though, between includ-
ing none and all of the customers. We will iteratively
add customers to the model based on the set of criti-
cal and impending customers. We will create balanc-
ing opportunities for all customers that are currently
considered in the model. Thus, we can classify the
remaining customers into two sets: balance and not
balance. Balance customers will be those customers
that do not need a delivery imminently, but are near
and in the same cluster as customers that are criti-
cal or impending. We include the h nearest neighbors
within the same cluster for every critical or impend-
ing customer in the IP that can receive a delivery of a
minimum size in the next few days. Including these
customers with these attributes improves the chance
for the Phase I integer program to plan good truck-
load routes. Note that these h nearest neighbors often
may include customers already in the model, so they
will not be added. The full number, h, will be added
when a customer is located far from other impending
or critical customers. These are ones where adding a
good balancing opportunity is key.
Summarizing, we do not consider noncritical, non-

impending, and nonbalance customers in the Phase I
integer program. These customers do not consume
large amounts of resources, do not need deliveries in
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the near future, and are not conveniently located rel-
ative to other customers needing deliveries. Includ-
ing these customers may slightly change the resulting
base plan, but at a prohibitively large cost in terms of
computation time.

5.2.3. Aggregation/Relaxation. Given that our
two-phase solution approach will be embedded in a
rolling-horizon framework, the emphasis should be
on the quality and detail of the decisions concerning
the first few days of the plan. This provides us with
an excellent opportunity to reduce the size of the inte-
ger program by aggregating days toward the end of
the planning period.
For the first l days, with j < l < k, we will have

route-selection variables for each day, but for the days
after that, we will have route-selection variables cov-
ering periods of several days. Instead of making a
decision on whether to execute each route on Days 8
to 14 individually, for example, we now decide how
many times each of the routes will be executed during
that whole week instead. Several aggregation schemes
were tested. We found that considering weeks rather
than days toward the end of the planning horizon
still does a good job of preserving the costs associ-
ated with the effect on the future and yields a sig-
nificant reduction in CPU time. Therefore, the daily
variables associated with these later days are replaced
by weekly variables. Upper and lower bounds can be
altered accordingly as well.
The solution for the later weeks is not without

value, though. We can still use the solution to get an
estimate of expected workload in the weeks ahead,
which can help in scheduling vehicle maintenance,
driver vacations, and other planning needs.
A further simplification is obtained by relaxing the

integrality restrictions on the variables representing
the weekly decisions. Therefore, the only binary vari-
ables appearing in the integer program will be those
representing route selections for the first l days. This
makes the planning IP much easier, but still reflects
the longer term in the short-term decisions.

5.2.4. Integer Programming Techniques. Even
after aggregation and relaxation, the Phase I integer
programs can still be difficult to solve to optimality.
We make use of branching priorities to find feasible
solutions more quickly (by preferring branching on
variables early in the planning horizon), and we use
the best solution found within a fixed amount of time.

5.3. Extensions
In any hierarchical approach, it is important to strike
a proper balance between what aspects of the prob-
lem are handled in each of the different phases and at
what level of detail. In this section, we discuss exten-
sions to the basic integer program to make Phase I

better reflect practical instances of the IRP. Because
we are making daily decisions, we can only incorpo-
rate problem characteristics that can be modeled at
that level of granularity, possibly in aggregate form.
Note that we also have to ensure that the integer pro-
gram remains computationally tractable. The follow-
ing problem characteristics have been incorporated:
• Fixed and Variable Stop Times. Fixed stop time is the

time required for a delivery at a customer. It is either
considered to be customer dependent (fi) or the same
for all stops (f ). Variable stop time represents the por-
tion of the delivery time that varies due to the size of
the delivery. We use p to represent the delivery rate, or
pump rate, such that pQ represents the time to deliver
a full truckload of product. We can add the fixed time
for all stops plus the variable time for a full truck
delivery to the travel time for a route to approximate
the new completion time. We redefine Tr

′ as follows:

T
′

r =
∑

i� i∈R

fi + Tr + pQ� (14)

• Operating Modes. As discussed earlier, operating
modes are the blocks of time associated with different
usage rates throughout the day. When we know the
usage rates over the day, we can use them to compute
the total consumption over the day. This alters the
computation of the upper and lower bounds.
• Time Windows. Time windows for delivery at

the customers affects the IP by modifying the lower
bound. The lower bound must be sufficient to keep
the customer from running out of product before the
product can be delivered at the earliest part of the
time window. Time windows also can impact the gen-
eration of the routes. Routes will only be created with
customers that have overlapping time windows to
insure deliveries can be made within the same general
time frame.
• Driver Availability. In practice, the number of

drivers working on a given day can vary and can
have a dramatic impact on the problem. When the
number of drivers are known, we can use this to mod-
ify the number of work hours available on a given
day beyond the restriction imposed by the number of
vehicles.
• Driver Restrictions. Because drivers can only be

on the road limited hours per day, we only generate
routes that can be completed within such a time limit.
• Order-Only Customers. Very few companies that

implement a VMR program have all customers will-
ing to make this change, except for where customers
are part of the same company. This can be a result
of unwillingness to relinquish control over deliveries,
but it can also be because not all customers use prod-
uct at a regular rate. With this in mind, any successful
IRP algorithm must be flexible enough to account for
these customers as well as anticipatable customers.
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We add the order-only customers for which upcoming
orders are already known to clusters and add balance
customers for these as well, so routes for order-only
customers can be included in efficient full-truckload
routes. Orders are usually not known more than a
week ahead of time, but we can approximate what
percent of resources are typically consumed by these
orders. This percentage can be used to appropriately
reduce the available vehicle resources for the weeks
ahead.
• Multiple Deliveries Per Day. Because some cus-

tomers may require multiple deliveries per day, the
described IP may not generate feasible solutions for
these customers. For those it does, it may choose
a solutions such as route A, A–B, and A–C with
nonzero delivery quantities only to A on the last two
routes. Keeping in mind the work of Gallego and
Simchi-Levi (1990), we replicate the binary variables
representing the single customer route the number
of times necessary to serve these customers strictly
through direct delivery. We still include, though, one
copy of each binary variable representing multicus-
tomer routes including these customers. Because these
customers are large consumers, direct shipments are
appropriate for them in most cases. Multicustomer
routes are available for the customer too, however, if
there are situations where using a balancing oppor-
tunity is more efficient. To help branch and bound
find a feasible solution, we require that the binary
variable representing the first replication of the single-
customer route must be used before the second and
so forth.

6. Phase II: Scheduling
The high-level base plan produced in Phase I does
not specify departure times and delivery sequences
for the different vehicles. We still need to construct
vehicle routes and schedules. In this section, we dis-
cuss the heuristics used for this and show how they
can be modified to include additional complexities.
Because the delivery quantities specified in the base

plan may not fit before a specific time of the day
or may need to be received before a certain time to
prevent a stockout, the deliveries have self-imposed
time windows. Therefore, to convert the base plan
into an actual daily delivery schedule, we can solve
a sequence of vehicle-routing problems with time
windows (VRPTW).
Such an approach, which is common in the liter-

ature, does not capitalize on the flexibility inherent
in the inventory-routing problem. The delivery quan-
tities and times specified by the solution to the
Phase I integer program are good from a long-term
perspective; they may not be as good from a short-
term perspective. Therefore, we treat the delivery

sizes and times specified by the solution to the inte-
ger programs as suggestions. We want to follow
these suggestions as closely as possible, because this
helps to achieve our long-term goals, but often some
changes are needed. Because some constraints com-
mon in practice cannot be enforced at the daily level
in the Phase I integer program, the routes chosen may
either be infeasible when creating the detailed sched-
ule for the jth day or not as efficient as other potential
schedules. Also, in constructing the delivery schedule
we may be able to deliver more to the customers than
the quantity specified by the Phase I integer program.
Because this creates fuller truckload routes (and thus
more revenue to the vendor) and does not lead to
increased long-term costs, we want to take advantage
of these opportunities where possible. To be more pre-
cise, we construct vehicle routes and schedules for j
consecutive days, where we force the total volume deliv-
ered to a customer over the j days to be greater than or
equal to the total delivery volume specified by the solution
to the integer program for these days, but we do not enforce
specific delivery quantities to occur on specific days. In this
way, we should stay close to the delivery quantities
suggested by the Phase I integer program, which are
good from a long-term perspective, but we introduce
some flexibility in the daily routing and scheduling,
which is good from a short-term perspective.

6.1. Insertion Heuristics
We have developed and implemented an insertion
heuristic for the j-day routing and scheduling prob-
lem that takes advantage of the inherent flexibility
of the problem. Insertion heuristics are construction
algorithms that build a feasible delivery schedule by
inserting one as of yet unrouted customer into one of
the current (partial) routes at every iteration. Inser-
tion heuristics have proven their value in many rout-
ing and scheduling contexts; insertion heuristics are
fast, produce decent solutions, are easy to implement,
and can be extended easily to handle various practi-
cal complexities. For an elaborate treatment of inser-
tion heuristics for routing and scheduling problems,
including a discussion on how to handle variable
demands, see Campbell and Savelsbergh (2004b). To
keep the complexity of the algorithm a low-order
polynomial, it is important to maintain values for the
earliest and latest start times for each inserted deliv-
ery, as well as the minimum and maximum delivery
quantities. In this section, we focus on those aspects of
the insertion heuristic developed for the j-day prob-
lem that cannot be found in the above cited paper.
The selection of the insertion to be performed next

is based on a score assigned to each insertion. A lower
score indicates a more desirable insertion. The score
is comprised of several components. The weighting of
the different components can be adjusted to encour-
age a certain type of preferred delivery schedules.
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• The first, and most commonly used, component
is the increase in travel time resulting from the inser-
tion. As the costs associated with a delivery route are
typically assumed to be proportional to its length and
duration, it is natural to include this “extra-mileage”
cost. If we are considering adding a new route con-
taining customer i, this is simply

2 · tti�depot� (15)

where tta� b represents the travel time between any
two locations a and b. Otherwise, if we consider
inserting i between p�i� and s�i�,

ttp�i�� i + tti� s�i� − ttp�i�� s�i�� (16)

• The second component is the change in estimated
waiting time resulting from the insertion. The waiting
time on a route is estimated by starting the route at
its latest possible start time, delivering the maximum
quantity possible at each customer, and proceeding
through the schedule, waiting only when necessary,
until the end of the route. By computing the estimated
waiting time on the route with and without the cus-
tomer to be inserted, we can determine the change in
estimated waiting time. Note that there may be some
waiting on a route that, given the delivery windows,
is unavoidable, so-called forced waiting time. When
customers are near each other in terms of distance but
far apart in terms of delivery windows, they do not
make a good combination. A large increase in esti-
mated waiting time is an indication of this situation.
• The third component is a charge for making

routes “inflexible.” In the final j-day delivery sched-
ule, we want to have full-truckload or nearly full-
truckload routes. Therefore, we want to discourage
the construction of routes with a small difference
between the earliest and latest possible start time and
a large difference between the truck capacity and the
maximum volume deliverable given the current set of
customers, because it is unlikely that such routes can
be extended to nearly full-truckload routes. An inflex-
ibility charge is incurred only if an insertion results
in a route with a difference between earliest and lat-
est starting time that is less than x minutes and with
a maximum volume deliverable that is less than y%
of truck capacity. The charge is inversely dependent
on y.
• The fourth component is a charge for inserting a

customer on a route that is already capable of deliv-
ering a full truckload of product. This charge will
serve to encourage larger deliveries, which postpones
return visits to customers. A customer will still be
inserted if resources are tight or there are no other
satisfactory insertion points. Often there are many fea-
sible solutions with similar distance costs. We want to
encourage the selection of routes that make the best
use of the available vehicle capacity.

At each iteration, we check the feasibility of insert-
ing each delivery on all existing routes for the j days
and of creating a (new) route containing only this
delivery. We then evaluate the scores associated with
every feasible insertion. For each delivery, we retain
the feasible insertions with the lowest and second
lowest score. Note that because we always consider
creating a (new) route containing a delivery by itself,
there exists at least one feasible insertion if there are
sufficient resources.
If we start by inserting the deliveries with the

lowest score, it may happen that nonurgent deliver-
ies are inserted first and make it impossible to insert
deliveries to customers that are running out of prod-
uct soon. To prevent this from happening, we dis-
tinguish between high- and low-priority deliveries
and always insert high-priority deliveries before low-
priority deliveries. Deliveries that must take place
during the j-day planning horizon (because, oth-
erwise a customer would experience a stockout)
are considered high-priority deliveries; the remaining
deliveries are considered low-priority deliveries. In
this way, if we do not have the resources to carry
out all the deliveries suggested by the solution to the
integer program solved in Phase I, only low-priority
deliveries will be postponed.
We use the following selection rule (first for high-

priority, then low-priority deliveries).
(1) If there are deliveries that cannot be inserted

into any existing route, then among those deliveries
select the one with the most expensive route for
itself.
(2) If all deliveries can be inserted into at least one

existing route, then select the one with the largest
difference between the lowest and second lowest
score.
The first part of the rule captures the idea that if

there are deliveries that cannot be inserted into the
current set of routes, we know that we have to cre-
ate at least one more route, so we might as well do
it now. Consequently, we are likely to always have
several partial routes at one time. This creates more
choices at each iteration, hopefully leading to bet-
ter routing decisions. Realize that “most expensive
route for itself” means that the cheapest route con-
taining that customer alone is the most expensive over
all of the other uninserted customers that cannot be
inserted into an existing route.
The second part of the rule captures the idea of try-

ing to insert a delivery well, and before all of its good
alternatives become infeasible. If the second cheapest
insertion point is very expensive or nonexistent, we
need to insert this customer soon. This type of selec-
tion is sometimes referred to as “minimizing maxi-
mum regret.”
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The insertion heuristic is converted into a greedy
randomized adaptive search procedure (GRASP) in a
way similar to what was proposed by Kontoravdis
and Bard (1995). A GRASP combines a greedy
heuristic with randomization. Whenever the heuristic
selects the next delivery to be inserted, it will pick
randomly from among the q best choices, where q
is prespecified. This allows the algorithm to make
choices that do not seem to be the best at the time,
but may provide better opportunities later. Within the
GRASP framework, the insertion heuristic is executed
many times and the best set of delivery routes con-
structed is ultimately selected. (Note that it is also
possible to generate multiple sets of delivery routes
by adjusting the weights on the different components
of the score.)
Once a set of delivery routes has been selected,

there may still exist some flexibility in the individual
routes in terms of their earliest and latest start times
and the minimum and maximum delivery quanti-
ties. In the basic case described here, it is optimal
to deliver the maximum quantity possible at the lat-
est start time. In Campbell and Savelsbergh (2004a),
we propose an algorithm for selecting the times and
quantities to maximize total delivery volume in a
variety of situations. For example, if we include a
variable stop time at each customer based on the
size of the delivery, as we discussed in extensions
for Phase I, how to maximize delivery quantity on a
route is much less obvious. An example of the impact
of addressing this issue optimally is included in the
computational results.

6.2. Extending the Methodology

6.2.1. Multiple Deliveries. Handling customers
with more than one delivery over the planning period
is one of the more difficult extensions. For the cus-
tomers who do not require more than one delivery
per day, the integer program will choose no more
than j deliveries in the first j days. If the number
of deliveries in the integer program for a customer
i over the j days is nodi, then we will generate nodi
ordered deliveries for our insertion algorithm. The
algorithm is modified to insert the multiple deliver-
ies for a customer in the order dictated by the integer
program; i.e., if the integer program picks a delivery
of 500 for Day 1 and 100 for Day 3, the 500 will be
inserted first, at a time before the customer runs out of
product.

6.2.2. Shifts. Another extension that requires
fairly extensive modification to the algorithm is the
idea of grouping routes into shifts of lengths that
can be executed feasibly by drivers. The Department
of Transportation places limits on how much time
drivers can work, including a 16-hour limit on how

long a driver can be on duty (shift time limit), a
10-hour limit on the amount of time spent driving
(drive time limit), and a limit of 70 total hours on
duty in any 8 consecutive days. Therefore, the ten-
dency in practice is to stay well below the 16-hour
limit on a daily basis to keep more drivers available
for duty. Because of the flexibility offered by insertion
heuristics, we can create shifts for drivers literally
by inserting deliveries into routes and routes into
shifts.

6.2.3. Fixed-Start-Time Drivers. Fixed-start-time
drivers are drivers who work on specified days of
the week, and on those days, they go on duty at
a certain time. Most plants that use fixed-start-time
drivers have variable-start-time drivers as well (ones
who start work at any time of the day).
When creating shifts, the algorithm can assign shifts

to a driver based on the time windows of the first
customer inserted on the shift. If the first customer
inserted on a shift forces the shift to start between
9 am and 11 am, for example, then this shift will be
assigned to the driver whose availability starts closest
to 9 am. If no fixed-start-time drivers are available
to make this delivery, then we assign this shift to a
variable-start-time driver.

7. Computational Experiments
For all our computational experiments we will be
using two datasets representing real-life problem
instances (although relatively small ones). Because of
confidentiality agreements between Praxair and its
customers, there will be little specific information
given about the customers, and all results will be
scaled.

7.1. Datasets
Before discussing our computational experiments, we
will examine some basic characteristics of the two
datasets. The datasets represent two different plants.
Plant 1 serves approximately 100 customers, and
Plant 2 serves approximately 50 customers. In Fig-
ures 1 and 2, we present, for each plant, the geo-
graphical distribution of its customers. In each of the
graphs, the customers are represented by small dia-
monds and the plant by a large square. We see that
Plant 1 is south of almost all of its customers and that
more customers are west of the plant than east of it.
Furthermore, there are many customers located near
each other on the west side. The customer usage rates,
tank sizes, and vehicle capacities are such that there
should be predominantly multistop routes. The cus-
tomers served by Plant 2 are distributed quite differ-
ently, and the vehicle capacities, customer usage rates,
and tank sizes are such that there could be many
single-stop routes.
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Plant 1

Figure 1 Geographical Distribution of Customers (Plant 1)

7.2. Solving the IP
In §5, we discussed several efforts to reduce the
size of the Phase I integer program. Our first set of
experiments demonstrates the effectiveness of these
reductions. To demonstrate the impact of each of the
various reductions, we will solve the Phase I inte-
ger program for Plant 1 once with all reductions
in place, and subsequently with each of the reduc-
tions deactivated. All integer programs were solved
on a Pentium II 366 MHz processor using XPRESS
release 11 with default settings and a 10-minute time
limit. The results are presented in Table 1, where the
columns represent
• the case we are studying (Case),
• the number of rows in the IP (Rows),
• the number of columns in the IP (Columns),

Plant 2

Figure 2 Geographical Distribution of Customers (Plant 2)

• the total number of nonzero variables (Nonzeros),
• the time at which the first integral solution is

found (Time First IP),
• the number of integral solutions found (# IP

Sols), and
• the minimum of the solution time (proof of opti-

mality) and the time limit (Solution Time).
We see that without aggregation we are unable to

find a single feasible solution in 10 minutes. Further-
more, we see that clustering significantly reduces the
size of the problem. The reduction in size due to
the removal of nondriving, nonimpending, and non-
balance customers is only about 10%, but the solu-
tion process completed about six times faster. Finally,
using specialized branching yields a speedup of a fac-
tor of almost two.
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Table 1 Experiments with Various Modifications to the IP

Case Rows Columns Nonzeros Time first IP # IP sols Solution time

All modifications 4�280 6�457 84�282 76 1 76

No special branching 4�280 6�457 84�282 76 2 127

No customer set reduction 4�710 7�318 95�553 111 6 465

No clusters 10�718 17�424 226�891 285 3 600

No aggregation 30�860 27�690 991�032 n/a 0 600

7.3. Considering the Future
The planning horizon used in the Phase I integer pro-
gram should be based on the time period for which
we believe customer usage data to be reliable. Fur-
thermore, as indicated above, the integer program
has variables representing daily decisions for the first
j days of the planning horizon and variables repre-
senting weekly decisions for the remaining k′ = k/7
weeks of the planning horizon. Even if the customer
usage data has historically been reliable for a period
of about four weeks, for example, it is not clear that
there is no value in considering six weeks. Similarly,
it is not clear that considering only one week beyond
the k days would lead to an inferior solution. In fact,
if the solution is only slightly worse, but much faster
to obtain, it might even be preferred to consider a
smaller planning horizon. It is also not obvious how
many days should be represented at a daily level, i.e.,
how to choose the value of j . With all of this in mind,
we performed a variety of tests, experimenting with
different values of j and different number(s) of weeks
beyond j to see how the solutions for our two datasets
are impacted.
In our computational experiments, we simulate the

use of a rolling-horizon approach covering a month.
In each iteration of the rolling-horizon framework, we
solve a Phase I integer program, we run the Phase II
routing and scheduling heuristic with the information
from the solution to the integer program for the first
two days, we implement the resulting routes, and we
move the clock forward two days in time.
Before presenting and discussing this set of compu-

tational results, we elaborate on the difficulty of com-
paring solutions. A solution to the inventory-routing
problem for a given planning period specifies which
vehicles are visiting which customers on each day of
the planning period, in what order the deliveries are
being made, and how much is delivered to each cus-
tomer. However, even with all this information it is
still nontrivial to evaluate the quality of the solution.
This is an issue faced by everyone who uses a vendor-
managed inventory policy in practice. For example, if
we consider a planning period of four weeks, as we
will do in our computational experiments, it is not
obvious how to compare two solutions and claim that
one is better than the other because the IRP is really
an infinite-horizon problem. If the total distance trav-
eled in one solution is less than in the other solution,

this represents lower distribution costs. However, if in
the solution with a higher total distance traveled only
full-truckload deliveries are made, how can we say
this solution is worse? It utilizes the trucks extremely
well and may end in a state that is a much better
starting point for the deliveries that have to be made
in the following weeks.
Therefore, we look at several statistics to evalu-

ate the quality of a solution for a planning period.
The statistics we will consider, as we mentioned ear-
lier, will be scaled to conceal the true values, except
for average hours on shift. Even though the results
are scaled, we can still use these values to make
comparisons among different solutions. The values
presented include the following.
• Volume (Volume): total volume delivered over the

planning horizon.
• Mileage (Mileage): total miles driven over the

planning horizon.
• Volume per mile (V/M): ratio of total volume and

total mileage. Care has to be taken when using and
interpreting this performance measure. It may not be
a good measure to compare performance of different
plants as the customer characteristics—such as loca-
tion, usage rate, and tank capacity—can have a big
impact on volume per mile. It is, however, a good
measure to compare different planning methods for
a single plant. If one method yields a higher volume
per mile than another method for the same area and
over the same time horizon, it indicates that the first
method delivers more product with the same amount
of resource usage.
• Truck utilization (Avg. Util.): the average percent

of truck volume delivered on a route.
• Shift length (Avg. Shift): the average driver shift

length.
To represent the different variants we considered,

we use the following notation. A variant is rep-
resented by a string consisting of the number of
days + “d” + number of weeks considered aggre-
gately + “w.”
The results of the experiments for Plant 1 are pre-

sented in Table 2 and for Plant 2 in Table 3.
These statistics show that it is not straightforward

to pick the best day/horizon because different statis-
tics suggest different settings. Only after experimen-
tation and familiarity with a dataset will the best set-
tings emerge. Computational requirements as well as
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Table 2 Experiments with Different Numbers of Days and Weeks

(Plant 1)

Case Volume Avg. util. Mileage V /M Avg. shift

2d0w 18,703.94 98.83 16,026.95 1.16 8.98

2d4w 20,710.66 95.47 18,207.41 1.13 8.69

3d0w 42,544.48 98.89 37,336.66 1.14 8.54

3d1w 20,482.35 98.82 17,502.81 1.17 9.07

3d4w 19,545.74 96.62 17,167.25 1.15 8.88

3d6w 43,284.98 97.34 38,890.91 1.11 8.74

7d4w 42,136.38 97.99 37,390.66 1.12 8.64

solution quality will be the final determinants. For the
remaining experiments, we will use setting 3d1w.

7.4. Algorithm Comparison
Next, we compare our approach to a greedy algo-
rithm that captures many of the ideas presented in the
literature. Most existing algorithms do not consider
many of the complications that we do, so we can
only compare the simplest form of our approach. The
greedy algorithm assigns customers to days based
on when customers will run out of product and the
resource availability. More specifically, the algorithm
selects customers that will be close to run out by the
time a truck can arrive on a given day and sets the
delivery amount for those customers equal to avail-
able capacity, i.e., tank capacity minus inventory. The
remaining vehicle capacity is then distributed among
customers who will run out the next day. The deliver-
ies are sequenced (as with the IP) using an insertion-
based heuristic. The deliveries, however, are restricted
to being routed on the day for which the delivery was
created and are restricted to the specified size (as is
the case in most existing algorithms for the IRP). The
results for Plant 1 are presented in Table 4 and for
Plant 2 in Table 5.
We see for Plant 1 that even with a larger total vol-

ume delivered, the greedy method has a substantially
lower volume per mile, lower average utilization, and
longer average shift length. Our IP-based approach
is able to include deliveries to customers near the
imminent customers, which consume the remaining
truck capacity and improve the utilization numbers.
For Plant 2, the volume per mile is identical, but again

Table 3 Experiments with Different Numbers of Days and Weeks

(Plant 2)

Case Volume Avg. util. Mileage V /M Avg. shift

2d0w 24,761.70 99.14 7,027.08 3.60 8.22

2d4w 30,937.16 98.14 8,705.28 3.61 7.98

3d0w 30,755.17 97.92 8,344.15 3.82 7.66

3d1w 27,881.57 97.68 7,573.03 3.80 8.98

3d4w 31,864.67 98.17 8,842.11 3.76 8.73

3d6w 31,324.59 96.43 8,966.76 3.70 8.66

7d4w 31,443.81 97.80 9,033.81 3.69 7.53

Table 4 IP vs. Greedy—Results for One Month (Plant 1)

Case Volume Avg. util. Mileage V /M Avg. shift

IP 20,482.35 98.82 17�502�81 1.17 9.07

Greedy 41,449.50 94.79 37�119�57 1.11 9.70

we see lower average utilization and longer average
shift lengths.
These results indicate that IP-based approaches,

even in their simplest form, may provide a valuable
component of an overall control strategy for vendor-
managed inventory resupply.

7.5. Flexibility
The strength of our hierarchical approach is a Phase I
that captures the long-term aspects of the problem
as well as several of the practical complexities but
is still computationally tractable and a Phase II that
capitalizes on the inherent flexibility in a VMR rela-
tionship. To evaluate the importance of capitalizing
on the inherent flexibility in a VMR relationship,
we have taken the greedy algorithm used in the
previous section and extended it in various ways
to exploit this flexibility. More specifically, we cre-
ated orders according to the scheme outlined above,
but we allowed the routing and scheduling heuris-
tic to change the day at which the delivery occurs
(as long as this is feasible), to change the delivery
quantity slightly above and below the specified quan-
tity, and to add balance customers (as long as this is
profitable).
We see that even though the volume per mile

changes only slightly in Tables 6 and 7, the average
utilization goes up and the average shift length goes
down, both desirable characteristics in practice.

7.6. Using GRASP
In §5, we discussed randomization as a powerful tool
to improve the performance of insertion heuristics.
We employ randomization at several points in our
routing and scheduling heuristic. Our next set of com-
putational experiments demonstrates the impact of
randomization on the solution quality.
As a first experiment, we run the routing and

scheduling heuristic multiple times with the same
input data and look at the variance in solution
quality. We report the resulting total mileage statis-
tic for different numbers of repetitions in Figures 3
and 4. In these graphs, the x-axis represents the solu-
tion quality relative to a lower bound. We can see

Table 5 IP vs. Greedy—Results for One Month (Plant 2)

Case Volume Avg. util. Mileage V /M Avg. shift

IP 27�881�57 97.68 7,573.03 3.80 8�98

Greedy 28�812�72 91.80 7,658.64 3.80 11�58
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Table 6 Added Flexibility (Plant 1)

Case Volume Avg. util. Mileage V /M Avg. shift

Greedy 41�449�50 94.79 37,119.57 1.11 9.70

With flexibility 41�345�51 95.10 37,113.03 1.11 8.43

Table 7 Added Flexibility (Plant 2)

Case Volume Avg. util. Mileage V /M Avg. shift

Greedy 28�812�72 91.80 7,658.64 3.80 11�58

With flexibility 29�138�81 94.25 7,594.72 3.85 7�22
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Figure 3 Frequency with Varying Total Mileage (Plant 1)
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Figure 4 Frequency with Varying Total Mileage (Plant 2)

Table 8 Experiments with Different Numbers of Runs over Long Term

(Plant 1)

Case Volume Avg. util. Mileage V /M Avg. shift

2 runs 41�322�75 93�67 37�814�62 1.09 8�33

5 runs 41�297�26 93�86 37�575�31 1.10 8�42

25 runs 41�345�51 95�10 37�113�03 1.11 8�43

Table 9 Experiments with Different Numbers of Runs over Long Term

(Plant 2)

Case Volume Avg. util. Mileage V /M Avg. shift

2 runs 29�106�52 90�58 7�931�25 3.72 6�50

5 runs 29�133�55 92�61 7�747�53 3.79 7�23

25 runs 29�138�81 94�25 7�594�72 3.85 7�22

that 25 runs creates a wide variety of distance val-
ues, indicating that GRASP may help us find better
solutions.
In itself, this information is not sufficient to draw

any conclusions about the impact over an entire plan-
ning horizon. Therefore, in our next set of experi-
ments, we investigate the impact of always choos-
ing the solution with the highest volume per mile
for each two-day period within a month. For this
test, we used the enhanced greedy heuristic dis-
cussed above (the one that allows for more flexibil-
ity during routing and scheduling). The results for
Plant 1 are presented in Table 8 and for Plant 2 in
Table 9.
Even though the improvements are not large, for

both Plants 1 and 2, we observe a steady improve-
ment of the statistics as the number of iterations
increases for the routing and scheduling heuristic.

8. Summary
We have presented the inventory-routing problem
and an optimization-based approach for its solution.
Computational experiments indicate the potential
value of optimization-based approaches for complex
routing and scheduling problems. Problems of this
magnitude and complexity require careful decompo-
sition, and many future research opportunities exist
in this area.

8.1. Future Research
A customer may be located equidistant from two
plants, so it may be more efficient to deliver to this
customer from either one of the plants at different
times, depending on the demand of other nearby cus-
tomers. Examining how to best deliver to a set of
customers considering a number of plants is known
as the multidepot inventory-routing problem. The
research community has not addressed this prob-
lem, even though this is a real concern for many
companies practicing vendor-managed inventory. The
problem of making all of the delivery and routing
decisions for one plant is hard enough, but remov-
ing the customer-plant assignments for a company
with a large number of plants makes the problem
literally multiply in size. When the customer-plant
assignments are “freed,” however, plant inventory
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management becomes an issue, because we have to
make sure we are not planning too many trips from
any of the plants. The benefits from automated mul-
tidepot routing are obvious and could result in a sub-
stantial improvement in distribution costs for many
industries. We would like to extend our decomposi-
tion approach to handle this even larger and more
complex problem.
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