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ABSTRACT. A construction based on work by Tutte and Grothendieck is applied

to a decomposition on combinatorial pregeometries in order to study an important

class of invariants.   The properties of this Tutte decomposition oí a pregeometry

into a subgeometry   G\e and contraction   G/e  is explored in a categorically inte-

grated view using factored strong maps.   After showing that direct sum decomposi-

tion distributes over the Tutte decomposition we construct a universal pair  (7?, z)

where R is a free commutative ring with two generators corresponding to a loop and

an isthmus; and t, the  Tutte polynomial assigns a ring element to each pregeometry.

Evaluations of  t(G) give the Möbius function, characteristic polynomial, Crapo in-

variant, and numbers of subsets, bases, spanning and independent sets of G and its

Whitney dual.    For geometries a similar decomposition gives the same information as

the chromatic polynomial throwing new light on the critical problem.

A basis is found for all linear identities involving Tutte polynomial coeffici-

ents.   In certain cases including Hartmanis partitions one can recover all the Whit-

ney numbers of the associated geometric lattice  L(G) from  t(G) and conversely.

Examples and counterexamples show that duals, minors, connected pregeome-

tries, series-parallel networks, free geometries (on which many invariants achieve

their upper bounds), and lower distributive pregeometries are all characterized by

their polynomials.   However, inequivalence, Whitney numbers, and representability

are not always invariant.

Applying the decomposition to chain groups we generalize the classical two-

color theorem for graphs to show when a geometry can be imbedded in binary af-

fine space.   The decomposition proves useful also for graphical pregeometries

and for unimodular (orientable) pregeometries in the counting of cycles and co-

boundaries.

1.   Introduction.   The present work is born from the application to combinato-

rial theory of some techniques that have been successfully used in the field of

commutative algebra and algebraic topology [4].   In this introduction we shall at-

tempt to outline the motivation, as well as the main results that we have obtained

and possible future areas of exploration suggested by these results.

Our basic starting point is the notion of a combinatorial geometry or more gen-

erally a combinatorial pregeometry (matroid) for whose motivation we refer to [10]
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or [20].   Some of the basic definitions and elementary propositions from combina-

torial geometries which we will need are summarized in the next section.   Briefly,

the concept of the combinatorial geometry abstracts the notion of linear dependence

of sets of points in projective or affine space.   As first pointed out by Whitney,

this abstraction acts as a powerful unifying concept in a variety of combinatorial

structures including graphs, totally unimodular matrices, and extremal combinato-

rial problems.
The study of such abstract projective configurations is only at its beginning.

After the basic work of Whitney and Birkhoff, and some isolated contributions by

Dilworth and Rado, the main results of the theory are due to Tutte, and pertain to

the representation of abstractly given combinatorial geometries as concrete sets

of points in projective space [l9l.

It would appear at first that the notions of linear algebra apply to the study

of combinatorial geometries.   It turns out, however, outside of certain very obvious

and rather simple results, such as the notions of linear independence and bases

and the pertaining result that all bases have the same number of elements etc.,

very little of linear algebra can be carried to arbitrary pregeometries without some

a priori knowledge of a projective space into which the geometry can be embedded.

In a more general context, the study of commutative algebras and modules has

led to a  characterization of the trace of a matrix by the well-known work of Gro-

thendieck.   At present, one associates with every Abelian category a Grothendieck

group (and sometimes a Grothendieck ring), which possesses all the information

which is contained in the classical matrix case in the notion of trace and determi-

nant.

This is precisely our starting point:  by taking an abstract point of view, we

carry over to combinatorial pregeometries constructions which resemble the Gro-

thendieck group and ring [4].   We add at the outset however that this construction

was first intuited in a profound paper by W. Tutte written in 1947 [18]; therefore,

credit for  the  idea  of a Grothendieck group and ring should be  shared with

Tutte.
Motivated by the way the classical Grothendieck group arises from the invari-

ance of the trace of a linear operator on certain vector space decompositions, we

are led to explore two decompositions which have as an invariant not only the

classical characteristic polynomial but also another generating function which may

be evaluated for any pregeometry to give its number of subsets, bases, indepen-

dent sets, and spanning sets.

These two decompositions—direct sum and another reminiscent of subobject-

quotient object decomposition—are compatible in a certain sense resembling the

distributive compatibility of ring operations.   It is exactly this compatibilty in

addition to the uniqueness of these two decompositions which allows us to construct a free

commutative ring called the Tutte-Grothendieck ring and canonical map called the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] A DECOMPOSITION FOR COMBINATORIAL GEOMETRIES 237

Tutte polynomial which composes with ring homomorphisms to give a 1-lcorrespon-

dence between such homomorphisms and all functions which, like the characteris-

tic polynomial, are invariant for the above decompositions.   One makes this con-

struction since it allows us to compute the Tutte polynomial which then serves as

a universal invariant for the decomposition as well as to characterize all such in-

variant functions and to let knowledge of one invariant give information about an-

other.
In §3 we show that the category of combinatorial pregeometries has the requi-

site properties for the construction of a Tutte-Grothendieck ring.   Our main result

here is that this ring is isomorphic to a polynomial ring over the integers in two

variables.   When geometries are considered instead of pregeometries, one obtains

a ring in one variable, which embodies all the information contained in the classi-

cal characteristic polynomial.   Finally, one may consider pregeometries with base-

points and in this case a polynomial in four variables results.   Naturally, con-

structions associated with more general pairs  (G, 77) suggest themselves and we

will study them in a future paper.

In §4 we study those invariants which can be obtained by evaluating the Tutte

polynomial of a pregeometry at various values of the two variables.   It is remark-

able that several classical combinatorial invariants can be obtained very easily

by such evaluations.   A table is given at the end of the section.   These include

the Möbius function and an invariant recently discovered by Crapo as well as the

ones alluded to previously.   Our basic result allows us to obtain these and all

such invariants as evaluations of the Tutte polynomial.   By viewing Whitney dual-

ity and upper lattice truncation as functors in the decomposition category, it is

shown that the Tutte polynomial also allows one to compute the chromatic poly-

nomial of a truncated pregeometry as well as all the above invariants for the Whit-

ney dual.   In V5 we use the Higgs lift construction to prove that Tutte decomposi-

tions correspond to factored bijective unit rank decreasing strong maps thereby

correlating our constructions with the categorical description of geometries in [10].

In V6 we make a detailed study of the polynomial associated with every pre-

geometry in the Tutte-Grothendieck ring, which turns out to coincide with the Tutte

polynomial studied by Tutte in the case of graphs [18] and by Crapo generally [8],

We obtain a complete set of linear identities which are satisfied by all but a finite

number of Tutte polynomials.   We also relate the coefficients of the Tutte poly-

nomials with the various classes of closed sets or flats of combinatorial geomet-

ries.   Perhaps the most interesting result in this connection is the inequality we obtain re-

lating the Tutte polynomial of a connected geometry with the Tutte polynomial of

any of its minors, showing that the coefficients are always decreasing.

As examples of our theories in §7 we consider several classes of geometries

which can be completely characterized and fruitfully studied in terms of their Tutte

polynomials.   They include  series-parallel networks and partitions of type 72.   These
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latter partitions play an important role as not only are they conjectured to predom-

inate in an enumeration of 72-point pregeometries, but also they are exactly those

pregeometries whose Tutte coefficients give and are derivable from a set of doubly

indexed Whitney numbers.   We conjecture that the Tutte polynomial of a pregeome-

try G can be factored in the extended Tutte-Grothendieck ring if and only if G is

separable.   In light of Stanley's results about factorization of the characteristic

polynomial relative to a modular flat ([l6] or [3]) it becomes an interesting open

question as to whether the Tutte polynomial of a connected (nonseparable) prege-

ometry is always prime.

In §8 we also show by simple counterexamples that the Tutte polynomial not

only does not characterize a geometry up to isomorphism, but also cannot always

give information about representability and Whitney numbers.

In §^9—12 we introduce the notion of hereditary classes of pregeometries as

subdecompositions, and show that for certain of these hereditary classes special

invariants can be obtained from the Tutte-Grothendieck ring.   Perhaps the most re-

markable examples are the relationships with the critical problem, as described by

Crapo and Rota, and with the problem of coloring a graph.   In this connection our

main new result is a generalization of a classical two-color theorem to arbitrary

binary pregeometries.   An application of these methods of decomposition give

Cayley's formula for the number of trees in a complete graph [5].

We conclude with a brief survey of possible application to unimodular prege-

ometries, which barely touches the subject and which we hope to take up in later

publications.
In closing, we shall not hide the fact that our main motivation for study of the

Tutte-Grothendieck ring has been and is the critical problem, which is the natural

generalization of the problem of coloring a graph to a wider class of geometries.

We hope that this work will begin a new trend in the study of the coloring problem,

lifting it away from the classical purely graphical methods in which it has been

enmeshed in the past, and bring it into the mainstream of contemporary algebra

and combinatorial theory.

We would especially like to thank Professor Gian-Carlo Rota who first sug-

gested that Tutte's techniques could be fruitfully generalized to pregeometries

[15] as well as for his many suggestions and discussions on these methods.   Also

we are indebted to Professors Henry Crapo, Ladnor Geissinger, Curtis Greene,

Robert Norman and the referee for their valuable advice.

2.   Basic definitions.   This section surveys the relevant notions of the under-

lying category for our work, G, the category of finite combinatorial pregeometries

and strong maps discussed in Crapo and Rota [lO].   We then define the basic con-

cepts in the theory of decompositions as explored in [4].   The reader is advised

to read these basic definitions rapidly and refer to them as they come up in the paper.
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A finite pregeometry or matroid, G, is a finite set of points with a closure op-

erator  JG( ■ ) or     satisfying the exchange property:  For any points p, a £ G and

any subset   P C G, if p £ P U {q\ but p ^ P, then q £ P U ¡p¡.   When confusion
might arise we denote by  {G\ the points of G  (without the closure structure).   A

geometry is a pregeometry in which the empty set and each point is closed.   The

lattice, L, of closed sets or flats of a pregeometry is called a geometric lattice

and is characterized as a finite, semimodular, point lattice.   Flats covering 0 in

L are called atoms, and flats covered by 1 are called coatoms or copoints.   A bond

B of G is the set complement of a copoint.   In such lattices, each lattice element

x is the supremum of atoms representing closures of points and each has a well-

defined rank, r(x),  equal to the length of any maximal chain from the 0 element

(representing the closure of the empty set) to x.   The semimodular law for L states

that for all  x, y £ L, r(x) + r(y) > r(x A y) + r(x V y).   Flats x and y form a modular

pair if the latter inequality is an equality; x is a modular flat if it forms a modular

pair with every other flat.   7(A), the rank of a set of points  A C G, is defined as

r(A) in the associated geometric lattice.   Hence,  r(G), the rank of the pregeometry

is  r(l) in the lattice.
For any subset A, the cardinality of A, \A\  denotes the number of points it

contains, the corank of A is the nonnegative integer r(G) — r(A), and the nullity of

A is the nonnegative integer   \A\ - r(A).   A set of points  A CG represents a span-

ning set for G if A = G.   A set of points, A, is independent if r(A) = \A\.   Other-

wise,  r(A) < \A\ and A is dependent.   An independent spanning set is called a

bas is.
A strong map from a pregeometry G into H is a function /: [GÎ U Í0Ï —» {H\ U

{Ol (where "0" stands for the empty set in G and 7/ respectively) such that /(0) =

0 and the inverse image of any closed set in 77 is closed in G. Pregeometries G

and H ate isomorphic denoted G — H if there is a 1-1 correspondence, /, between

the points of G and 7/ and the closed sets of G and 7/ such that for any point p and

closed set K, p £ K iff f(p) £ f(K). An isomorphism class or equivalence class of

pregeometries denoted  [G]  is the class of all pregeometries isomorphic to G.

A pregeometry on the point set  {G\ can be uniquely determined by  C(G), the

family of minimal dependent sets or circuits of G.   A family F of subsets is the

circuit set for some pregeometry if no subset in F properly contains another and

the subsets satisfy the circuit elimination property C*:  If  C, and C2  ate two dis-

tinct elements of F and e £ Cj Cl C2  then the set difference  (C, U C A) \ {e\  is

dependent and contains an element  C,  £ F.

G may also be uniquely determined from its set of bases,  B_(G).   A family F

of incomparable subsets is the set of bases for some pregeometry if F satisfies

the basis exchange axiom B*:  For all  Bl and B2  in F and p £ B,   there exists

q £ B2  such that  (B, \ {p\) U {q\ is also in F.
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The (Whitney) dual of G, G, is the unique pregeometry on the same point set

with a set of bases consisting of base complements of G.   Hence  B £ B(G) iff

[G! \ B £ E[(G).   A pregeometry is self-dual if  G ~G.
G is the direct sum of two pregeometries:  Gj © G2  if the points of G, \G\;

and circuits of G, C(G), ate the disjoint union \GX\ xj \G A and C(G, ) U C(G2) re-
spectively (equivalently B(G) is the set cartesian product ß(G,)x BAGA).   G,   is

then said to be a direct sum factor of G, and G is termed separable with the flats

G, and G2 in L as separators.   If no such nontrivial direct sum decomposition ex-

ists, any two distinct points of G are contained in a circuit and G is termed cotz-

nected.   A one point direct sum factor, p, is an isthmus it it is in no circuits of G

and a /00/2 if it is itself a circuit.   A point is a nonfactor if it is neither a loop nor

an isthmus.   A pre-Boolean algebra  B        is a pregeometry which is the direct sum

of 22 isthmuses and 722 loops.   A Boolean algebra  B     is a geometry which is the

direct sum of 72 isthmuses.

If p £ G we define two derived pregeometries on the point set  \G\ \ \p\:  the

deletion,  G \ p; and the contraction,    G/p.     If A C \G\   \ \p\, and A denotes its

closure in G: then the closure on A in  G   \ p is defined as  A \ \p\ while its clo-

sure in  G/p is defined as  A (J'{pS\ \p\-  H D Ç G, the subgeometry  G \ D   is de-
fined as a sequence of deletions by points in D.   Similarly we define the contrac-

tion  G/D  as a sequence of contractions.   An arbitrary sequence of contractions

and deletions is called a minor.

An invariant is a function / defined on the class of all pregeometries such

that /(G) = ¡(H) if G — H.   Examples of invariants used in this paper include  c_(G),

the complexity or number of bases of G; /.(G), the number of independent sets; the

subgeometry generating function S(G) = S.    .a..u'v' where a.,  is the number of

subgeometries (subsets) of G with corank 2 and nullity /'; and p(G), the Möbius func-

tion which is defined as p(0, 1) evaluated on the geometric lattice L associated

with G, where for x < y, p(x, y) is given by the recursion: p(x, x) = 1, p(x, y) =

— ̂ „< z<vp(x, z)-   Two other invariants evaluated on L are the characteristic

polynomial, y(G, A) = xiO = ^x e ¡_ Pi®, *)A      )""r(* J; and /3(G), the Crapo invariant

which is explored in [5] with distinguishing properties:  /3(G) = ß(G \e) + ß(G/e)

it e £ G  is neither an isthmus nor a loop,  /3(G) > 0, and /3(G) = 0 iff G is separable.

A decomposition D(S) of a set 5 is a rule whereby one may decompose an ele-

ment s in 5 into a (finite) multisubset (subset with repetitions) M of S denoted  5 <

M.   A decomposition is unique if every  s < S can be decomposed into a unique mul-

tiset of irreducible elements (elements which cannot be further decomposed).   A

decomposition invariant function /with domain S takes values in abelian group and

is such that if s decomposes into a multiset zM then f(s) = X    £ Mf(m).   If two de-

compositions  Dj and D,  (compatibly) decompose the same set they form a hide-

composition.   This bidecomposition is distributive if (1) both  D, and D,   are
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unique; (2) any element which decomposes in  D.   into a multiset of irreducible

elements is itself irreducible (for D2); and (3) D2 decomposition commutes with

D.   decomposition in a manner resembling general distributivity for addition and

multiplication respectively.   An element which cannot be decomposed in  D,   is

termed indecomposable and hence an element which cannot be decomposed for

either decomposition is an irreducible indecomposable.   A bidecomposition invar-

iant function / is a function into a commutative ring which is invariant for £>2  and

also is such that for every Dj   decomposition of s into a multiset  M  , f(s) =

Associated with a decomposition is its Tutte-Grothendieck group A which

along with a function mapping 5 into A is universal for decomposition invariant

functions.   A is isomorphic to the free abelian group on S factored by the subgroup

generated by elements  s - 2   g„ m fot any decomposition of s into M.   Associated

with a bidecomposition is its Tutte-Grothendieck ring R which is the free commu-

tative ring on S factored by the ideal generated as above by all (multiplicative)

D,   decompositions and (additive) £>2  decompositions.   When R turns out to be a

free commutative ring the image of an element s under the natural map t from S into

R is called the Tutte polynomial of s.

3.  The Tutte bidecomposition.
Definition 3.1   On S, the set of isomorphism classes of finite pregeometries,

let D^S) be direct sum decomposition and let D_2, the Tutte decomposition, be

generated by decompositions of the form  G < G\e + G/e tot all nonfactors   e £ G.

Then since both Dj and D_2 decompose pregeometries into those of smaller cardi-

nality, the two decompositions form a bidecomposition T called the Tutte hide-

composition.

Definition 3.2.   Let Q he the class of polynomials whose variables are pre-

geometries and for a point p, let  D   : Q —► Q  he the partial function whose domain

is all polynomials a in which each term contains exactly one factor  F.  such that

p £ F .; and for such polynomials  a = X. II ■ G ■ ■ F -, let DAq) = 2. II. G .. F •   wherer l' r     7 1 j     i     ,,     j' p^T J      i     ij     J

,      \(p)(F \p) if  p is an isthmus or loop,

7      \(F\p) + (F./p)    otherwise.

For any G and ordering 0 = (p.,. .. , p ) on the points of G let D AG) = D     °. .. o
" 72

Dt,  (G) which is well defined since  D.     is defined for all i on each term of the
pl pi

polynomial  Dp       o...on     (rj)_   ¡f  a = Su G ■• and a'= Su G¿, define an equiv-

alence relation ~ on Q such that  q ~ q    if for some ordering of the terms, the pre-

geometries  G.. and G'. ate  isomorphic.    Then Q/~   is the set of all polynomials

of equivalence classes of pregeometries.   Denote by  IDAg)] the equivalence

class of the polynomial DQ(G) and denote by x and z the equivalence classes of
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a loop and isthmus respectively.

Lemma 3.3.   For all pregeometries G and orderings 0 and 0   on its points

(a) {Dq(G)]  is a polynomial with positive integer coefficients in z and x; and

(b) lD0(G)] = [D0,(G)L

Proof, (a) Using induction on the number of points of G, we note that a one

point pregeometry is necessarily an isthmus or loop and (a) holds in this case.

Assume (a) for all orderings of cardinality  72 - 1  and consider DQ(G) for 0 = (px,

•■•.Pn).   Then if 0"= (p2,---,pn), D0(G)=D0„(Dp  (G)) = D^^p^ (px)) or
D0,i(G\px + G/pj).   But by the hypothesis  [D0,/(G\p,)] and {DQII(G/px)] are both
positive polynomials in z and x and the result follows for  {D0(G)] by multiplica-

tion by z or x or polynomial addition respectively.

(b).  We can effect any reordering by interchanging consecutive points so we

need only show that DQ(G)= DQ,(G) for O = (px,- •• , pk, Pk+i,- " » P„) and 0' =
(Pl> • • • , Pfc+i> P^.' '"•»?)•   By tne definition of the operator Dq, we need only

check that D„   °£> (G ■■)=£> °D^  (G.) on the relevant variables   G.. of
pk      ** + !     " pk+l        pk     " »

D o...oD    (G).
pk~l pl

Let  G.. be any pregeometry containing  p,   and  P¿.i.   There are three cases

to consider:

Case I.  If p,   is a nonfactor of  G -, and p,   .   is a nonfactor of both prege-

ometries G..\p, and G../p,; then neither p,  nor Pl,,   is an isthmus or loop of  G -,

and  \p,, p,    2 is not a two point circuit in either  G.. or G...   Hence, r\+i   is a

nonfactor of G.. and 6,   is a nonfactor of both  G\p,   ,   and G-./p, ...   Consider-ij rk ii ^k+l ii  rfe+i
ing the set of bases we have   (Gi}\pk)\pk+ 1 = (G^V^+iA/^; (G.;. \Pk)/pk + 1 =

(GfA+l>VA; (Gi/Pk)/Pk+1 = (Gif/pk^ypk; and (G../p,)V,+1 = (G;->,+1)/P,.
For example, both sides of the last identity define the pregeometry P on the point

set  ÍG..\(p£ (j Pwi)! with bases those subsets of P which when adjoined with

Pk form a basis for G...
Case II.   If pfe  is a loop (isthmus) of G.., then it is a loop (isthmus) of

Gi/Vj,+1 and Gi/pk+v   In any event,

«^,+1(G..))V,)(p,)=D^+i((C..Vfe)(p, )).

Czzse III.  If p^ and p,    .   ate both nonfactors of  G■■ but ft.i   is a loop of

G¿j/pk  (pjt, +1  is an isthmus of G.\pk), then i/^.t, P^S forms a circuit in  G¿. (in

G..).   But this means that in   G ..(G..),   p^ = ?>~fe+i   and there is a strong map auto-

morphism of G.. which interchanges  pk and pk+l.   Clearly then {DQ(G)] =

{D0,(G)l
Since these are all the possible cases, we may denote   {Dq(G)]  unambiguously

by D(G), the Tutte polynomial of G.
Example 3.4. We illustrate the computation of a Tutte polynomial: DQ(P')
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where   P'   is a planar pregeometry of seven points, two in the same atom, whose

geometric lattice is the lattice of partitions of a four element set.   It is decomposed

relative to the ordering  0 = (a, b, c, d, e, f, g).   Points and lines represent closed

sets while  p~ indicates an isthmus, p_ a loop.   Arrows descending to the left rep-

resent deletions; those to the right represent contractions; and vertical arrows show

factorization.   Note that in the third row two isomorphic pregeometries are iden-

tified to simplify the calculation.

/

.7

U + l)

cdejg

dej£

I      \        » /      \ I
(1 + 2z 2x + 1) <¡ti (1 + x) efg

i(z2 ♦   z) (2z   +   2   +   2*}]

/

l(2z 2x) U   +   x2)]       /g

(z2   +   lz   +   2   +   2x)g + l(z2  +  }z  +  2  +  2x) + (2zx   +   2x  +  3x2  + x3)]   g

J I
z'   +   3z2   +   z2x   +    2z    +   5zx    4    2zx2    t    2x    »   4x2    ,    3x5    i    x4

Theorem   3.5.   T/ze Tutte bidecomposition is distributive (these terms are de-

fined in §2) and the equivalence classes of an isthmus and a loop are the irreduc-

ible indécomposables.
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Proof.   The decomposition  Dj   (direct sum decomposition) is unique with con-

nected pregeometries as the indécomposables [10].   The irreducible elements of

D2  are clearly pre-Boolean algebras (those pregeometries made up of entirely isth-

muses and loops:  73 n     = © "=1 z © (|) ™=1x).   The irreducible indécomposables

are then either x or z and if an element has a  Dj   decomposition into these ele-

ments it is of the form 73        and is   (D_2) indecomposable.   Further,  D2(S) is a

unique decomposition since we may sharpen the proof of (3.3) to show that [Dq(g)]

is invariant under rearrangements in the orderings of the partial terms of the de-

composition.   (For example, Dn(G) = D.    °...°D.   ((G\p, ) + (G/p. )) = D„   0...0
u pn p2 pn

Dr,   (g\p,)+D.     0...0D      o£)      o£)     (G/p.)A   But D-,  decomposition corre-
p2 1 pn p 4        p2        p3 ¿

sponds to partial rearrangement in which at all stages of the decomposition points

which are neither isthmuses nor loops precede points which are.   So as in the proof of

(3.3) full /^-decomposition is unique and equals the Tutte polynomial  D(G) with
znxm replaced by  B      .

r 7      nm

We will be done when we show distributivity for a basic decomposition   G =

Gj © G2 of Dj  and a basic decomposition G, < (G, \e) + (G./e) of £7.   But if e
is a nonfactor of Gj  then it is a nonfactor of  G = G, © G2  since direct sum de-

composition is unique, so D2  contains the decomposition  G < (G\e) + (G/e). Also,

Dj  contains the decompositions  G\e = (Gj\)e©G2 and G/e = (G,/e)@ G2   since

the closure operator of a direct sum works componentwise, and hence for all A j C

!Gj}\|ei and A2ÇiG2},

J[G\e](Al U  A2) = A1«JA2V = (Äj\{e!) U Â2 = /[(G ̂  e ̂ c^ ! «J ¿2>!

and_.
/[c/e]U,U  A2) = Aj u A277Te]\ie!

= (ÂTUTTiXie!) U Ä2= / [(Gi/e)(BG2]iAl U A2).

Theorem 3.6.   There is a Tutte-Grothendieck ring  (R, t) for pregeometries as-

sociated with the Tutte bidecomposition, T_.   It is isomorphic to  P[z, x\, the ring

of polynomials in two variables without constant term over the integers (where the

variable z represents the coset of an isthmus and x represents a loop).

Further, if S is the set of isomorphism classes of pregeometries and t: S —> R

sends a pregeometry to its coset representation in R, then t(G) = D(G), the Tutte

polynomial of G defined in (3.3).

Proof.   The first part of the theorem follows from (3.5) and the results in [41

where it is shown that the universal Tutte-Grothendieck ring   T = F[s]/I fot a dis-

tributive bidecomposition is isomorphic to a free commutative ring with basis the

irreducible indecomposable elements of the bidecomposition.   It is further shown

that the image of the universal invariant t which maps a pregeometry G into the
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Tutte-Grothendieck ring is equal to the polynomial corresponding to G's   (unique)

decomposition first into (the additively written multiset of) D2-indecomposable

elements and then for each indecomposable its respective decomposition in  Dx

into (its multiplicatively written multiset of) indecomposable irreducible elements.

The second paragraph of the theorem is a consequence of the fact that the

point decomposition operator  D      corresponds to a decomposition of T and in the
i

free ring  F{S], G = D(G) (mod /) since the ideal / is generated by all identities

which decompose G into  D(G).
We will henceforth refer to the above ring for pregeometries as the Tutte-

Grothendieck ring.   We also have (for pregeometries) the Tutte-Grothendieck group

associated with the Tutte decomposition  D    of T.

Corollary 3.7.   The Tutte-Grothendieck group (A, t.) is isomorphic to the free

abelian group generated by pre-Boolean algebras.   In addition t.(G) =

DiG)\  _ _
nm

Proof. A theorem in [4] states that A is group isomorphic to R if D, decom-

position is bijective between irreducible elements of D_2 and multisets of irreduc-

ible indecomposable elements.   The corollary then follows from (3.6).

Definition 3.8.   Let U be the functor which takes an equivalence class of pre-

geometries G  (of rank greater than 0) to the equivalence class of its underlying

geometry G (i.e. the geometry with the same lattice of closed sets).   Then the

Tutte bidecomposition   T induces a decomposition  T on S, the set of equivalence

classes of geometries, called the characteristic bidecomposition.   The basic de-

compositions of  T ate Gj © G2 < Gj x G2 and G < G\e + G/e  fot all geometries

Gj, G2 and G, and each nonisthmus  e£G.

Theorem 3.9.  O72 the set S of nonempty geometries, the characteristic bide-

composition is distributive and its associated ring  (R, t) called the characteristic

ring is isomorphic to  Plz], the ring of polynomials in one variable over the inte-

gers.   If t(G) is the Tutte polynomial of G, then t(G) = t(G)\   _ 0.

Proof.   The pair  (R, t ° U) is T-invariant, where  R  is the characteristic ring

and t ° U  sends a pregeometry G to the image in  R  under t of G, its associated

geometry (or 0 if G is empty).   Hence by the universality of R and (3.6) there is a

ring homomorphism  h: R —> R where h(z) = z and h(x) = 0 since an isthmus is a

geometry and the empty geometry underlies a loop.   The rest of the theorem now

follows.

Corollary 3.10.   The additively written decompositions of T form a unique de-

composition called the characteristic decomposition.    The associated group A   is

the free abelian group generated by Boolean algebras  B ,  while t. = t„\
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Proof.  Apply the arguments of (3.7) to (3.9).

Proposition 3.11.   Let f be a T-invariant with associated ring homomorphism

h.    Then a necessary and sufficient condition for f when restricted to geometries

to be a T-invariant is that f(x) = 0 (or equivalently h(x) = 0).   Similarly a function

which is group invariant for the Tutte decomposition is'invariant for the character-

istic decomposition iff the associated group homomorphism h has its support on

Boolean algebras.

Conversely a function g~ which is a T-invariant can be extended uniquely to a

T-invariant g by defining

0 if G has any loops,

g(G)     otherwise,

with similar extensions for group invariants.

Proof. We will prove the proposition for ring invariants. Proofs for group in-

variants are entirely analogous.

If h(x) =0 then, since t(G) = t(G)\ _ 0, /(G) = h ' ° t(G) for all geometries G
where h is the restriction of h to polynomials in the variable z. Hence by (3.9)

/ is a T-invariant.

Conversely, if / is both a T-invariant and a T-invariant on geometries, then

if z represents an isthmus, x a loop, and L the three point line: f(L,) = (f(z)) +

f(z) = (f(z))2+ f(z) + f(x).   Hence f(x) = 0.
If g is a T-invariant which is to be extended to a T-invariant g then by the

above,  g(G) = 0 if G has any loops.   Otherwise, proceeding by induction on the

number n of points of G minus the number of atoms  (|G| — |G|) if n = 0 then G = G

and certainly g(G) must equal g(G).   But if 72 > 0 and a point p is in the closure of

another point a then  G/p has a loop and must be equal to 0 while  G \p= G and

hence g is an invariant if we define g(G) = g(G\p) + g(G/p) - g(G) + 0.

An application of the characteristic decomposition to the study of modular

flats can be found in [31.
The category  G   of pointed pregeometries  (F, p) and strong maps  /: (F, p)—>

(F*, p') such that f(p) = p' and /"   (p') = p was defined in [2],   Three functors were

also defined from  G  to G, the cateogry of pregeometries and strong maps

T((F, p))=F, T'((F, p))= F\p, and T"((F, p)) = F/p.
This category provides a natural setting for the study of series-parallel net-

works and the Tutte bidecomposition of such point pregeometries facilitates the

calculation of some important network invariants as shown in [2].

Definition 3.12.  Let S be the set of equivalence classes of pregeometries S

and pointed pregeometries (where no pregeometry is equivalent to a pointed pre-

geometry).   The pointed Tutte bidecomposition  T (S  ) includes the decompositions

of the Tutte subbidecomposition  T(S) as well as basic decompositions of the form

«(G) =
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(F, p)< ((F, p)\e)+ ((F, p)/e)£D,2 and (F, p) © G < (F', p) x G £ D [ for all pointed

pregeometries  (F, p) and pregeometries G, and for ail nonfactors  e £\F\\\p\ where

(F, p) © G is the pointed pregeometry  (F © G, p) and (F, p)\e  ((F, p)/e) is the

pointed pregeometry  (F\e, p) ((F/e, p)).   A function invariant for this decomposi-

tion is  termed  a T-invariant.   Examples of  T-invariants include / ° T where T is

the forgetful functor which sends a pointed pregeometry  (F, p) to its underlying

pregeometry F and / is a T-invariant.

Theorem 3.13.   The pointed Tutte bidecomposition  T_   is distributive and with

it we may associate the pointed Tutte-Grothendieck ring  (R , t ) where

Riz, x, z , x ]  is isomorphic to the polynomial ring over the integers in four vari-

ables corresponding to the equivalence classes of an isthmus, loop, pointed isth-

mus, and pointed loop respectively.   Further, the pointed Tutte polynomial t  (F)

equals z f Az, x) + x' f Az, x) for all pointed pregeometries F, and t (G) = f(z, x)

for all nonpointed pregeometries G.

Proof.   These statements are all proved in [2],

The following theorem summarizes some applications of the pointed Tutte-

Grothendieck ring to the theory of series-parallel networks.   All proofs can be

found in [2].

Theorem 3.14.   // (F, p)  is a pointed pregeometry and T is the forgetful func-

tor:  T((F, p)) = F, then by universality of R , (t ° T)((F, p)) = zfx + xf2 where the
pointed Tutte polynomial of (F, p), t'((F, p)), equals z'fx + x'/2.   The Tutte poly-

nomial also commutes with the deletion and contraction functors: t(F\p) = t(F/p) =

f\ + 'S '/ P zs a factOT °f (P. P) while if p is a nonfactor, t(F\p) = (z - l)fx + f2
and t(F/p) = /, + (x — l)/2.   /tz the category of pointed pregeometries there is a

direct sum called the parallel connection, P(G, H).   This corresponds to the graph

theoretic concept when G and H are graphical.    In addition one may use Whitney

duality to define the series connection, S(G, H) = P(G, H).    If p is a nonfactor of

G and t (G) = z g, + x g2 while t(H) = z h-, + x h2, then

aaaition

PKrT).
then

f(S(G, H)) = z'{(z - Dglhl + gyh2 + g2h2 + x'g2h2

and

t'iPiG, H)) = zlgxhl + x'[(x - l)g2h2 + gxh2 + g2hx].

4.   Decomposition invariants.  In this section we explore the Tutte bidecompo-

sition T in more detail and give examples of some useful functions which are in-

variant on T.

Proposition 4.1.   (a)   For all pregeometries G and points  e£G, if A is a sub-

set of |GÎ\[eS, then the rank r(A) of A in the associated geometric lattice  L(G)
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is the same as the rank r (A) computed in the lattice   L(G\e) associated with the

deletion of e.
(b) There  is a lattice isomorphism from the lattice of the contraction  L(G/e)

into L(G), f: [O, G/e] — [e, G]  where for all closed sets x in G/e, f(x) = x U e, a

closed set of G.   Hence if e £A C G, then r(A) computed in L(G) is equal to

r"(A\jej) + 1 computed in L(G/e) if e is not a loop.

(c) A point e of G is therefore an isthmus iff r(G) = r({G\ \{e\) + 1 = r (G\e)

+ 1. Otherwise r(G) = r (G\e). Also e£G is a loop iff r(G) = r"(G/e) and r(G) =

r (G/e) + 1   otherwise.

Proof, (a)  Since for subsets A of G\e, the closure of A is .¿l\leS, the lattice

of closed sets of G\e,  L(G\e) can be formed by taking suprema  (in G) of points

in  {GÎMei.   Hence on these subsets, rank is invariant in G and  G\e.   But  e £G

is an isthmus iff it is a bond iff ÍG}\{ej  is a copoint of G.

(b)  The closure operator / in G/e  fot the set A °f subsets A of [G|\jeS is

A U iei\[ei and so is isomorphic to the closure operator  /' in G for the set A',

subsets  A' of G containing e by the isomorphism f(A) = A U {e\, f~  (A1) = A\{eS

in the following commutative diagram.

A'

(c)   A point  e£G is an isthmus iff e is a bond  iff {G|\{e|  is a copoint of G

iff r(G) = r(JG!\iei) + 1 = r (G\e) + 1   (since rank is invariant in G and G\e  on

subsets of {G}\leO.   Otherwise G\e = G and r (G\e) = r({G!\{e|)= r(G).

The rank of  G/e  equals by (b), the length of a maximal chain in  L(G) between

e and G.   This chain has length  r(G) - 1 or r(G) depending on whether e is (in)

an atom or in the closure of the empty set  (i.e. a loop) respectively.

Theorem 4.2.   Let   K(G) denote the closed sets of G and let

x(g,a) = x(g)= X   p(o,x)y(G)-Ax)
XeK(G)

be the characteristic polynomial of G.   Then the invariant defined by

0 if G has a loop,
(_ l)r(G)^(G)     otherwise,

is an invariant of the Tutte bidecomposition T.   (From now on when we apply the

geometric invariant x to pregeometries we will define  x(G) to be 0 if G has a

loop.)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] A DECOMPOSITION FOR COMBINATORIAL GEOMETRIES 249

Proof.
(_ l)''(GieG2)y(G1 © G2)

= (_iy(c1®62)       Y, p(0,x)y(Gi®G2)-r(x)

xeK(Gx@G2)

= (_1)7(G1)+7(G2)        £ X M(0, x'Vx")A'(Gl)+'(G2>-^'>-'<*">
x' eK(Gx) x"eK(G2)

= ïi-iY(GA    Z     p(o,*')X'<Gi >-'<*'>]
1_ x'eK(Gx) J

Si-iY^A     £    p(o,x-)v(G2)-^"M
1_ x"e_K(C2) -"

= [(_ir<G1)x(G1)][(-iy(G2V(G2)]

since in lattice cartesian products,  p(0, x  V x) ='p(0, x')p(0, x") [14],

By (3.11) and noting that  XÍG) depends only on the geometric lattice we need

only show that the theorem holds for geometries.   In that case using spanning sets

y of atoms for the subgeometry x defined by all closed sets  x £ K(G), we obtain by

order dualizing Proposition 5.1 from [14] the formula p(0, x) = S__   (- l)lyl.

Hence if  e£G is not an isthmus:

(_ ir(G)x(G) = (- i)r(G) J2 i- i)\y\y(G)-r(y)
yçG

(since the closed sets  x £K(G) partition subsets of G into spanning subsets for

x).   But summing separately over those subsets which do not contain e and those

which do, the formula for the characteristic polynomial becomes

(_ l)r(G) £  (- l)\Axr(G)-r(y) + (- l)r(G) £  (- l)\y\\r{CUr<y)
e4y e^y

= (_iy'(G\e)      £       (_l)|y|Ar'(GV)-r'(y)

yC^G\e

_ (_ ly'AG/e)    Y    _(^i)\y'\\'-"<-G/e)-r"(-y)
y'czG/e

= (_ l)''<GV)y(GV) + (_ ir-"<G^>x(G/e)
using the results and isomorphism / of (4.1).

Corollary 4.3.   For all pregeometries G, if the Tutte polynomial t(G) equals
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f(z, x), lhenx(G)= (- l)r(G)/ü -A, 0).   In particular, p(G) = (- l)r(G)/(l, 0).

Proof.   By (3.6) and (4.2), we need only compute   (- l)r      y(G) for an isthmus

2 and a loop x.   But  (- l)r<-z)x(z) = (- 1)(A- 1) while (- l)Kx)x(x) = 0.   Hence

/(l - A, 0)= (- 1)'(G)X(G).   In particular p(G) = p(0, G) = x(G)|x=fJ =

(_ 1)^0/(1 _ A, 0)| x = 0.
It is the above universal description of x which allows one to show in [3] that

X(x) divides  x(G) for any geometry G and modular flat x of G.

Corollary 4.4.  A function f is an invariant (of both T and) T if and only if it

is an evaluation of x(G)-

Proof.   By (3-11), / is invariant under T and T iff f(x) = 0 iff / is an evaluation

of  r(G)|x_ 0 iff / is an evaluation of t(G)\x_0     _i_x-

Theorem 4.5.   The subgeometry generating function, S(G) = £a..aV, is a T-

invariant where a.,  is the number of subgeometries of G with corank i and nullity

j (hence if r(G) = n, a      , ,   counts the number of subgeometries of G with rank
71 ^ rC j   fit "~ Kf

k and cardinality m).

Proof.   If  G = Gj © G2, the rank of any subset of G is the sum of the ranks of

the subset when intersected with the two sets  {Gjl and {G2\.   This holds in par-

ticular for G, hence it holds for corank as well as cardinality and hence nullity.

Thus

S(Gj©G2)=Ea..aV'= Z a'(G l®G2)-r(A )Ja \-r(A )
AçcIec2

Yi M7(G1)+r(G2)-r(AnGj)-r(AnG2)t)|AnC1| + |AnG2|-r(AnCj)-r(AnG2)
AC(GjUG2)

=     Z       „7(G1)-r(A7l;|A'|-,(A7      Y    ur(G2)-r(A")v\A"\-r(A")
a'cg1 a"<zg2

= 5(Gj)5(G2).

If e £ G is neither an isthmus nor a loop

S(G)=    £    ur(G)-r(A)v\A\-r(A)

AQ.G

Y^ ur'(G\e)-r(A)v\A\-r(A) +    ^      ^»(G/e)-r(A )-iJa \e\-r(A )-1

AC(G\e) A;eeA

But the sinister is equal to S(G \e) while the isomorphisms  /"     from  [e, G] to

[0, G/e] shows that the dexter is equal to S(G/e).
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Corollary 4.6.  For all pregeometries G, if the Tutte polynomial t(G) equals

f(z, x), then S(G) = /(zz + 1, v + 1).   In particular the number of spanning sets of G

equals /(l, 2); the number of independent sets is f(2, 1); the number of bases

equals /(l, 1); and the number of subsets equals f(2, 2).   More generally, if n is

the rank of G, the number of independent sets of cardinality k is given by replac-

ing z2x1 by  (   2 ,)   in t(G), and the number of spanning sets of cardinality k by

replacing z2x' by (   i   ).

Proof.   By (3.6) and (4.5) we need only compute  S(G) for an isthmus z and a

loop x.   But S(z) = u + 1   (both subgeometries have nullity 0) while  S(x) = v + 1.

(both subgeometries have rank and corank 0).   Hence  s(G) = f(u + 1, v + 1).   In

particular /(l, 2) = S(G)\      Q     _x=1,.a0   .=  the number of subgeometries with co-

rank 0, i.e. the spanning sets;  /(2, 1) = S(G)\u= x     _Q = 'L.a.  0 = the number of

subgeometries with nullity 0, i.e. the independent sets;  /(l, 1)= aQ   „, the bases;

while /(2, 2) = S a .., the number of subsets   (2'GI).
Some further applications of the previous theorems can be found in [2] where,

in conjunction with (3.14), the invariants of (4.2) and (4.5) are computed across a

series and a parallel connection.   As a corollary to these results, it is shown that

a series-parallel network (a pregeometry which contains neither a four point line

nor  P4, the geometry of partitions of a four element set, as minors) is three colorable.

Certain operators on pregeometries are functors from the Tutte decomposition

into itself (i.e. preserve decompositions) and lead to important invariants.

Theorem 4.7.   Letting G denote the (Whitney) dual of the pregeometry G, then

ij t (G) = i(G), the Tutte polynomial of the dual pregeometry, then t   is a T-invariant. In

addition, if f(z, x) is the Tutte polynomial of G, then f(x, z) is the Tutte polynomial of G.

Proof.   If G = Gj ©  G2  then the set of bases of G, B(G) is the cartesian prod-

uct   B(Gj)x B(G2).   But for all subsets B, Ç Gj and B2 Ç G-,: Bx U B2 £ B(G)
iff G\(BX U B2) £ BAG) iff (GjXß^U (G2\B2) £ B(G) iff Gx\bi £ B(Gx) and
G2\b2£ B(G2) iff Bx eß(Gj)andß2 £ B(G2).   Hence  B (G) = B(G x ) x B(G 2) and
gT©~G\ = G, © G9.

By the previous paragraph,  G = (G \e) © e iff G = (G \e) © e   and so e is a
7\7 '\7 \

nonfactor in G iff it is one in G; and if this is the case:  B £ B(G \e) iff e i B £

B(G) iff e £ (g\b) £ BAG) iff (G\ß)\e £ B_(G/e) iff B £ B(G/e).   Hence  GN\e =
G/e  and dualizing, G/e = G \e.   Thus if G decomposes into  G\e and G/e; G de-

composes into   G/e  and G \e.   This shows that í   is a T-invariant (taking values

in R).   The dual of an isthmus (with the isthmus as the only basis) is a loop (with

the empty set as the only basis) and conversely.

Lemma 4.8. // t(G) = Hb.z'x' is the Tutte polynomial of G, then the mapping

tA(G) of G into the Tutte-Grothendieck group, A, is equal to £¿>..B.., and if \G\ >

2, then ¿>, 0 = /301.
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Proof.  The fact that the coefficients of zlx1 and B .. ate the same was shown

in (3.7).   If  \G\ > 2, the only way to get a one point pregeometry which would con-

tribute to either hQ, or b10 is to decompose a two point pregeometry by a mor-

phism in D_2.   But the only pregeometry of two points which is connected (hence

has a point which is not a one point factor) is the two point circuit  C2  and the

only decomposition available is   C2 < x + z  (or  C2 < B, 0 + B 01).

This linear identity involving the coefficients of the Tutte polynomial is the

first in a basis for all such identities developed later (6.6).

Theorem 4.9.   The Crapo "Betsy" invariant /3(G) = (- l)r(G)2A CG(- 1)W r(A)
defined in [6] is an invariant of the Tutte decomposition where if t. (G) =

ii^ii' ß(G) = />i o-   Further, for all \G\ > 2, and for any invariant f which, like

ß,  vanishes on separable pregeometries, f is a multiple of ß and by properties of

tA, f(G) = /(G).

Proof.   That  /3(G) = ß(c\e) + ß(G/e) fot all nonfactors e and that  ß(G) = 0

for all separable G was proved in [6].   Thus ß is an evaluation of  27(G).   But

/3(ß..)= 0 for all z + /> 1 and ß(B10)= 1 while ß(BQl)= 0.   Hence   /3(G) = blQ.
If / is any other Tutte decomposition invariant with support on connected pregeom-

etries,  then /(B ..) = 0   for all i + j > 1 and hence /(G) = kyblQ + k2b0y.   ^ut ^Y
(4.8), /(G) = (k, + ¿2)¿7j0 = (k, + k2)ß(G).

Corollary 4.10.   /3(G) is an invariant of the characteristic decomposition and

ß(G)=d(x(G))/d\\...

Proof.  From (4.9) and (3.11), /3(G) is an invariant of the characteristic de-

composition.   In addition /3(G) = b j 0 = d(t(G))/dz |   _0     _ 0 = d(x(G))/d \\ . _ j.
Although upper truncation is a useful operation on geometries there seems to

be no nontrivial category in which it is a functor.   The following proposition shows

that perhaps the characteristic decomposition is the proper category in which to

consider truncation.

Proposition 4.11.   If G is a geometry and T.(G) denotes the upper rank one

truncation of G (i.e. the geometry associated with the geometric lattice formed

from  L(G) by removing the copoints and letting the colines become the new co-

points) then  T.(G) preserves characteristic decomposition and if t A(G) = 2 b .B .

thenTA(T1(G))^2i:>0(2^ib)Bi.

Proof.  If G has rank one, T.(G) is the empty geometry.   If G has rank two,

Tj(G) is an isthmus.   Otherwise G and Tj(G) have the same number of atoms.   If A and

G\A ate two nontrivial flats of G, r(A)+ r(G\A)> r(G)> r(T(G)).   Hence T(G) can have no

separators and is connected.   So  e £T(G) is never an isthmus or loop.

By the remarks on the closed sets of G/e and G\e in (4.1), L(G/e) ^ [e, G]

in   L(G) .   Hence copoints in  G\e are in 1-1 correspondence with copoints con-
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taining e in G, and  L((Tx(G))/e) = LCT^G/e)).
Rank and cardinality of subsets of lG}\e  are invariant in G and G\e.   Hence

L(Tx(G\e)) = ((Tj(G))\e) since both sides represent the lattice of closed sets of

the geometry P whose family of independent sets   H.P)  is given by I_(GV)\B((,\e)

(the independent nonbases of  G\e).

A theorem in [4] states that an operator T preserves decompositions if and

only if there is an endomorphism h of A which reflects the action of T (i.e. t.°T =

h ° T).   Hence one may compute  tA ° T¡(G) if tA(G) is known.   For the Boolean

algebra  B      TAB   ) = C    the 22 point circuit.   For any  e £ C   , C   \e = B       , and0 zz*      1      zz zz r 7 m,      m m—í
Cje = C      ,.   Therefore  /,  °T,(B  ) = ln~} B. and the result follows,zzz m — L ¡\ in 1 — i      1

Table 4.12.   Interpretations of some of the evaluations of the Tutte polynomial

t(G) are summarized below:

(- ir(GV(c z+i)
(nowhere zero

coboundaries)

(-ir(C)y(rX Z+I)
(nowhere zero

cycles)
\u(C,)\

\dc)\
complexity

(number of

bases)

number of

spanning

sets

number of

independent

sets

number of

subgeometries

(subsets) = 2

In addition, dt(G)/dz\ Iz
of cardinality k - ¿(G)

;= 0 = ß{G), and the number of independent (spanning) sets

W)-*^ (-(k r(G) )).

5.   Decomposition and strong map factorization.   In this section we examine

the Tutte decomposition in the context of the category of pregeometries and

strong maps.   We make use of a lift construction of D. Higgs   [12] in which a

strong map is factored as an injection followed by a contraction.

Lemma 5.1.   If f: G  —»G    is a strong map epimorphism from the geometry G

onto the geometry G   then there exists a geometry G and strong maps  f  : G  —►  G
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and f : G —»G   -such that f   is the injection of a subgeometry G   into G, f   is a

contraction, and f = /   °/  ,

Regarding G, G  , and G   as geometric lattices then G is isomorphic to a quo-

tient of  G   © Q  (a geometric sublattice of  G   © Q  associated with a closure op-

erator ) where Q is an arbitrary geometric lattice of rank  r(G  ) — r(G  ).   De-

noting the elements of G   © Q by (x, y) where xeG   and y eCJ, the interval

[(0, 1)   , (1, 1)   ]  in G is isomorphic to G   and /   is contraction of G by the element

(0, 1)    .  The injection x —► (x, 0) of G   into G   © Q  followed by G-closure as a

strong map onto G is an injection of G   into G.

In the special case in which  r(G  )— r(G  )= 1, then G is the sublattice con-

sisting of those elements  {(x., 0)} U {(y-, 1)\ of G   © Q   in which x. is the su-

premum of all elements of G   with given image and  y.  is a minimal element with

given image.

Proof.  A proof of this theorem can be found in [10] as well as [12].

Theorem 5.2.   Two pregeometries G   and G   are the Tutte decomposition of a

pregeometry G if and only if they differ in rank by one and there  exists a  1-1

onto strong map f between them.   In this case the map f may be viewed as the com-

position of injection of G\e  into G followed by contraction of G onto  G/e for

some point  e£G where G\e — G   and G/e — G .   Further this G is unique.

Proof.   If  G < G\e + G/ee/22 then by (4.1), r' (gV)= r"(G/e) + 1   while the
composite of the injection  G\e into G followed by the contraction of G by e is

strong map which is certainly  1-1 and onto on  iG!\{e|.

Conversely, assume  /: G   —»G    is a 1-1 strong map from G   onto G   and as-

sume  r(G  ) = r(G  ) + 1.   Then associated with / there is an onto strong map /:

G —► G   between the underlying geometries G  and G ..  This is so since all loops must be

mapped into loops so that the 0 element of G  is sent to the 0 element of G  and also all

points in the same atom in G  must be mapped to the same lattice element in G  since in-

verse images of closed sets are closed.   By the Higgs theorem (4.1) we may factor /

through G.   The geometry G may be viewed as a quotient of G © ßj where Bj is the two

element lattice.

At most one atom of  G    is mapped to the 0 element of  G    since rank is de-

creased by one.   There are then two cases to consider:

If no atoms are sent to 0, then using (5.1) the atoms of G are the elements

{(a., 0)\ u (0, 1) where the  a.'s  are the atoms of  G , since the 0 element of G

is the only preimage of the 0 element of  G .   We construct the pregeometry G from

G on the set of points  {G  } u {e\ in which the atom (0, 1) represents the point e

and the atom (a., 0) (and 0 element) of G contains the points of the atom  a.  (and

0 element) of G'.   Then by (5.1), G ' —  G\e and G" — G/e.   Further,  r'(G\e)-
7 (G/e)= 1   so e is not an isthmus or loop of G.

If on the other hand an atom a of G    is sent to 0, the atoms of G ate the ele-
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ments   (a , 1) U \(a., 0)\ for all atoms  a./ a  of G   since a  is the supremum of the

two preimages of 0:  a   and 0, while a is the only atom of G   which is not minimal

for some given image.   Construct the pregeometry G from G on the point set  \G  \

xj\e\ in which for all a.¿ a, the atom (a., 0) (and 0 element) of G contains the

points of the atom  a. (and 0 element) of G ; and in which the atom  (a , 1) contains

the points of a' £ G ' as well as the point e.   Then since  (0, 1 )     = (a , 1) we are

done as in the first case.

If G\e and G/e ate pregeometries on the same points then using (4.1) the co-

points of  G/e  are exactly those copoints of the constructed G which contain the

point e with e then deleted.   Also the closed sets of  G\e are exactly those sets

A C {GjXieS  such that A or A \j \e\  is closed.   Hence the set of copoints,  D, of

G is equal to the union (D   \D_") u (D"x \e\) where D   is the family of copoints

of  G/e and D    is the family of copoints of G \e.   Hence G is unique up to isomor-

phism in the above factorization for any 1-1 onto unit rank decreasing strong map

f:G'^G".
We mention in passing another consequence of the above theorem.

Corollary 5.3.   The partial order P    of isomorphism classes of pregeometries

on n points ordered by strong maps  (G < H  if there exists a strong map f: G —» H)
7\7

is self-dual where   i: P   ~ P     takes a pregeometry to its (Whitney) dual.

Proof.   The covering pairs in   P    ate the unit rank decreasing strong maps.

But G   covers G   iff there exists a pregeometry G on  72+1   points such that  G   —

G\e and G" sí G/e  by (5.2) iff  G' a G/e and G" =; G\e by (4.7) iff  G' covers
G" by (5.2).

6.   The Tutte polynomial.   In §»3 and 4 we noted the importance of the func-

tion  t(G) taking a pregeometry into the Tutte-Grothendieck ring.   In this chapter

we will cite some of the properties of this polynomial, called the Tutte polynomial

after previous work by Henry Crapo [8],

We note in passing that  t(G) = ¿,b..z2x1 regarded as a generating function has

a combinatorial interpretation wherein  b.. counts the number of bases with inter-

nal activity i and external activity /.   Relative to a linear ordering O on the points

of a pregeometry G, a point p-, £B  is internally active relative to the basis B if

pj   is greater than any other point in the unique bond contained in  (G\B) u [p,i.

Dually,  p2 £ G\B  is externally active relative to the basis B  (and order O) if p

is greater than any other point in the unique circuit contained in B U ip2S-   The

internal (external) activity of B is then the number of points internally (externally)

active relative to B (and 0). This  interpretation, dependent as it is on the partic-

ular ordering, is explored no further in the present paper.

Theorem 6.1.  Assume  t(G) =  X.     nS .     n/z..z!x7   is the Tutte polynomial ofz=ü;=Uz; r      J '

a pregeometry G where X. b   . > 0 and X./z.    > 0.   Then the following ¡acts hold:u     " J 1    nj i    im ' ft z
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(a) The rank of G, r(G) is equal to n while n(G), the nullity of G is equal to

772.   Hence   \G\ = n + m = log2 (t(G)\z=x = 2).

(b) b   . = <3(/, k) iff G has k loops and b.    = 8(i, h) iff G has h isthmuses.
If G   has /' loops then  G   = $ [.^ © G where G has no loops and t(G ) =

xJt(G).   Hence no generality is lost if we now assume G to be loopless so X. è   . =

b „=-1.72U

(c) The number of atoms of G (flats of rank one) is equal to n + b  _,   0.

(d) ¿ . b      ,   . = m while if G has no isthmuses, 2- . b . , = n.
772-1,; ' ' Z      Z, 772-1

Proof.   In (a), (b), and (d) the second statement follows from the first and (4.7)

which states that  t(G) = ~î.b . .zlxJ.

To prove (a) and (b) we use induction on the number of nonfactors.   If   G =

0"= 1 z © © J7 - x then t(G) = znxm while G has rank 72.   In addition  &   . = 8(j, m)
while G has ttz loops.

Assuming the result for all pregeometries with 772 nonfactors, let G have  m + 1

nonfactors one of which is e.   Then  t(G) = t(G \e) + t(G/e).   G has rank ?2 with k

loops iff  G\e  has rank n with k loops and  G/e  has rank ?2 — 1   iff (by induction)

in  G\e, the coefficient of z"x] is 8(j, k) while the coefficient for z1x1 is 0 for

all  2 > ?7 in G\e and for all  z > 72 in G/e.   The result follows from adding the poly-
nomials  t(G\e) and t(G/e).   Since   \G\ = r(G) + 72(G) we are done by (4.6) wherein

it was proved that t(G)\   =    _2 = 2'   '.
We now assume that G is a loopless pregeometry.   If G has no nonfactors then

t(G) = zn and (c) and (d) hold since G has 72 atoms while  b      ,   n = S . ¿>      ,    . =
72- 1,   U ;      72-1 , 7

0 =   772.

Inductively, let  t(G) = t(G\e) + t(G/e).   If e is closed in G, then  G\e  has one

less atom than G while   G/e  is loopless so the coefficient of zn~    in G/e  is one.

If e   £e~in G, then  G\e has the same number of atoms as G while e  is a loop in

G/e  so that coefficient of z"~    in G/e  is 0.   In any event, by induction  n(G\e) =

r(G/e) = m - 1 = S.7.'  _,    .in ¿(gV), while in r(G/e), l.b"     ,    . = 1.   Both (c)
1     n    L,j j     n— 1,j

and (d) follow by adding the polynomials   t(G\e) and t(G/e).

Lemma 6.2.   Let G be a pregeometry of rank n.    If f 1 counts the number

of flats of corank k and nullity j in a rank n pregeometry, and if e is a nonfactor

of G then:

fkj (G) = fkj (G\e) + fkj_ i {G/e) _ jW*\G/e)

where  J _j (G/e) counts only those closed sets x of G/e which are not closed

in G.
In particular,   if e is a nonfactor of all flats of corank k and nullity ; + 1   in

G then £Mj+ We) = /^L7,+ 1(G/e).
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Proof. We will use properties of the Tutte decomposition (4.1) and will ac-

count for all contributions to the above equation which we denote by (a) = (b) +

(c)-(d).
The closed sets of corank k and nullity ;' in G counted in (a) either contain e

and are equicardinal with (c) (since e is not a loop) or do not contain e and are

counted in (b).   The other flats counted in (b) are those subsets y such that y U e

is closed in G but y is not.   Hence e is not an isthmus of y U e  and hence  y U e

has corank k and nullity ;' + 1 in G/e.   Such sets y are exactly those sets counted

in (d).

Theorem 6.3. Let G be a pregeometry of rank n with Tutte polynomial t(G) =

X/z..zzx7. If all p element subsets of G are independent, then the number of flats

of G of corank k and nullity j is counted for all j by

f?w-± xf ̂ nvxiK+z
s = k    2=0

if k > n — p or if k = 0.
(Note that for k> n - p  this gives the obvious: /*7'(G) = 5(0, /) (").)

Proof.   For all pre-Boolean algebras, fkJ(Bnm) = ("k)8(j, m).   But t(Bnm) = znxm,

hence b     .       is zero unless s = n and t = m - j in which case the formula gives

<-n„-0,)GM:)s«->.
We will use induction on the number of nonfactors.   Since we have proved the

theorem for 0 nonfactors above we may assume that the equality holds for all pre-

geometries with fewer than q nonfactors and consider G with q nonfactors includ-

ing e.   We will show that the recursion of (6.2) is valid for all k in the theorem

with / replaced by /.   Surely it holds if  k = 0.
By (4.1) a subset S containing a nonfactor e is independent in G iff 5\Se¡  is

independent in  G/e  and a subset S disjoint from e is independent in G iff it is

independent in  G\e.   Hence all subsets of corank n — p are independent in G iff

all subsets of corank 22 - p  are independent in  G\e and G/e.   But all subsets of

corank  n - p  ate independent iff all subsets of corank 72 - p + 1   are (independent

and) closed.   If x is a closed set of corank greater than or equal to 22 - p + 1, the

subgeometry x is a Boolean algebra while if x has corank 72 — p, the subgeometry

is the truncation of a Boolean algebra (i.e. free).   In any event the recursion of

(6.2) for  / ' holds for all k > 22 - p  (since in all such subgeometries isthmuses

are only of flats of nullity 0) and the induction hypothesis may be extended to

G\e and G/e.   Simplifying the dexter we get successively if  t(G\e) = X b! .zlxl

and t(G/e) = X b".Ax':
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fkn>(G\e) + fkn'_x(G/e) - f^\+l(G/e)

= fkn>(G\e)

n— 1   n — s

s=fe    i=0

n      n — s

<-"'(°"r1)(;)'",,«-<-"'-'(";:rI)(sJ^,.1]

z e nK"r)aH,„ ♦'£' Ë* <-»rr)GK,
5=)fe    ( = 0

7! 72 —S

EE <-«'("7')(ÏK<«*'..«>-(ÎK
=Jk   z=o

= /fe?(G) - 0.
' 72

Corollary 6.4.   Under the hypotheses of the above theorem the number of flats

of corank k  (the Whitney number  of the second kind w      ,) is given by

^Ai)*l"f'^A"-rXth.
s=£        ;=0

(Agaz72  w. = (™) for all i < p.)   In particular, if G is a geometry (i.e.   p > 2),

w    = (") + b      ,  f,-b      -.   , + (n - l)b      , '.2 K2' 72-2,   0 72-2,   1 ^ ^    72— 1,0

Proof.

n — k

n oo     n — s

E (DEE <-<>r7K,+t
s=k y=o z=o

ÊOËÉ <-»'(*:%
s = zi ¿ = 0     z=0

■ 1 oo

5 = & 2=0 2=0

Corollary 6.5.  7/ a/7 p element subsets of G are independent then for all

S > 72 - p,

oo        . oo

V=0      V '    <? = Zf \       /

where  r(G) = ?2, / 7  z's /Tze number of flats of G of corank k and nullity j, and b   .s J
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is the coefficient of zsxJ  in the Tutte polynomial t(G).

In particular, if m is the nullity of G, for all t < p, j > 0,

n-t.Xl        I i ' n-t.f

v=0

and

EÍP-  l   +  V\  ¡n-p.V   J      /272  + p-lX /72 +  T22A p'-i Y       \   p   )\p

wir;- yP-1 + v\fn-p,v + j

Proof. Since the formula involves only terms fq' '+v tot q > s > n — p, we

need only check that the formula inverts the equation for / 7 in (6.3). We will

use the symbolic methods of the umbral calculus.
oo      n — s

*/•„*„/_ v v i_iv/n-5u.*\»*«i+*,*> = *V=£ £ (-iyr
s=k    t=0

x y'

x     \s
(i-^t(;)(t

s=k

^-^AA-yi'-Aj)
y 7s =k

X \k     / , X \-fe-l

(l-y)" + 1xV

(l-y-x)*+1
Similarly,

«=^

_ UV  =  fkA.

7=0

(1   +Z2)S + 1(1   -V)*-*
Composing we get:

TYM   ^t-7(i - tz)"-
7     (1    +   b)*T'(1   -  I*""*
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Conversely,

„_1_S+A       ~      , .g_s   /n\    (1   -y)"+lxqy'+r
q- S

7 = 0 '   q=s U - y(l-y-x)9+1

Ai-y)^(r~~)  (»+ rrfnrr"1 u -yr-u-„-*)-'

Changing variables in the formula for  è   .  if the nullity of G is ttz,^ 7
oo n

Wz=r(';Lr)|'-')-'C:;>—
But every subset of p - 1   or less elements is closed, hence fn~r>J+v =

(n+Tm) 8 (j + 77, 0) for all r < p - 1   and

^fJ-¿ <-!>•-'(;:;)(•;.-):«(/, o). (-+; -!) a (/.o)

for all a < p as can be seen by comparing the coefficient of xq  on either side of
the identity  (1 + x)~ {n~q + l '(1 + x)" + m = (1 +x)m+«-1.   Further

oo //>-l \'.-„ric;.;")/-"'"'! <-"-77;)(";7H°>
oo

-5(';lr)','"*,,\+ ((■*í"I)-("í")) a</-0>-
Theorem 6.6. If \G\ >n and the Tutte polynomial t(G) equals 2^ (bstzsxl

then the following identity holds among the coefficients  b    :

72— 1t2 —S— 1 / ..

S=0 7=0

Furthermore, in the vector space V of linear combinations of Tutte coeffici-

ents {b A, the vectors {/,,••• , / ,- •• ! form a basis for the subspace of all lin-

ear identities which hold for all but a finite number of Tutte polynomials.

Proof.   It is sufficient for an inductive proof to show that  /  (G) = 0 for all

\G\ = 77 since if  / (G) = 0 for all \G\ = k > n then it also holds for all pre-Boolean
algebras   B-,  i + j = k + 1 > n, since the only coefficients involved in   /    are
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those  b      such that s + t < n,   On the other hand if   \G\ = k + 1   has a nonfactor es t
then t(G) = t(G\e) + t(G/e), and the latter two polynomials satisfy the induction

hypothesis so that  / (G) = /  (G\e) + In(G/e) = 0.
Now assume  r(G) =n   and 22(G) = 772 ' where 72' + 222   = 72.   /^(B^) = 0 vacuously

so assume  722 '> 0.   The only flat of corank 0 is G, hence using the notation of

(6.3), f°'A = Ofor z = 0, 1,- •• , m'- 1, so we have

7721- 1 ,      , ,   , zz'       Z7z'- 1      72*-S /     , i \

o=x ui>'(",r1)/y-2: Z Z <-ni+i ("T \
s=0      z' = 0        2 = 0

72     —  S

/

zz'     n — s— 1r* zz — o — * / .. 1 \    /   / \z z i-"!*:    ,'•»„ <í
5=0      ;=0 ¿=0     X    ' X 7

z z hj'Î"-;-1)

z + /)

s = 0       7=0

= / (G)    since   è   . = 0 for all  s > n'n s z

Certainly the  /    are independent in V since  /      , = X"    „ (- 1 )"   sb +
' n r 72+1 S=0X ' S,Z7—s

X¿ + j<naijhi- is independent of  |/.}.     .   On the other hand if  /'    j =

'ui+j<naiAi'  IS a relation which is 0 almost everywhere then - a '    _    =

fli_ 1   n-s + 1 f°r au s = 1, 2, • • • , « since for the infinite class of pregeometries

ßs_l,„_s © C  (C any connected pregeometry), bs  n_s = bs_x   n_s + 1 and i>.. = 0
for all other  2 + j < n.

We now list some useful properties of the series and parallel connection (3.14).
The proofs may all be found in [2].

Lemma 6.7.   (a)   A pointed pregeometry (F, p) is a series connection  F =

S(G, H) if and only if F\p= (G\p)+ (H\p).   Dually, F is a parallel connection
P(G, H) iff F/p = G/p + H/p.

(b) // H is a loop then S(G, H) = G.   If H is an isthmus then  P(G, H) = G.
(c) // G and H each have at least two points then S(G, H) (P(G, H)) is con-

nected if and only if G and H both are.
(d) If e £\G]\\p\, then S(G, H)/e = S(G/e, H); S(G, H)\e = 5(gV, H);

P(G, H)/e = P(G/e, H); and P(G, H)\e = P(G\e, H).

The following proposition order generalizes Corollary 14.2 of [l0].

Proposition 6.8.   // M.   is a connected minor of a connected pregeometry G,

then there exists a sequence of connected minors  M,. zM,, • • • , M    = G such that' ' 1 ' 2' ' 7ZZ

zM.   , = M.\e . or M ■   , = M./e . for some e . £ M..2—1 Z*z Z—1 ZZJ Z Z
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Proof. We proceed by induction on \G\. If \G\ = 1, then M, = G and we are

done. Assume that the theorem holds for all \G \ < n and let M. he a connected

minor of a pregeometry G, \G\ = n. Then by definition there exists a sequence of

minors   M, = M ,',-•-, M' = G such that M'.    , = M'.\e . ot M'.    , = M'. /e ..   If  M '     .1 1* '772 Z   — 1 Z Z I  — 1 11 772—1

is connected we are done by induction since then there would also exist a connect-

ed sequence  [M,, M '     A.   So assume  M '     , = c\e = zM(1 ' ©-••© M(k) where* 1 ' 772 — 1 772—1

each iVF J is connected. Then M, is contained in exactly one of the M , assume

Mj is a minor of /VF . By (6.7(a)), (G, e) is a (connected) series connection, G =

5(/V(1),... , N{k)) where each N(° is connected and zV(i)\e = M(°. By the induc-

tion hypothesis we may reduce (N , e) to a loop e by a connected sequence

which induces a connected sequence for G by (6.7(c)) and (6.7(d)). But by (6.7(b))

the sequence is [G, S(/V' , /V , • ■ • , N( ')] and again using the induction hypoth-

esis we can extend the  sequence to M..

Corollary 6.9.   If M.   is a minor of a connected pregeometry G, then t(M.) <

t(G) (i.e. each coefficient  b.. of t(M.) is less than or equal to the corresponding

coefficient of t(G)).

Proof. Proceeding by induction, if \G\ = 1, G = Mj and t(G) = t(M.). If the
theorem holds for all \G \ < n and \G\ = n, then, as in the proof of (6.8), let M.,

/VF, • • • , zW    =Gbea sequence of minors such that  M.   , = M ./e . ot M A e ..   If2' ' 77! n 7- 1 Z 2 Z    N      Z

M      ,   is connected the result follows by induction:  if for example   M      , = M    /em — 1 ' * m—\ m      m
then  /(/Mj) < t(M   _1)=t(G)-t(M   \e   )   each coefficient of the latter term being

positive.

On the other hand, if, for example,   Mm = P(M{1\ ••• , M{k)) and Mj = Mj(1)©
•■•  © Mjl7' we may assume each  /VFz) contains a nonempty direct sum  M.^'l'  ©

• • •   ffi /Mj^s' since otherwise we could reduce   M^1' to the isthmus  e     through a

sequence of connected geometries (which would hence have no loops or isthmuses)

and the result would follow from the induction hypothesis and the observation that

if e £ M     were neither an isthmus nor a loop, then  t(M   \e) < t(M   ) and t(M   /e) <772 r' >>     m '—     V     m' >■     m'      ' —

t(M   ).
77l'

Thus each direct sum factor of /Vlj   is partitioned by the  MAl'/e     in which it

is a minor, hence

z(Mj)=n^i(i)>=n   ,ji „   tiMiU))
i «■ m

<IL(M(;)/e   ) = t(G/e   )<t(G)
— ■*■-*■ 772 m     —

J

where the first inequality follows from induction on each factor.

A similar argument holds if G is a series connection.

Proposition 6.10.   // z'tz  t(G), f7fe . = 0 for all (k, j) > (s, t) then fk', the number
of closed sets of corank k and nullity j, equals 0 for all (k, j) > (s, t).
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Proof.   If t(G) = z"xm, then bkj = 0 only for all  (k, j) > (s, m + 1) or all (k, j) >
(n + I, t) and there are no closed sets of nullity greater than 222 or corank greater

than 72.

Proceeding by induction on the number of nonfactors assume  t(G) = t(G\e) +

t(G/e).   If in  t(G), £¿-=0 for all (k, j)> (s, t) then in r(G\e) and t(G/e) respec-

tively b',. = b'A = 0 fot all (k, j) > (s, t).   If there were a closed set x of corank u

and nullity v in G, there would either be a closed set of corank u and nullity v in

G/e  (i.e.  x\e) if e ex or there would be a closed set of corank u and nullity v in

G\e  (i.e. x) if etix.   In either case by induction we are assured that  (zz, v)^(s, t).

7.   Characterizations and examples.   Certain classes of pregeometries may be

characterized by properties of their Tutte polynomials.   Conversely, for certain

classes of pregeometries many of the coefficients of the Tutte polynomials can be

computed directly from the cardinality of various families of flats.

Proposition 7.1.  All the points of a pregeometry G are loops or isthmuses iff

it is completely separable iff it has no nonfactors iff its Tutte polynomial, t(G), has

one term.

The following proposition first appeared in [5].   The proof is new.

Proposition 7.2.  A pregeometry G is connected if and only if G is a loop or in

t(G),  bxo> 0.

Proof.   If G is separable   (G = Gx ©  G2) then t(G) = t(Gx)t(G2).   The latter two

polynomials have no constant term, hence  t(G) can have no first degree terms.

Conversely, if G is connected and not a loop, then it has a minor isomorphic

to an isthmus, z, and t(G) > t(z) by (6.9).

Proposition 7.3.  A connected pregeometry G of two or more points is a series-

parallel network [2] (z'.e. G has no minor isomorphic to  L     the four point line, or

P,, the lattice of partitions of a four element set) if and only if b. 0 = 1 ¿22 t(G).

Proof.   This characterization is proved in [2].

Corollary 7.4.  A pregeometry G without loops or isthmuses is a direct sum of

n serie s-parallel networks iff in  t(G),  b ..= (2 +A) for all (equivalently for some)

i + j = 72 but b     = 0 for all s + t < n.

Proof.  This is a result of (7.2), (7.3) and the fact that bQX = bx 0 (4.8).

Proposition 7.5.   In a pregeometry G, all p element subsets are independent

(i.e.   L(G) is distributive up to level p — 1) if b . = 0 for all q < p,  ; > 0.
72 — Q , 7

Proof.  This follows in one direction from (6.5) and in the other by (6.10).

The preceding proposition together with the explicit calculations in (6.5) give

us characterizations of wide classes of pregeometries by their Tutte polynomials.
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Proposition 7.6.  A pregeometry G of rank n is loopless iff in t(G) b.. = 0 for

ail (i, j) > (n, 1).   7t2 addition for such pregeometries  bn   Q = 1,   ^>n_\   0 = f"~   ~ n''

and b      ,   . = Z°°   „7"_1'y + 7   for ail j > 0 where fn~'v  is the number of atomsn— 1, j v = 0 ' ' ' ' '
with v + 1   points, and fn~l   is the number of atoms of G.

Proof.  A pregeometry is loopless iff all one element subsets are independent.

We apply (6.5) and (7.5).
Similar results hold for pregeometries with loops if we first factor them out

as in (6.1).

Proposition 7.7.  A pregeometry G of rank n is a geometry iff in t(G), b .. = 0

for all (i, /)>(«— 1, 1).   7t2 addition if the nullity of the geometry G equals m then

^,6-Í.   Vl,0 = -.   bn-2, 0 = K -0(" +  Vf"-2'V+ ("Vi - ("TI' a»d
bn_2   ■ = £   =0(t7 + l)/"~2' V+J; where f"~2'v is the number of (v + 2)-point lines.

Proof.  A pregeometry is a geometry iff all two element subsets are indepen-

dent.   We apply (6.5) and (7.5).

Definition 7.8.  A covering 77 of a set S is a family of subsets with union 5.

A covering is a partition of type n  (or n-partition) of S if every element of 77 or

block has at least 77 elements and every 72-element subset is in a unique block.

The set S, the blocks, and all subsets of S with fewer than 72 elements form

the flats of rank 72 + 1  pregeometry.   In this pregeometry all subsets of cardinality

72 are independent.   These partitions of type tz are discussed in [ll] and [lO] where

they are conjectured to predominate in an enumeration of 77-point geometries.

Partitions of type 72 are special in our setting, as their Tutte polynomials are

completely determined from the cardinalities of the blocks.

Proposition 7.9.   G is a partition of type n - 1 iff r(G) = 72 and b.. = 0 for all
(i> /) > (2, 1).   In addition if |G| = 72 + ttz and a   represents the number of blocks of

cardinality t  (t = n — 1, n, • • • , n + m), then

fm + n- i- 1 \     .       ..        _b.n =   I . I     for all  1 > 2;
*0       \ n - z /     ' -

00 ..

1 ^^ fn - 2 + v\ Im + 72 — 2 \        / 772 + 72
*io=2-(   „_2    ja^72-i+   {   ,n-l    )~ U-l

and for all j > 0,
00

Z/72 -  2   +   V
{       72-2„-a \

*iy=   2-       „_2     K+7+ZZ-

and

t, = 0 v I

¡n + m - j - 1 \        \7 (n - 1 + v \s=     n-i   )-<M «-i r*wV X 7^ = 0
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Proof.   The first statement follows from (7.5).   Assume G is a partition of type

72-1.   Then the formula in (6.3) for /   !  is valid not only for  k > 1   (since every

(72 - l)-element  subset is independent) but also the formula is valid for  k - 0.

Hence (6.3) holds for all (k, j) and may be inverted so that the formula for  b   .  in

(6.5) is valid for all  (s, j). Substituting i for 22-27 in (6.5), b{. = (m+^:j~1)t5(0, /)for all
i > 2.   Substituting  22 - 1 for p and a , fot f   ' v + 1  the formulas for b, . fol-— ft r v+] +n—1 ' I;

low from those in (6.5).   Finally, for all ;' > 0,

z?=0 z.=0N

--Y,(n-n_xv)f^v-i:rn\\v)ii-,+v- £ A,r-
v=0 v = 0  ^ 7 ^ 0,7 > 2

But f°'' + v = 8(j + v, 222) hence the first sum equals   (" + m~/- l ); / l> / + » = a' V ' ' ^ Z2— I "   ' V+ 7 + 72— I

in the second sum; and each /   7  in the third sum equals zero.

We may apply (7.9) to some important special cases:   partitions, planar geo-

metries, and free geometries.

The isomorphism classes of loopless rank two pregeometries are in  1-1 cor-

respondence with integer partitions  p = p. +• ••+ p., p, > p2 >■ • •>  p, > 0 where

p. corresponds to the cardinality of an atom and where  k > 2.   To every such par-

tition there corresponds a unique Ferrers dual partition, p = P.+- • • + pb    where

p. is the number of integers  p. greater than or equal to z.

Proposition 7.10.   // t(G)= b..z2xJ  is the Tutte polynomial of the pregeometry

corresponding to the integer partition p = p. + p2 +. ..+ p.   with Ferrers dual p =

P[ + ---+ pL. then b2, = S(0, /); ¿>10 = p[- 2; b'{.= p' and b Q. = p - 7 - 1 -
X   ^. ua      . = p-/-l-X.    .p..Z2>I       zz + 7      r       z z>;rz

Proposition 7.11.  A planar (rank 3) geometry G of nullity m with a. lines of

cardinality i is characterized by its Tutte polynomial:   b, . = 8(0, j); b2 . = m8(0, j);

èio = K= oí" + IK*z+(mr>' (T);and f°Tal1 i> °'

bH=  Z (^ + 1K+7-+2;       hrl±t?~i*    )-H{V+2    )«7z+y+2-
tz = 0 v = 0

Using (6.4) or summing the  a.'s  one sees that there are  n + b20 points and

2b20+bx0-bxx+n  lines.   Hence, subtracting we get  b2Q + bXQ - b xx = 2b Q1 -
bQ2 > 0 and is equal to 0 if and only if G is a projective plane (modular).

Proposition 7.12.   For n > 1   let  Fnm  represent the partition of type  n - 1   of

cardinality n + m  in which every (n — l)-element subset is a block.   We call Fnm

the free geometry of rank n and nullity m.   Note that  Fnm  represents the mth trun-

cation of the Boolean algebra  B        .   Free geometries are characterized as those' " n+m fe

for which b .. = 0 for all ij / 0 in t(G), and in particular
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72-1 , 772- 1      . .

ÁFnmuj: ("■;!;?)«-•* £ (n-nl_\q)^.
Z5 = 0 9=0

Proposition 7.13.   Let f be any Tutte (group) invariant such that f is greater

when evaluated on a free (pre)geometry of rank n and nullity m than on the pre-

Boolean algebra of the same rank and nullity for all nm > 0  (z'.e.   f(Fnm) > f(B     )).

Then f(Fnm) > /(G) for all other pregeometries G of rank n and nullity m.   (Similar

results hold for any other relation compatible with addition.)

Proof.  If G is not a pre-Boolean algebra it has a nonfactor e and /(G) =

f(G\e) + f(G/e).   But  Fnm  decomposes into  F"'"2"1 and Fn~l'm  (and by (7.12)

it is the only pregeometry which does so).   Hence by induction on cardinality,

/(/?». "»-*)> f(G\e) and f(Fn~1' m) > f(G/e) with at least one of the inequalities

strict.

For given rank and cardinality the number of bases, spanning sets and inde-

pendent sets are clearly maximized by free geometries; |p| and ß ate also.

Corollary 7.14.   For all pregeometries of rank n > 1   a?2zi cardinality n + m,

,„(«,<_ (™77) «, «Gj<(777-2).
Further, equality holds if and only if G = Fnm.

Proof.  Evaluating the Tutte polynomial of (7.12), if  m > 0, ß(Fnm) = blQ =

("+-j-2)> 0; and   \p(F™)\ = t(Fnm)\z = Xt x= 0 = S^I Jr"J + i)= C%"£¡>> 1-   We
may now apply (7.13).

We conjecture that the Tutte polynomial  t(G) of a connected pregeometry is

prime in the unique factorization domain  Z[z, x] although the characteristic poly-

nomial is not.   This would imply that F or another pregeometry with the same Tutte

polynomial is a direct sum factor of G iff  t(F) divides t(G).

A small partial result in this direction is that if G is a series-parallel network

(or any pregeometry G such that  ß(G) is odd) it could not be factored into positive

polynomials since   t(G)\      2  x_2 = 2" + m  by (4.6) so that any nonconstant factor

when evaluated at z = x = 2  would be a power of 2 and hence would have to have

an even constant term.

8. Two counterexamples.  We may now ask just how strong an invariant of a

pregeometry G the Tutte polynomial  t(G) is.   Its strength is attested to by the fact

that if G is a rank two pregeometry and  t(G) - t(H) then G ^ //.   (This follows from

factoring out loops as in (6.1) and deriving the dual partition numbers   p . from the

coefficients  bl. (7.10).)   Tutte equivalence, however, is weaker than isomorphism.

(Hence converses to propositions like (6.9) are generally false.)

Proposition 8.1.   Let G be the rank three geometry with points a j, a2, • • • , ag
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and two nontrivial copoints  [zz., a., a A and \a w Let H be the rank three

geometry on the same set of points with the nontrivial copoints  \b., b2, bA, \b.,

bA, z35!.   Then G & H but t(G)= t(H).
No smaller pregeometries G  , H have this same property.   Neither do any

other geometries of the same cardinality.

Proof.  Surely  G ^ H since every point of G is on exactly one three point line

while in H, bx   is on two three point lines (and  b,   is on none).   We will prove that

t(G) = t(H) using three methods by way of illustrating some of the previous material,

(i) G\a    and H\a,  ate isomorphic, each being the planar five point geometry

with one three point line.   Also  G/a    and H/a.  ate isomorphic, each corresponding

to the integer partition  2+1 + 1 + 1=5.   Hence  t(G) = t(G\a  ) + t(G/a ,) =

t(H\a4)+ t(H/a4)= t(H).
(ii) G and H ate both geometries on six points with exactly two three point

lines and nine two point lines.   But by (7.11) all the coefficients   b .. in the Tutte

polynomial of a planar geometry are derivable from the ranks and cardinalities of

the various flats.

(iii) Embedded in the real plane,

G =

and

Deleting and contracting the point x gives the desired result.

Since  t(G) - t(H) iff t(G) = t(H) by (4.7) one sees that no pair of smaller non-

isomorphic pregeometries have the same Tutte polynomial since if  \G\ < 5, either
7\7

G or G has rank less than or equal to two and by the remarks preceding this prop-

osition, G is characterized up to isomorphism by its Tutte polynomial.

It is also easy to check that among the planar six point geometries only G and

H have the same number of nontrivial lines of the same cardinality.

It is instructive to show in light of (5.2) how the composite strong map /f~:

G\a    —> G/a. resulting from the decomposition  G < G\z7, + G/a,  differs from the

corresponding strong map /„.    Pictorially,

and
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so the two maps differ since in f G  the preimage of the two point atom is disjoint

from the three point line and in f,,  it is not.

Since series-parallel networks may be characterized by the Tutte polynomial,

it becomes a relevant question to ask if other important classes of geometries (binary,

graphic, unimodular, planar graphic, transversal, etc.) may be so characterized.   One may

also ask if from the Tutte polynomial one can enumerate the number of flats, / 7,

indexed by corank and nullity as one can for 72-partitions (7.9).   All these hopes

are dampened by the following example.

Proposition 8.2.  Let J be the rank three pregeometry with points  a^, «2, • • • ,

a    and nontrivial lines {a., a2, a,, a ,} ¡«j, a5, a6, ay\ \a2, a&, a7i, {a^, a&, ay\
and {aA, a6, ay\.

Let  P    be the pregeometry with one atom of two points whose underlying geom-

etry  is  the geometry of partitions of a four element set.
Then t(])= t(P4), the Tutte polynomial calculated in (3.4).   Baz" / is not binary (and

hence not unimodular, graphic, or planar) but P. is all of these.  Also J is transversal
while P. is not even the contraction of a transversal pregeometry.   In addition P ¿and J

have different numbers of circuits, two point lines, lines, and flats.  Such differences also

appear in J and P.   both of which are geometries.

Proof.   In an embedding in the real plane:

b6,by

The deletions /\a4 and P'4\b4 ate isomorphic by the strong map /(«•) = b -, i / 4.

In addition J/a^ and P J b 4 both represent the integer partition 3 + 2+1 = 6 and

hence are isomorphic.   Therefore, t(]) = t(j\a4)+ t(j/a4) = t(P'4\a4) + t(P'4/a  ) =

t(P\)-
The subset  ¡aj, a2, a^, a4¡ of / is a four atom line and hence by the represen-

tation theorem for binary lattices [10], / is not binary (and hence not graphic).   On

the other hand, we shall see later (11.1) that  P'4 is the geometry of contractions of
the planar graph  7C,:
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and so  P. is planar graphic and hence unimodular and binary.   It is well-known

that  P4 (and hence   P'A) is not transversal, while  \ax, a2, a^, a^\, \a2, a^, aA\

and \a     a^, a^\ present / as a transversal pregeometry.

Although / and P . have the same number of atoms (6), four point lines (2),

and three point lines (3); / has the three two point lines icz2, a A, ¡zz,, a A, and

\a ,, a A while \b ,, bx\ and \b,, bA ate the only two point lines of P 4. Also, P' has
5 four point circuits while / has six.

Since neither P4 nor / have any copoint of five or more points, P4and / are

geometries which are Tutte equivalent but have differences in circuits, copoints,

and representability.

We remark that an interesting problem would be to find other conditions on pre-

geometries which would guarantee that Tutte equivalence would be as strong as

isomorphism.   For instance it is not known whether two inequivalent graphic (11)

(or even binary) geometries can have the same Tutte polynomial (they can have the

same characteristic polynomial).   Such investigation should lend insight into such

areas as the Ulam graph reconstruction conjecture.

In the next four sections we explore the induced Tutte-Grothendieck ring for

some important hereditary classes of pregeometries—chain groups over finite fields

(especially GF(2), the two element field), graphic pregeometries, and orientable

(unimodular) pregeometries. (An hereditary class of pregeometries is one closed

under arbitrary minors, i.e. if G is in the class and p£G then G\p and G/p ate

also in the class.)

For these classes the subbidecomposition inherited from T can be looked at

in a new perspective and classic theorems concerning certain invariants can be

furnished with new proofs and sometimes generalized by use of the inherited de-

composition structure of T(S  ) (i.e. the Tutte decomposition restricted to one of

above classes).

9. Chain groups and the critical problem.

Definition 9.1.   Let V    be a vector space of dimension 72 over a fixed finite

field  GF(q).   For a spanning set of vectors  S C V    not including the zero vector

(i.e. S is contained in no proper subspace and  0 f¿ S) we define G(S), the geometry

spanned by S.   The closed sets of G(S) ate the subspaces of  V    spanned by sub-

sets of S  (those subspaces which have a basis in S).   Such geometries are called

chain groups.

If s, s   £ S ate both in the same one-dimensional subspace or atom (i.e.  s   =

as,a ez7\Í0S), then G(S)= G(S\\s\) since any basis B for a subspace containing

s may be replaced by (B\[s|)U \s'\.   Hence  G(S) = G(S ) where S   CS has no

two dependent vectors.   If S = V = V \{0\ (or À H S / 0 fot all atoms X £ V  ) then
E(G(S)) is the modular lattice of the projective space associated with   V  .   Thus
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any chain group  G(S) can be thought of as a subgeometry (sequence of deletions

of     i    dimensional subspaces) of  G(V  ) and we will henceforth consider it as

such.

Proposition 9.2.   Let S be a spanning subset of lines of V  , and let  G(S) be

the associated geometry.   Then if \£S  is not an isthmus of G(S), then G(S\X) =

G(S)\\ and G(S/X) = G(S)/X where S/X is the projection of {S\\{K\ from the atom
(one dimensional subspace) X.   S, and S2   lie in complementary subspaces of V

(i.e.   Sl Ç V', S2 Ç V", and V = V ' © V") if and only if G(S l U S )'= G(S ̂  ® G(S 2).

Proof.   By definition  G(S) is the subgeometry  G(V  )\({V   ! \S), hence

G(S)\X =(G(V )\({V \\s))\x = G(V )\({V \\(s\X)) = G(s\A).
72 72 72 72

The flats of rank k in the contraction  G(S)/X are the flats of rank k + 1   in

the vector space   V    which have a basis in S and contain the atom X.   But this isr n

the geometry G(S/X) whose closed sets are subspaces of V /X — V _.  spanned by atoms

of Vn/X which are projections of two dimensional subspaces in V    containing À and an-

other atom of S.

If Sj Ç V', S2 Ç V", V = V'© V", and S{ U S2 spans V then for every pair of
bases  Bj C G(S.) and B2 Ç G(S2), Bj u B2  is independent and spans V, hence is
a basis for  G(5j U S2).   Hence   GOSjU S2)= G(Sj) © G(S2).   Conversely if
G(5j U 52)= G(5j) © G(S2) then let V'= J1 and V" =J2 in Vn.   Then  V = V'+ U"since
7U7 spans Vn. But 7(\/) = 7(5jU 52) = r(Sy) + r(S2) = r(V') + r(V") so V = V'©V".

Definition 9.3.   The critical problem as formulated in [lO] for a set of vectors

S in a vector space   I7    (0 / S) is the extraction of the critical exponent, c—the

minimal number of projective hyperplanes   //.,-•-, H    such that  H, Cl . . . Cl 77   Ci

5=0.   Since every nonzero linear functional has a hyperplane for its kernel and

every hyperplane is the kernel for some linear functional, the critical problem is

equivalent to finding the minimal number c of linear functionals, f,, • • ■ , f    which

distinguish the set S, i.e. which for all s £S there is a functional /.  (0 < i < c)

such that /.(s) / 0.

Lemma 9.4.   Let S be a spanning set of vectors for a vector space V and let

N(S, k) be the set of ordered k-tuples of linear functionals of V which distinguish

the set S.   Then (- l)r(     |/V(5, k)\   is a Tutte bidecomposition invariant on the

geometry G(S).

Proof.   For any two dependent vectors s, s £S and any linear functional /;

f(s) = 0 iff f(s') = 0.   Hence  (/j, ••-, fk) distinguishes S iff it distinguishes  S\s.
But by the remarks following (9.1), G(S) = G(S\s), so we may delete any point of

S which is in an atom with another point of S and change neither  G(S) nor N(S, k).

We may thus assume that at most one  s £S lies in any atom of V  .
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If X£S  is not an isthmus of  G(S), we may partition  N(S\\, k) into two sets —

those which vanish on A and those /«-tuples that contain an f. such that /¿(A) ¿ 0.

The latter set is exactly those ¿-tuples which distinguish A as well as  5\A and

hence form N(S, k).   The former set is equicardinal with  N(S/X, k) as is shown

below.
Extend À to a basis B for   V .   We then have the dual basis  B* which includes

Z2

the functional /^.   It is readily seen that  B*\{f^\ can be viewed as a basis for

V /qX (where  qX is the atom of  V    spanned by A) as well as a basis for those

functionals on  V    which vanish on A.   A ze-tuple of such functionals distinguishes

the points  5\{A| in V   iff in G(V') their respective hyperplanes intersect 5 in A

iff the corresponding hyperplanes in  V /qX distinguish S/X.

Since S and 5\A span the 22-dimensional space   V   and S/X spans an (72 - 1)-

dimensional space we see that the identity   (- l)n\N(S, k)\ = (- l)n\N(S\X, k)\ +

(- 1)"~   \N(S/X, k)\ as shown above proves the lemma.

If V = V   (B V  , S x C V  , and S2 C V  , then picking a basis for V (and hence
for the dual space   V*) from  V  U  V", and functional / on V is equal to /  + /"

where  f(i) is a functional on   V(i) and (/'+ /") (s) = fU)(s) if s£SU\  i= 1, 2.

Such a functional /distinguishes  Sx U S2 iff /   distinguishes  Sx and /" dis-
tinguishes  S2.   Hence

(_ iY(v)\n(s, k)\ = (- i)av,)\n(sx, k)\(- iy-(v'V(s2, *)|.

Theorem 9.5.   // 5 spans V, then the number of k-tuples of functionals on V

which distinguish S, \N(S, k)\, equals  x($> 9  ) where x($> A) is the characteristic

polynomial of G(S) (4.2).   Hence if k = c, then the number of subsets of hyper-

planes equals  ^(S, qc)/c\iq - \)c.

Proof.   By the previous lemma  (- l)r'   '|/V(S, k)\   is a Tutte bidecomposition

invariant.   If  G(S) is a  loop x, it is the origin of a 0-dimensional vector space

and no functional can distinguish it.   Hence  (- 1)   |/V(x, k)\ = 0.   If  G(S) is an

isthmus z, all <7    ¿-tuples   of linear functionals distinguish it except the ¿-tuple

of all 0 functionals, hence  (- 1 )11zV(z, k)\ = 1 - q  .   By the fundamental Tutte-

Grothendieck theorem (3.6),

(-IY^\N(S, k)\ = t(G)\     '      k =(-\Y{v)x(S,X)\       k.
2T = 1 — q    ,x =x) ^

When k is the critical exponent c, the c functionals correspond to distinct hyper-

planes.

10.   Binary pregeometries.  A new characterization of binary pregeometries

(those which can be coordinatized over the field  GF(2)) results in a theorem gen-

eralizing the two-color theorem for planar graphs in its full strength to binary pre-

geometries.
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Proposition 10.1 Let G be a binary pregeometry and let C = {c.,••>, c \ be

a circuit of G. Then for ail points e £G\C, C is either a circuit or a direct sum

of two circuits C. and C2 in the contraction G/e. In the latter case both C. U

{e\ and C2 U {e\ were circuits of G.

Proof.   Let G = Cu |e| where C is a circuit.   If e is an isthmus or loop of G

then  G/e = C and the proposition holds.   Otherwise G has nullity two and its dual

G is a binary pregeometry of rank two.   In G, C is a bond which makes e a copoint

(atom).   A binary pregeometry has been characterized [lO] as one in which every

coline contains at most three copoints.   Hence G has two other atoms C    and C,

which partition  G\e=C (since e is not a loop of G hence not an isthmus of G).

Therefore in the pregeometry  G\e, both are bonds while in G, C   u {e\ and C, U

{e\ were both bonds.   But this means that in  G\e = G/e, C is partitioned as the

direct sum of the two circuits C. and C, and both C. U {e\ and C-, U {e}  were cir-

cuits of G.
For a more general G, if C is a circuit of G and e e{G|\C, then

(G/e)\(iGl\(C U {ei))= (g\({G\";(C U ¡ei)))/e since both are defined by the de-
rived closure operator J(A) — A U e\({Gi\C) for all A C C where A U e  is the

closure in G.   C is a circuit of G iff it is a circuit of any subgeometry of G con-

taining it (a circuit is defined wholly internally in terms of rank and cardinality of

its subsets) hence we may delete everything except C and e before we contract e

and the above special case applies.

Note that if  L4   is the four point line and  e £ L4, then L.\e  is a circuit but

in  L   /e  all three two point subsets are circuits.   Hence G is binary iff (10.1)

holds for all minors of G.

Lemma 10.2.   Let G be a binary pregeometry.   Then

/<«={:-0'
if G has all even circuits,
if G  has an odd circuit,

is a Tutte invariant.

Proof.   If G = Gj © G2  then the circuit set of G, C(G) is the disjoint union

of C(Gj) and C(G2).   Hence  C(G) contains all even circuits iff  C(Gj) and C(G2)
both do iff /(Gj)and f(G2) are both nonzero in which case  (- lfîGiy(- l)r(G2) =
(_ lylGyQ G2)= (_ i)7(G)_Otherwise,/(Gj)=0or/(G2) = 0and/(G) = 0=/(Gj)/(G2).

We must prove that /(G) = f(G\e) + f(G/e) for any nonfactor e£G.   Since

r(G) = r(G\e)~ r(G/e)+ 1, dividing the equation through by  (- l)r(    ' we get

(**) |/(G)| = |/(G\e)| -|/(G/e)|.

Assume   |/(G)| = 1.   Then G has all even circuits and so does   G\e  (since for

all  C C G\e, C is a circuit of G if and only if it is a circuit of G\e).   Since e is
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not an isthmus, e is in some (even) circuit of G and so  C/e  is a circuit (of odd

length) in  G/e  and (**) becomes 1 = 1-0.
If ¡(G) = 0 and /(G\e)= 0 then G must contain an odd circuit C disjoint from

e.   By the above proposition (10.2) the set C is either a circuit in  G/e  or the di-

rect sum of two circuits   Cj and C2  in which case   |Cj| + \CA = \C\.   Since C is

odd one of the summands and hence one of the circuits in  G/e is odd and (**) is

evaluated as  0=0-0.

Finally let /(G) = 0 and |/(G\e)| = 1.   Then all circuits not containing e are

even but there is an odd circuit C containing e in G.   Let C   be any other circuit

in G containing e.   Then the symmetric difference  A(C, C  ) is the disjoint union

of circuits (this follows from the dual of Theorem 15.2 in [l0]) all of which must be

even.   But cardinality of symmetric difference is mod 2 addition, hence C   must

also be odd and so in G every circuit containing e is odd while every circuit not

containing e is even.

But if D is a circuit in  G/e, the rank of D in  G/e, r (D), equals \D\ - 1   so

that in G, r(D U \e\) < \D U [e\\ - I hence D U \e\  is dependent and contains a cir-

cuit D  .   It D  \{e\ were properly contained in D, then D could not be a minimal

dependent set in  G/e, so that D or D U {ej  is a circuit of G.   In either case D is

an even circuit and (**)  becomes   0 = 1 — 1.

Theorem 10.3.   // G is a binary pregeometry and y(G, A) is the characteristic

polynomial of G, then y(G, 2) = 1   if G has all even circuits and is  0 other-

wise.

Proof.   Let /(G) = 1  if G has all even circuits and 0 otherwise.   Then

(- l)r^    '/(G) is the Tutte invariant f(G) of (10.2).   If z is an isthmus, then z has

no circuits and f(z) = - 1  while if x is a loop, x is an odd circuit and f(x) = 0.   By

the fundamental theorem  (3.6),

i-lYlG)TÍG) = tiG)\z=_XtX=0=i-lY^xÍG,X)\x_x=_x.

Corollary 10.4.  A spanning subset S of vectors in a vector space V over GF(2)

will be distinguished by a unique functional (equivalently will be contained in a

unique   bond of   L(V) or will be disjoint from a unique hyperplane) if and only if

S has all even circuits.

Hence a geometry of rank n can be imbedded in the affine space of dimension

22 over GF(2) if and only if it has no four point lines as minors and no odd circuits.

Proof.  This follows from (10.3) and (9.5).

11. Graphic pregeometries. Under certain conditions a pregeometry G has the

same point-circuit incidence relationship as the edge-circuit incidence relationship

of a multigraph M  (graph in which multiple edges and loops are allowed).   In that
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case we say the pregeometry is graphie and we may give a special interpretation

to the decomposition and many of the invariants of §4.

We now list some of the basic definitions and properties of multigraphs and

their associated pregeometries.

Definition 11.1.   A multigraph M is a function from a set E into the set of un-

ordered pairs   V & V (i.e.   V x V/(v., v.) ~ (v., v.)).   The set E is called the edges

of M and V is called the vertices.   The restriction  M   = M(E   ) of zM to a subset

E   C E is called a submultigraph of M.
Denoting the preimage of the diagonal of  V & V by L(M), a graph is a multi-

graph which is 1-1 and where   L(M) is empty.   In particular the underlying graph M

of a multigraph is the function  M   ° K where M ' is the subgraph on the set  E\L(M)

and K is the kernel of M  .   Thus exactly one edge is sent to a vertex pair {v., v .]

iff 2 / / and M~   ([/', /]) is not empty.   M can be thought of as a maximal subgraph

(submultigraph which is also a graph) of M.

A path of length p from a vertex u to a vertex v   is a  (p + 1 )-tuple of vertices

(v = v x,. • . , v      . = v  ) and p-tuple of edges   (e x, • • • , e A such that M(e .) = {v -,

v.   ,].   Path connectedness or connectedness induces the obvious equivalence re-

lation on V and M is connected if v ~ v    tot all  z/, f  £ V.   Associated with any

subset of edges E  , we have the equivalence relation on V in which v.pz v. iff

vi~ v. in the submultigraph  M(E   ).
One may form a pregeometry  G(M) whose points are the edges of M and whose

closure relation is defined for all E ' C F by E ' = \{M~ l(v ., v -)]\ fot all ¡).~, v ..   It
is easy to verify that this is a geometric closure operator and that the circuits of

G(M) are those edges which form a path  (v x, • • . , v      .) in which ¡Zj = iz      x  but no

other vertices are equal.   The bases of G(M) ate maximal sets which contain no

circuits, called the spanning trees of a connected multigraph.   The one point cir-

cuits (loops) of G are the edges in  L(M) (the inverse image under M of the diago-

nal) and the two point circuits of G are those edge pairs which get mapped into the

same pair of distinct vertices.   Hence if M is the graph underlying the multigraph

M then  G(M) is the canonical geometry  G(zM) associated with the pregeometry

G(zM).   Also if F'C F, then  G(M(F')) is the subgeometry G(M(F))\(f\e').
M is two-connected if  G(M) is connected iff M is connected and every two

edges lie in some circuit.   If  | V^| = ?2, we define the complete graph  K     as a graph

in which  \M~  (iv{, v .])| = 1 for all v. >= v ..   Since closed sets of G(M) ate in 1-1

correspondence with partitions of the vertex set into path components, the lattice

of closed sets of  K    is the lattice of partitions of an 72-element set.   Every geo-

metry of a graph on 72 vertices is a subgeometry of  K .

Proposition 11.2.   Let M be a multigraph with associated pregeometry G.   Then

for all e£E, the deletion  G\e  is the pregeometry of the submultigraph

G(M(E\{e\)); and if M(e) = lv¿, v.]  then the contraction   G/e   is  the  restriction of
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the composite function  I ° M to E\[eS where I: V & V —► V & V/v. ~ v. identifies

[v., v] and [v., v] for all v£V.  (G/e  ca72 be thought of as coalescing the vertices

v. and v. and then removing the loop e.)

If M. and AC   are both one-connected multigraphs then the pregeometry

G(Mj  A  M2) is the direct sum  G(Mj)  © G(M2) where Ml  A  M2  (the wedge product
of two multigraphs) is the disjoint union of Mj and M,  followed by an identifica-

tion (coalescence) of a vertex v. £ M. and a vertex v2 £ zVL.   Conversely, if M

is a one-connected multigraph such that  G(M ) = G(zMj) © G(MA where M. and zVL

are one-connected then M   = zMj A M2where G(zVIj) = G(M^)and G(M'2) = G(M2).

Proof.   The M-closure of a set depends only on the vertex partition associated

with paths in the set.   A subset of E\[e¡  would induce the same vertex partition

in M and in  M\e = M(E\îea) and would thus induce the same closure except that

e would not appear in  M\e.   Hence   G(M\ e) = G\e.

Both  G/e and G(M/e) are defined on the same edge set, E\{ei.   We will show

that the closure operator / in  G/e  is the same as the closure operator K in  G(M/e).

Let  E ' C E\{ei and e'e E\{ei  be arbitrary such that  M(e')=[vk,v   ]  (either

or both vertices could be  v . or v.).   Then  e   £ ](E  ) iff there is a path in M con-

necting  v,  and v     with edges in  E   U Sei; and  e   £ K(E  ) iff there is a path in

M/e connecting v, and v     with edges in E  .   Assume P is a path linking  v,  and

v      in M with edges in  £   U Je}.   Then deleting e wherever it appears in P, we get

a path in  M/e since if P =(■•■, e  , e, e      ,,•••) then e    and e      ,   share the com-r x '       n'       '       72 + 1 ' ' 72 72+1

mon vertex v .v . and P  =(■••, e   ,e      .,-••) is part of a path in  M/e.

Conversely, assume  ( ■ • • , e   ,e      ,,--.) is a path in  M/e  in which  e    andJ ' '     ny     n + ly r 72

e      .   share the common vertex  v -v..  Then if e    and e   , .   share a common vertex72+1 Z7 7272+1

in M (e.g. v .),(•■•, e  , e      ., • •. )would be part of a path in M while if for example

M(e  ) = [v  , v ] and M(e      ,) = [v., v ] then (■ < ■ , e  , e, e      ,,••■) would be part7Z J 72+1 k' 72 72 + i r

of a path in M.

G(/Mj) © G(M2) is the pregeometry formed from the disjoint union of edges and

circuits of  Mj and M2.   If  Mj A M2  is the wedge product of  Mj and M2 in which
v, £ M. and  i>    e zVC  are identified then   M. A /M2  is one-connected since every

vertex in  /Mj   is joined to  v^   and every vertex in  M2  is joined to v2.   But any

closed path containing edges in both  Mj and /M2  must list the identified vertex

vxv2 twice.   Since  Mj and /M2  are subgraphs of M, A M2, G(/Mj) and G(MA ate

subgeometries and the circuit set  C(M1 A M2) is the disjoint union  C(Mj)u C(zVl2).

Also E(Mj A M2)= E(Mj) uE(M2)and hence G(Mj A M2) = G(zMj) © G(M2).
Conversely, assume   M', Mj and M2  are one-connected and  G(M')= G(zMj) ©

G(M2).   Then  M' must have subgraphs  zMjand M2 such that G(/M;')= G(M{) (i = 1,2).
If these subgraphs have no vertices in common  M    is not one-connected (no path

can join  v{ £ Mj with v2 £ M2).   if they have two vertices v and v' in common then

since  Mi is connected there is a minimal path  P. in M. joining v and v' (i = 1,2).
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But then  P, P'    would contain a circuit intersecting both  zMj and zM2 which would

contradict the definition of direct sum.   Since  F(M ' ) = E(M'X) U F(M2) and V(M') =
V(zM¡) A V(zM2) we are done.

Example 11.3.  In analogy with the decomposition of  P4  (the pregeometry of

contractions of  K^ the complete four graph with a multiple edge) in (3.4) and as an

illustration of the techniques in (ll^Kve will decompose   K^ in the Tutte subbi-

decomposition associated with all multigraphs.

+ z x + 2z

Definition 11.4.  A coloring (or n-coloring) of a multigraph M is a function c

from the vertex set of M to a set (of 72 elements) such that for all  eeF, /M(e) =

[tz, v ] implies c(v) /= c(v  ).   A multigraph is n-colorable if it admits an 72-coloring.

An orientation M of M is a function  M = 0 ° M where 0:V & V —> V x V as-

signs to  {v., v.] either of the ordered pairs  (zv¿, v.) or (v., v¿).   (We may think of

an orientation as an assignment of a direction to each edge such that, for simplic-

ity, we assume each edge joining the same two vertices has the same direction.)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] A DECOMPOSITION FOR COMBINATORIAL GEOMETRIES 277

A chain (or zero-chain) (with values in A   ) on M is a function / from V(M) into

an abelian group A     of order n.   A coboundary (one-coboundary) is a function /

from E(M) to A^  associated with a chain / such that if  M(e) = (v., v.) then /(e) =

f(v¿) - f(v-).   It is well known that / is a coboundary for some chain iff there ex-

ists a subset  C Ç C for every circuit C of M such that 1^e^J(e) = S  ec\7f/"(e).
Note also that a coboundary / is nowhere zero iff / is a coloring.

Theorem 11.5.   Let M be a multigraph with exactly k one-connected components

and let G be its associated pregeometry.   Then the rank of the pregeometry  r(G)

equals   \V(M)\ - k; and the number of X-colorings of M, c(M, X), equals  Xkx(G).

Proof.   The rank of G(M) is the cardinality of a basis (maximal subset of

E(zM) containing no circuit) or spanning forest F.   But the intersection of F with

any connected component  M . of M has cardinality   |V(M.)| - 1.   Hence   |E| =

S^1(|V(,M.)|-l)=|V(Al)|-¿.
We will show that  (- l)r^M'c(M, X)/Xk  is an invariant of the decomposition

of the Tutte-Grothendieck group and then apply (3.7).   If  e eG  is neither an isth-

mus nor a loop then  M\e and M/e  have the same number of components as M.

Assume  M(e) = [v, v ].   The A-colorings of  M\e  may be partitioned into two sets:

those in which f(v) / f(v  ) and those which assign to v and v    the same "color".

The former set represents all the colorings of M and the latter gives a well defined

way to describe all the colorings of  M/e (f(vv  ) = f(v)).   Hence  c(zM, A) =

c(M\e, A.)- c(M/e, X) and dividing that equation by  (- l)r(    'A    we see that

(- l)r<-M^c(M, X)/Xk  is a group invariant.   We must evaluate it on all pre-Boolean

algebras   B      .   But if m > 0, B       contains a loop and for all A the vertex incident& 72772 '        72772 r

with the loop and hence the pregeometry cannot be colored.   If  Bn    is a one-con-

nected component of B     then we may choose a vertex  Vj  £ Bn    and color it any

one of A colors.   Choose another vertex  v2  adjacent to it (such that  M~   ([v., vA)

is nonempty).   Then  iz    may be colored with any color except f(v.).   Choosing re-

cursively any vertex which is incident with vertex chosen before we will have

counted À(À - 1)'VI_I = X(X - 1)1    I   colorings for  Bn .   Note that no vertex will
i

he incident to two distinct vertices chosen before since we would then have a cir-

cuit.   If B     has one-connected components of (edge) cardinality  72., - • • , 72,   then

since each component may be colored independently we see that c(B   , X) =
(X(X-l)nl).-.(X(X-l)nk) = Xk(X-l)r{Bn\   Hence  (- l)r(M)c(M, X)"/Xk  is a group

invariant with boundary values  (- l)"c(B      , A)/A^ = (1 - X)"S(m, 0).   But

(- 1/       y(G) is a group invariant (in fact it is a ring invariant) with the same

values on   ß^.   Hence   y(G) = c(M, X)/Xk.
We will apply some of the above techniques to invariants of  K , the complete

graph on 72 vertices.
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Proposition 11.6.   Let  M = K (a., • • • , a   _.) be the multigraph on the vertex

set vx,- • • , v    where \M~ l<[tz., v¿])\ = 0 for all i, \M~l({v., v .])\ = 1 for all 1 <
i < y < 72- 1, and \M~l({v{, vj)\ = a. for all 1 < i < n - 1.   f/e22ce   K (1; !,'*• , 1) =

K     , (0, • • • , 0) = K .   Let  t  (•••) be the Tutte polynomial of K (■■•).   Then7Z+ 1 v    ' '       ' 72 72^' r       J '72v/

/    zTzfly be computed from the following recursions:

tn(ax, •..,*., ... , an_x) = tn(... ,a.-l,...)

+ X    i        t        , (iZ,   + 1,   • • • ,  tf.     ,   + 1     ij ...   +  1,   . . . ,   fl        i+l)7Z — 11 z — 1 Zx2 72-1

/orzz/Z z7z > 0,  ^£Í«7-> 1; '„(0,---, 0,1,0,..., 0) = zz-n_1(l, 1,...; 1); zzW
t. = 1.

Proof.  We contract and delete edges incident with  v  .   In the first case if e
0 zz

is not an isthmus and e connects   v   with v. (where   l/M-   ([f-, v  ])| = a .) its de-
72 2     N ' z'       ZZ      ' Z

letion leaves  a. — 1 edges joining y    and zv. while its contraction identifies  v.

and v    and hence creates  zz. - 1   loops.   For any vertex  v. (j / i, n),

\a~1(Ívi, v}])\ = 1 and l/M-1^, t/.])| ==«-, hence |M-1([lT7r, zv.])| ='«. + 1.   The
edge e joining v, and zv     is an isthmus iff it is the only edge incident with  v    in

which case   M = e © ft_   j-.   Finally, /j = 1   is a boundary condition for the empty

graph.

Corollary 11.7.

X(Kn) = (X-l) ...(X-n + l),
-

p(K ) =(-1)"-1(t2-1)!,n        72 '

ß(K ) = (t2-2)!.^ 7Z

Proof.  All these invariants vanish whenever there is a loop so that

fiK„iai'' " ' an-2"> = fiKAav' • ' > « z- - 1, • • • » «„ _ x )) whenever a. > 1.   Thus for

all the invariants above:

f(Kn(av ...,an_2) = ik-l)fiKn_xil, ..., l)) + f(kjß, ..., I, . .., 0))
where k is the number of positive  a..   This recursion for various evaluations of

z gives:

(_ 1)"-1X(K ) = (72 - 2 + (1 - A))(_ l)"-2v(K     ,)
ZZ 7\ n _ I

with initial condition  x(^2) = A - 1   and evaluating this expression at  A = 0 we

get the recursion for p.   ß(Kn(0, • • • , 0, 1, 0, • • • , 0))= 0 for 22 > 2 so that ßiKJ =

(n-2)ß(Kn_x)and ß(K2)="l.
In [5] Cayley showed that there are n"~ spanning (maximal) trees in the

complete graph K . The following corollary suggests a new proof of Cayley's

formula.
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Corollary 11.8.   // s    = s   (a     - - • , a   ) = I¿ <. . . < ¿    «j<   ..'.«¿    is the mth
m m      i 72 i 772I 772

degree symmetric polynomial in the variables  a    • ■ • , a    and if 1,a . > 0, then the

number c      ,(a., • • • , a   ) of spanning trees of K     ,(«.,■••,«) equals

£._ ,in"~       s ..   In particular, c      .(1, 0, • • • , 0) = 72"        is the number of span-

77772g zYees 0/   K .

Proof.  One checks that c.  satisfies the recursions of (11.6) when  2 = x = 1.

12. Orientable pregeometries.  Minty [l3] has generalized the notion of orient-

ability (11.4) to unimbdular pregeometries (those which may be coordinatized over

any field).   Crapo [8] has counted the number of nowhere zero coboundaries for

such pregeometries.

This enumeration is shown to be a problem properly addressed to an appro-

priate Tutte subbidecomposition which lends some insight into the structure of

orientable pregeometries.

Definition 12.1.   The Bond incidence matrix  Mß  of a pregeometry G has its

rows indexed by bonds  B . Ç G and columns indexed by points  p. £ G such that

(l     if  p. £ B-,MAB.,p)J F' l
B     l     >      JO     otherwise.

We may likewise define the circuit incidence matrix MG of G.   An orientation of

G is a pair of matrices   (M„, Mc) with entries  +1,-1, and 0 such that   |zM~| =

M„, \MG\ = Mc, and (MB)(MC)    = 0 (i.e. an assignment of either 1 or - 1 to the

nonzero entries of  M„ and MG such that their rows become orthogonal).   If such

an orientation exists, G is called orientable.

Proposition 12.2.   Orientability is hereditary.   In particular, if G has orienta-

tion  (MB, MG) then for all nonfactors  p £ G, G/p  is orientable with orientations

M„ and MG where MRand MG are derivable from the matrices  M„ and MG  by delet-

ing the pth column and some of the rows.   A similar result holds for  G\p.

If G is the direct sum of two orientable pregeometries, G. © G7, then the pair

of matrix direct sums  (zMß(Gj) © Mß(G2), Mc(Gj) © MC(G2)) is an orientation for

G. —* —» ^ —•,   —»
Finally, if G has orientation  (M, M ' ), then G has orientation  (M  , M).

Proof.   The bonds of G/p ate those bonds of G which do not contain p.   Hence

<M„ is MB  with all the rows having a one in the pth position deleted and the pth

column deleted.
Let C be a circuit of G.   If p £ C then C\ipi   is a circuit of  G/p.   If p i C

then C is dependent in  G/p.   Conversely , if C    is a circuit of  G/p then C   U {p\

is dependent in G.   Hence  Mc is MG with the pth column deleted restricted to rows

of minimal support.
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If one restricts  Mß and Mc to exactly those rows and columns which are re-

tained by  /Mg and M'¿-, then the rows of  M'B are orthogonal to R, all rows of Mc

with the pth column deleted (since the rows of  Mß  are derived from those rows of

Al„  with a 0 in the pth entry).   Hence the rows of  Mfi are orthogonal to the rows of

M'2, a subset of R.   By duality, identical statements hold for  (Mß, Mc), an orienta-

tion for  G\p.

If  G = G,  ffi G2, then the points, circuits, and bonds of G are the disjoint

union of the points, circuits, and bonds of G. and G2  respectively.   Thus the bond

and circuit incidence matrices of G are the respective direct sums and if oriented

consistently with the orientations of each factor, the matrix product of the direct

sums is the direct sum of the products both of which are zero matrices.

The final statement is a consequence of the fact that a subset A is a circuit
7\7

of G iff it is a bond of G.
Definition 12.3.   Let G be an orientable pregeometry with orientation  (Mß, Mc)

and let A     be an additively written abelian group of order 22.   A coboundary f of G

(with values in  A   ) is a function from G to A     associated with a linear combina-
72' 7Z

tion  Xa.r. of the rows of  Ma  with coefficients in  A   .   For all p£G and / =z z ts n r '

^Za.r^ f(p) = Xzj.r.(p) where a .r .(p) =0,a.,ot -a. if the pth coordinate of r. is 0,

1, or — 1 respectively.   A cycle of G is defined similarly from  My.

Theorem 12.4.   Let G be an orientable pregeometry of rank n and nullity 222.

Then the number c of nowhere zero coboundaries of G  (with values in an abelian

group of order k) is given by an evaluation of the characteristic polynomial:  c =

(- 1)" XÍG, k).   The   number   of   nowhere   zero   cycles   equals   y(G, k) =

Proof. Let /(G) be the number of nowhere zero coboundaries. We will show

that (- l)r(G)/(G) is a Tutte invariant. First note that f(Gx ffi G2) = /(G,)/(G2)
since the matrix zMß(G) is a direct sum so that / is a (nowhere zero) coboundary

of Gj ffi G2  iff its restriction to G    is a (nowhere zero) coboundary (2 = 1, 2).

We will show that for any nonfactor p, /(G) = f(G\p) - f(G/p) by modifying a

proof by Crapo [8].   Let T be a basis for G not containing the point p.   Then T is

a basis for  G\p.   For all p   £ T there is a unique row of the matrix  MR   (and   M'R)

whose support (nonzero entries) includes p   and otherwise lies in the complement

of T.   Taking arbitrary linear combinations of such rows, we see that coboundaries

in G and  G\p  can take arbitrary values on T.

Let / be a coboundary of G and let /' be a coboundary of G\p which both

agree on the basis   T Ç G\p, and let p"  £ (G\p)\T.   If C is the unique circuit in

G\p  (and hence in G) which contains p"but otherwise lies in T, let r and r' be

the rows in  Mc and Mc respectively corresponding to C.   Then  r(p.) can be
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thought of as an endomorphism of A,  for all p. £ G where r(p.) is the (r, p.) entry

of Mc; and + 1(a) = a, - 1(a) = - a, and 0(a) = 0 for all a £ A,.   Then by orthog-
onality

0=   Z    r(p)f(p) = r(p")f(p")+      Z        rip)f(p).
PfC p.erne

Thus / is uniquely determined on p   by its values on T.   But  r(p  ) = / (p  ) /

0 and ^p.£TnCripi)fiPi)^\.eToCr'(Pi)f'(Pi), hence f(p")=f'(p") for all p".6
{Gl\{p!.   But the values /takes on T also determine its value on p; hence /   is

nowhere zero on   G\p iff / is nowhere zero on  Í G\ \{p\  (and has some fixed arbi-

trary value on p).   Thus there is a 1-1   correspondence between nowhere zero co-

boundaries of  G \p and coboundaries of G which are nowhere zero on  {G¡\ípS.

The rows  R of M" ate exactly those rows R   of MR  with a zero in the pth col-

umn (12.2).   Since coboundaries of G which are zero on p ate freely and uniquely

determined by their values on a basis T (p £ T), such coboundaries are linear

multiples of R since   T\ipi  is a basis for  G/p; and so coboundaries can be found

taking arbitrary values on  T\{p! in G/p using rows R which correspond to R '.

Hence there is a 1-1 correspondence between nowhere zero coboundaries of  G/p

and coboundaries in G which are 0 on p but nonzero elsewhere.   Thus f(G\p) -

f(G/p) counts the number of coboundaries of G which are nowhere zero on  {G¡\[p|

and in addition not zero on p.   But this number is just /(G).

A loop x has no bonds and hence no coboundaries so that f(x) = 0 while an

isthmus has no circuits and hence no constraints so any nonzero element of A,

can serve as a coboundary; so  (- l)T^z'f(z) = 1 - k and we are done by the funda-

mental theorem (3.6).   We count the number of cycles by dualizing and noting that

cycles of G ate coboundaries of G  (see 12.2).   Then we may apply (4.3) and (4.7).

We remark that the concepts of orientable pregeometries and nowhere zero co-

boundaries generalize the topological notions of orientation and nowhere zero one-

coboundaries (colorings) of multigraphs.

To see this, we orient our multigraph M as in (11.4).   Then if  C = (v., e., v2,

e 2, • • • , v      ^) is a circuit and zM(e .) = (d., 77.    .) we place an entry of 1 in the

(C, e .) coordinate of Mc, and we place a - 1   if M(e .) = (v.   ,, v.).

A bond of M consists of all the edges joining two connected blocks   V. and V?

of a vertex partition of a connected component of M.   Then if  M(e) = (v, v  ) we

place an entry of 1 in the  (B, e) coordinate of  M„ if v eV, and v  £ V ~ and a - 1

if v £ V2, v  £ V j.    If 7 is the row of  MG  associated with C and r   the row of MR
associated with B then l¿r(e .)r (e .) = 0 since there are an even number of edges

in common with B and C and giving those edges   e . the induced order from C,

r(e )r (e.) alternates in sign.
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To lend some insight into the enumerations (11.5) and (12.4) one notes that

every chain of M gives  rise to a unique coboundary and every coboundary deter-

mines all the values of a chain once the value for one vertex has been specified

for each one-connected component of M.   The resulting chain is a coloring iff the

coboundary is nowhere zero.

The generalization is meaningful since for example it allows one to consider

coboundaries of duals of nonplanar graphs.
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