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A DECOMPOSITION FOR INVARIANT TESTS
OF UNIFORMITY ON THE SPHERE

JEAN-RENAUD PYCKE

(Communicated by Edward C. Waymire)

Abstract. We introduce a U-statistic on which can be based a test for unifor-
mity on the sphere. It is a simple function of the geometric mean of distances
between points of the sample and consistent against all alternatives. We show
that this type of U-statistic, whose kernel is invariant by isometries, can be sep-
arated into a set of statistics whose limiting random variables are independent.

This decomposition is obtained via the so-called canonical decomposition of a
group representation. The distribution of the limiting random variables of the
components under the null hypothesis is given. We propose an interpretation
of Watson type identities between quadratic functionals of Gaussian processes
in the light of this decomposition.

1. Introduction

There are various problems in the field of directional statistics where the obser-
vations are directions in three dimensions. The surface of a unit sphere may then be
used as the sample space for directions in space, each measurement being thought
of as a point on a sphere of unit radius. One of the most important hypotheses
about a distribution on a sphere is that of uniformity. We introduce in Theorem
2.1 a new U -statistic appropriate for testing uniformity on the sphere. A general
survey and references concerning tests of uniformity for spherical data are given in
[8], chapter 9-10.

The algebraic, geometrical, topological structures of the sphere give rise to par-
ticular problems that necessitate the use of special tools. For example the uniform
distribution on the sphere does not have an extrinsic mean, and therefore the the-
ory of distributions with extrinsic mean (see [1] and [2]) though generic, cannot be
applied. In the delicate area of spherical data that do not necessarily have a mean,
the invariance under the action of a group can therefore play an important role.
The uniform distribution is characterized by its invariance by O(3), the group of
isometries of the sphere. Several of the important theoretical distributions occurring
in directional statistics are also characterized by invariance under the action of a
group. Distributions with rotational symmetry are invariant by the group SO(2) of
rotations around a given direction. See [8] p.179 for examples and references about
models with rotational symmetry, particularly the celebrated von Mises-Fisher dis-
tribution. When the observations are not directions but axes the sample space is
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the set of couples of antipodal points of the sphere. Axial distributions correspond
to spherical distributions invariant by antipodal symmetry. Different distributions
(as those of Watson, Binghan) and tests of uniformity or rotational symmetry for
axial distributions are discussed in [8], §9.4 and 10.7. We provide an example of
utilization of group theory in section 3. Theorem 3.1 gives a method for deriving
the decomposition of U -statistics whose kernel Φ is G-invariant with respect to a
compact subgroup G ⊆ O(3), i.e.

(1.1) ∀g ∈ G : Φ(g · ξ1, g · ξ2) = Φ(ξ1, ξ2).

The interest of breaking-down a statistic into a set of uncorrelated components, each
measuring some distinctive aspects of the data, has been exemplified in the basic
papers [3], [4]. We show in section 4 how the statistic UΓ,n introduced in Theorem
2.1 can be decomposed in order to build goodness of fit tests whose hypotheses,
given by (4.2) are related to invariance under the action of a group. The consistency
of these components under certain alternatives is stated in Proposition 4.1 and
Proposition 4.2. Example 4.1 deals with the case of rotational symmetry, Example
4.2 with antipodal symmetry. Example 4.3 illustrates the use of the character table
of a finite group.

Our decomposition is obtained by combining two different tools, from spectral
and group theory respectively. We first use classical spectral methods in order to
obtain the well-known decompositions (3.3)−(3.5). In the case where (1.1) holds we
obtain a refinement of these decomposition by means of the canonical decomposition
(following Serre’s terminology in [15], §2.7) of the linear representations of G given
by (3.7).

Interestingly, Watson’s identity and bivariate generalizations introduced in [9]
can be interpreted in light of this approach; see Remark 4.4. Consequently, it
seems to provide an efficient tool for deriving quadratic functionals of Gaussian
processes arising as the limits in distribution of invariant U -statistics.

As it is underlined in the recent paper [6], the problem of finding systematical
methods for building goodness of fit tests on the sphere and other manifolds remains
widely opened. Giné established in [5] a general framework for testing uniformity
on a wide family of sample spaces including the sphere. The eigenfunctions and
eigenspaces of the Laplacian play a central role in this framework. Interestingly,
the new test of uniformity introduced in Theorem 2.1 is also closely related to the
Laplacian, more precisely to the zero-mean Green’s function of this operator given
by (2.1). Natural extensions of this method to other manifolds and distribution
will be discussed in a forthcoming paper.

Throughout this paper C�(k) (k, � ≥ 1) will denote a sequence of independent
random variables such that hold the equalities in law C�(k) = χ2(k) − Eχ2(k) =
χ2(k)−k, where χ2(k) is a chi squared random variable having k degrees of freedom.

2. A test of uniformity based on the geometric mean of spacings

Let S2 = {(x, y, z) ∈ R
3 : x2 + y2 + z2 = 1} be the unit sphere of the Euclidean

space E3. A point ξ ∈ S2 is specified by spherical coordinates

(colatitude, longitude) = (θ, φ) ∈ [0, π] × [0, 2π]

which are related to the Cartesian coordinates given by x=sin θ sin φ, y=sin θ cos φ,
and z = cos θ. We consider a population specified by a probability density function
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f(ξ) = f(θ, φ) with respect to the surface element

dξ = sin θdθdφ.

Suppose that we wish to test the null hypothesis
H0 : ξi(θi, φi), 1 ≤ i ≤ n, is a sample of n independent observations
from the uniform distribution f(ξ) = f0(ξ) := 1/(4π)

against the alternative hypothesis H1 : f �= f0. Consider the kernel

(2.1) Γ(ξ1, ξ2) := − 1
4π

log
e

2
(1 −−→

ξ1 · −→ξ2) (ξ1, ξ2 ∈ S2, ξ1 �= ξ2)

where for each ξ ∈ S2,
−→
ξ denotes the corresponding unit vector emanating from

the origin of the Cartesian system. The idea underlying the use of Γ for testing
uniformity on S2 arises naturally from the interpretation of the celebrated Watson’s
statistic Un, introduced in [17] in order to test uniformity on the circle S1. In
brief outline, Un is a degenerate V −statistic with its kernel the zero-mean Green’s
function of the Laplacian on S1. Our kernel Γ can be shown to be the zero-mean
Green’s function of the Laplacian on S2. In the following theorem

δ(ξ1, ξ2) :=
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 and γn :=
∏

1≤i<j≤n

δ(ξi, ξj)
2

n(n−1)

are defined to be the distance between two points in E3, and given n points ξ1, ..., ξn,
the geometric mean of distances between these points.

Theorem 2.1. Under H0, the U-statistic

(2.2) UΓ,n(ξ1, . . . , ξn) :=
2

n − 1

∑
1≤i<j≤n

Γ(ξi, ξj) = − n

4π
log

(e

4
γ2

n

)
converges in law, as n → ∞, toward the random variable

(2.3) UΓ :=
∞∑

�=1

C�(2� + 1)
�(� + 1)

.

Proof. First noticing that 1 −−→
ξ1 · −→ξ2 = δ2(ξ1, ξ2)/2, we obtain

Γ(ξ1, ξ2) = −(4π)−1 log[eδ2(ξ1, ξ2)/4]

and the second equality in (2.2) is readily checked. For the following basic facts
about spherical harmonics see, e.g., [13], chapter III. Let P� and Pm

� denote the
Legendre polynomials and associated Legendre functions defined, for � = 0, 1, ...,
by

P�(x) :=
1

�!2�

d�

dx�
(x2 − 1)�, Pm

� (x) := (1 − x2)
m
2

dmP�(x)
dxm

(1 ≤ m ≤ �)

(see [13], formulas (7) p.174 and (1) p.246). An orthonormal basis of the Hilbert
space L2(S2) equipped with the inner product (3.1) is provided by the set of spher-
ical harmonics

⋃∞
�=0{fm

� : −� ≤ m ≤ �} with (see [13], (II ′) − (IV ) p.262-264)

f0
� (ξ) := [(2� + 1)/(4π)]1/2P�(cos θ) (� ≥ 0),(2.4)

fm
� (ξ) := αm

� cos(mφ)Pm
� (cos θ) (1 ≤ m ≤ �),(2.5)

fm
� (ξ) := αm

� sin(mφ)P |m|
� (cos θ) (−� ≤ m ≤ −1)(2.6)
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with αm
� = α−m

� = [(2� + 1)(� − m)!/(2π(� + m)!)]1/2 for m > 0. From formula
(105) p.311 in [11] we derive the pointwise convergent expansion

(2.7) log 2− 1− log
(
1 −−→

ξ1 · −→ξ2

)
=

∞∑
�=1

(2� + 1)P�(
−→
ξ1 ·

−→
ξ2)

�(� + 1)
(ξ1, ξ2 ∈ S2, ξ1 �= ξ2).

On dividing both sides of (2.7) by 1/(4π) and in view of (2.1) and (2.4) it becomes

(2.8) Γ(ξ1, ξ2) =
∞∑

�=1

[(2� + 1)/(4π)]1/2 f0
� (
−→
ξ1 · −→ξ2)

�(� + 1)
(ξ1, ξ2 ∈ S2, ξ1 �= ξ2).

In spherical coordinates
−→
ξ1 · −→ξ2 = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2) and the

addition formula for Legendre polynomials (see (V II ′) p.268 in [13]) may be written

(2.9) [(2� + 1)/(4π)]1/2f0
� (
−→
ξ1 · −→ξ2) =

∑
−�≤m≤�

fm
� (ξ1)fm

� (ξ2).

Furthermore, from [12], inequality (35) p.87 involving Legendre functions, we in-
fer that there exists a > 0 such that |fm

� (ξ1)fm
� (ξ2)| ≤ a�1/2 if (θ1, θ2, m, �) �=

(0, 0, 0, 0). Consequently the general term of the series on the right-hand side of
(2.10) is of order a/

√
�, hence converges to 0. When combined with (2.8) and (2.9)

this fact ensures the pointwise convergence in the expansion

(2.10) Γ(ξ1, ξ2) =
∞∑

�=1

∑
−�≤m≤�

fm
� (ξ1)fm

� (ξ2)
�(� + 1)

(ξ1, ξ2 ∈ S2, ξ1 �= ξ2).

The convergence is also valid in L2(S2 × S2), and the convergence in law of UΓ,n

toward the random variable (2.3) is a consequence of Theorem 4.3.1, p.138 in [7]. �

3. Decomposition of G-invariant U-statistics

For basic definitions and facts about groups and their representations the reader
is referred to [15], Part i. Let G denote the set of compact subgroups of O(3). These
groups (as the cyclic and dihedral groups or the symmetry groups of Platonic solids)
are of particular interest in mathematical physics. Some of them are discussed in
[15], §5.1 − 5.6. Let G ∈ G. An isometry g ∈ G maps a point ξ ∈ S2 onto
g · ξ = gξ ∈ S2. An action of G on functions f and Φ defined on S2 and S2 × S2

respectively is given by the shift operators

g · f(ξ) := f(g−1ξ), g · Φ(ξ, η) := Φ(g−1ξ, g−1η), g ∈ G.

A function f (resp. a set of functions F) is said to be G-invariant if for each g ∈ G,
one has g · f = f (resp. g · f ∈ F for each f ∈ F).

Consider the Hilbert space L2(S2) of square integrable functions f : S2 → R

equipped with the usual inner product and the corresponding norm

(3.1) (f1|f2) :=
∫

S2
f1(ξ)f2(ξ)dξ, ‖f‖ := (f |f)1/2.

Consider a U - statistic defined as

(3.2) Un(ξ1, . . . , ξn) =
2

(n − 1)

∑
1≤i<j≤n

Φ(ξi, ξj)

where Φ is a real valued kernel satisfying the four following conditions:
• C1 : Φ(ξ1, ξ2) = Φ(ξ2, ξ1) and supξ1∈S2

∫
S2 Φ(ξ1, ξ2)2dξ2 < ∞;
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• C2 :
∫

S2 Φ(ξ1, ξ2)dξ2 = 0 (degeneracy condition);
• C3 : Φ is G-invariant;
• C4 : for each ξ1 ∈ S2, the mean convergent expansion (3.5) is pointwise conver-

gent for each ξ2 ∈ S2 except maybe for ξ2 ∈ Cξ1 where Cξ1 ⊆ S2 is a finite
set.

Note that it is readily checked from (2.1) (for C1 and C3) and the expansion (2.10)
(for C2 and C4) that our kernel Γ satisfies these four conditions. Let us briefly
motivate these assumptions. C1 and C2 are standard hypotheses allowing us to
define a degenerate U -statistic with kernel Φ to whom we can apply the method
of orthogonal decomposition (see, e.g., [14], §5.5.2 or [7], §4.3). C4 is convenient
in order to obtain a pointwise decomposition in (3.16) and not only an equality in
L2. Classical results from spectral theory in Hilbert spaces state that under C1 the
integral operator A defined in L2(S2) by

A : f(.) �→ Af(.) :=
∫

S2
Φ(., η)f(η)dη

is a Hilbert-Schmidt operator. Consequently we have the orthogonal decomposition

(3.3) L2(S2) = kerA ⊕

⎛⎝⊕
�≥1

E�

⎞⎠ , with dimE� < ∞,

where (E�)�≥1 are the eigenspaces of A corresponding to the sequence (λ�)�≥1 of
pairwise distinct nonnull eigenvalues which satisfy

∑
�(dim E�)λ2

� < ∞. For each
� ≥ 1 let {φm

� : 1 ≤ m ≤ dimE�} denote an orthonormal basis of E�. For each
ξ ∈ S2 the kernel Φ�(ξ, .) :=

∑
m φm

� (ξ)φm
� (.) ∈ L2(S2) does not depend on the

choice of the basis, since Φ�(ξ, .) is the projection of Φ(ξ, .) into E�. Thus the
eigenfunction expansion of Φ usually given in the form

(3.4) Φ(ξ1, ξ2)
L2

=
∞∑

�=1

λ�[
dim E�∑
m=1

φm
� (ξ1)φm

� (ξ2)]

(see (2) p.196 in [14] or (4.2.6) p.138 in [7]) can be rewritten in the canonical form
(independent of the choice of orthonormal bases in the spaces E�, � ≥ 1)

(3.5) Φ(ξ1, ξ2)
L2

=
∞∑

�=1

λ�Φ�(ξ1, ξ2).

It will be noted that (3.4) and (3.5) correspond to (2.10) and (2.8) for Φ = Γ, with
λ� = [�(� + 1)]−1.

Proposition 3.1. Assume Φ satisfies C1,C2 and C3. Then : (a) each eigenspace
of the associated integral operator is G-invariant, (b) each kernel Φ� satisfies C1,C2
and C3.

Proof. (a) follows from the equalities, valid for f satisfying Af = λf and g ∈ G,

A(g · f)(ξ) =
∫

S2
Φ(ξ, η)f(g−1η)dη =

∫
S2

Φ(g−1ξ, g−1η)f(g−1η)dη

=
∫

S2
Φ(g−1ξ, g−1η)f(g−1η)d(g−1η) =

∫
S2

Φ(g−1ξ, η)f(η)dη

= (Af)(g−1ξ) = λf(g−1ξ) = λ(g · f)(ξ)
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where for the second and third equalities we used the G-invariance of Φ and dη,
respectively. For (b), C1 follows readily from the fact that for each � ≥ 1, Φ�(ξ, .) is
the orthogonal projection of Φ(ξ, .) into E�. Next remark that C2 is fulfilled for Φ
means that the constant function 1 : ξ �→ 1 belongs to kerA. From (3.3) we obtain
Φ�(ξ, .) ∈ E� ⊆ (kerA)⊥ which implies (Φ�(ξ, .)|1) = 0, and C2 is satisfied. By
invariance of the inner product under G- action it is clear that for each orthonormal
basis (φm

� )m the set (g ·φm
� )m is another orthonormal basis of E�. The remark made

before (3.4) then allows us to write Φ�(g · ξ1, g · ξ2) =
∑

m g · φm
� (ξ1)g · φm

� (ξ2) =∑
m φm

� (ξ1)φm
� (ξ2) = Φ�(ξ1, ξ2), and C3 is satisfied. �

For each G ∈ G, let Ĝ denote the set of characters corresponding to a complete
set of mutually nonisomorphic irreducible unitary representations of G. For each
χ ∈ Ĝ, dχ denotes the degree of χ. The set Ĝ is finite whenever G is finite, or
countably infinite otherwise. If G is not finite, let dg be the invariant measure (or
Haar measure) of the group G. We are only concerned with real valued statistics
and random variables. We shall therefore consider a set of characters, say Υ, such
that

(3.6) G ∈ G, Υ ⊆ Ĝ and each χ ∈ Υ has values in R.

Assertion (a) in Proposition 3.1 enables us to define a linear representation T�

of G in E� by putting, for each g ∈ G,

(3.7)
T�(g) : E� → E�,

f �→ g · f.

For any function f : S2 → R and χ ∈ Ĝ we set

(3.8) Pχf(ξ) :=

{
dχ

|G|
∑

g∈G χ(g)f(g−1ξ) if G is finite,

dχ

∫
G

χ(g)f(g−1ξ)dg if G is not finite.

Theorem 3.1. Assume (3.6) is fulfilled. Let Φ be a kernel satisfying the four
conditions C1-C4. Let χ� denote the character of the representation (3.7). For
each χ ∈ Ĝ, the mapping f ∈ E� �→ Pχf is an orthogonal projection of E� into
Eχ

� ⊆ E�. If χ1, χ2 ∈ Υ and χ1 �= χ2, then the spaces Eχ1
� and Eχ2

� are orthogonal.
The space Eχ

� is G-invariant and of dimension

dim Eχ
� = dχ〈χ�|χ〉,

where 〈χ�|χ〉 :=

{
|G|−1

∑
g∈G χ�(g)χ(g) if G is finite,∫

G
χ(g)χ�(g)dg if G is not finite.

If furthermore (3.6) is satisfied with Υ = Ĝ, then

E� =
⊕
χ∈Ĝ

Eχ
� , hence (kerA)⊥ =

⊕
�≥1

⊕
χ∈Ĝ

Eχ
� .(3.9)

Proof. This theorem follows from results proved in [15]. See Theorem 8 p.21 for
the case where G is finite. For the case where G is not finite, we use the extensions
of the preceding theorems stated in assertions (a) and (e) in §4.3. �

We are now equipped to deal with the decomposition our G-invariant U -statis-
tic. From a kernel Φ, we obtain a new kernel by setting

(3.10) Φχ(ξ, .) := PχΦ(ξ, .).
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Proposition 3.2. Assume (3.6) is satisfied. Let Φ be a kernel fulfilling the four
conditions C1-C4. Then for each χ ∈ Υ the latter are also satisfied by Φχ, the
expansion (3.5) referred to in C4 being replaced for Φχ by

(3.11) Φχ(ξ1, ξ2)
L2

=
∞∑

�=1

λ�Φ
χ
� (ξ1, ξ2).

For each ξ1 ∈ S2, the convergence in (3.11) is pointwise for each ξ2 ∈ S2, except
maybe for ξ2 belonging to a finite or countable set.

Proof. When G satisfies (3.6), we know from [15], assertion (ii) of Proposition 1
p.10 that χ(g−1) = χ(g) for each g ∈ G. To avoid notational cumbersomeness, we
restrict the proof concerning the symmetry in C1 to the case where G is finite. We
have

PχΦ(ξ, η) =
dχ

|G|
∑
g∈G

χ(g)Φ(ξ, g−1η) by definition of Pχ(Φ)

=
dχ

|G|
∑
g∈G

χ(g)Φ(ξ, gη) by changing g into g−1 and using χ(g−1) = χ(g)

=
dχ

|G|
∑
g∈G

χ(g)Φ(g−1ξ, η) =
dχ

|G|
∑
g∈G

χ(g)Φ(η, g−1ξ) = PχΦ(η, ξ)

where for the last equalities we used the G-invariance and the symmetry of Φ.
Thus Φχ is symmetric. The second assertion in C1 is a direct consequence of the
spectral decomposition (3.3) and the fact that the restriction of Pχ to each E� is an
orthogonal projection. C2 follows readily from assertion (b) in Proposition 3.1. For
C3 we first notice that (iii) in Proposition 1 p.10 in [15] implies χ(h−1gh) = χ(g)
for g, h ∈ G. And this enables us to obtain, for any h ∈ G, the relations

PχΦ(hξ, hη) =
dχ

|G|
∑
g∈G

χ(g)Φ(hξ, g−1hη) =
dχ

|G|
∑
g∈G

χ(hgh−1)Φ(hξ, (hgh−1)−1hη)

=
dχ

|G|
∑
g∈G

χ(g)Φ(hξ, hg−1η) =
dχ

|G|
∑
g∈G

χ(g)Φ(ξ, g−1η) = PχΦ(ξ, η)

which proves C3. We omit details for C4. �

The preceding lemma enables us to define new G-invariant degenerate U -statis-
tics with kernels Φχ defined by (3.10) and

(3.12) ΦΥ(ξ1, ξ2) :=
∑
χ∈Υ

Φχ(ξ1, ξ2), Φ
Υ
(ξ1, ξ2) := Φ(ξ1, ξ2) − ΦΥ(ξ1, ξ2)

and the corresponding U -statistics

Uχ
n (ξ1, ..., ξn) :=

2
(n − 1)

∑
1≤i<j≤n

Φχ(ξi, ξj), (χ ∈ Υ)(3.13)

UΥ
n (ξ1, ..., ξn) :=

∑
χ∈Υ

Uχ
n (ξ1, ..., ξn),(3.14)

U
Υ

n (ξ1, ..., ξn) := Un(ξ1, ..., ξn) −
∑
χ∈Υ

Uχ
n (ξ1, ..., ξn).(3.15)
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Theorem 3.2. Assume (3.6) is satisfied and let Φ be a kernel fulfilling the four
conditions C1-C4. Then one has for each n ≥ 2 and almost every n-tuple ξi (1 ≤
i ≤ n),

(3.16) Un(ξ1, . . . , ξn) =
∑
χ∈Υ

Uχ
n (ξ1, . . . , ξn) + U

Υ

n (ξ1, ..., ξn).

Under H0, the statistics Uχ
n , (χ ∈ Υ) and U

Υ

n are asymptotically pairwise inde-
pendent and one has the convergence in law

limUχ
n =

∑
�≥1

λ�C�(dχ〈χ�|χ〉), limUΥ
n =

∑
�≥1

λ�C�(
∑
χ∈Υ

dχ〈χ�|χ〉),

and limU
Υ

n =
∑
�≥1

λ�C�(dim E� −
∑
χ∈Υ

dχ〈χ�|χ〉)

where χ� is the character of representation (3.7).

Proof. This theorem is a consequence of Theorem 3.1 combined with basic results
from the theory of orthogonal expansions applied to U -statistics; see, e.g., [7],
Theorem 4.3.1 p.138. �

4. Application to goodness of fit tests

with G-invariant hypotheses

We first discuss the consistency of tests based on Un or the statistics (3.13) −
(3.15). Let FS2 ⊆ L2(S2) denote the set of probability density functions on the
sphere.

Proposition 4.1. Suppose that F0,F1 ⊆ FS2 and f0 ∈ F0. The test based on
rejecting H0 : f ∈ F0 against H1 : f ∈ F1 for large absolute values of the U-
statistic defined by (3.2) is consistent when

(4.1) F0 ⊆ ker A, F1 ∩ ker A = ∅,
A being the integral operator associated with Φ. In particular the test of uniformity
based on UΓ,n is consistent against all alternatives.

Proof. If f ∈ F1 holds, the U -statistic Un with kernel Φ is non degenerate, and we
know from [7], Theorem 4.2.1, or [14], Theorem A p.192 that there exist µ ∈ R and
σ > 0 such that the convergence in law n1/2 (Un/n − µ) → N (0, σ2) holds. In view
of Thoerem 3.2, this convergence implies the desired result. In the particular case
where Γ = Φ and F0 = {f0}, we use the fact that the kernel of the integral operator
associated with Γ is the set of constant functions whose orthogonal is generated by
the set of nonconstant spherical harmonics. �

We now fix Φ = Γ. Recall that the trivial representation of a group G denoted by
χ0 is the representation of degree one defined by χ0(g) = 1 for each g ∈ G. In this
case we shall use the notations ΓG, UG

Γ,n, U
G

Γ,n and EG
� instead of Γχ0 , Uχ0

n , U
χ0

n

and Eχ0
� . Let FG denote the set of G-invariant distributions on the sphere. The

cases where F0 = {f0},F1 = FG \{f0} and F0 = FG,F1 = FS2 \FG in Proposition
4.1 correspond to the two goodness of fit tests
(4.2)

T :

{
H0 : f is uniform,
H1 : f is G-invariant but not uniform.

T’:

{
H ′

0 : f is G-invariant,
H ′

1 : f is not G-invariant.
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Proposition 4.2. Assume (3.6). A test based on rejecting H0 (resp. H ′
0) for large

values of |UG
Γ,n| (resp.|UG

Γ,n|) is consistent against H1 (resp. H ′
1). One has under

H0 the convergence in law

UG
Γ,n →

∑
�≥1

C�(dim EG
� )

�(� + 1)
with EG

� = {f ∈ E� : f is G-invariant}(4.3)

and under H ′
0 : U

G

Γ,n →
∑
�≥1

C�(2� + 1 − dimEG
� )

�(� + 1)
.(4.4)

Proof. Except for the consistency, the results of this proposition are a restatement
of Theorem 3.2 in two particular cases. Concerning the consistency, the fact that
(4.1) is fulfilled in both cases is easily seen after noticing that f �→ Pχ0f =: fG is
an orthogonal projection into FG. This implies the equivalences

(f |ΓG(ξ, .)) = 0 ⇐⇒ (fG|Γ(ξ, .)) = 0,

(f |Γ(ξ, .) − ΓG(ξ, .)) = 0 ⇐⇒ (f − fG|ΓG(ξ, .)) = 0.

�

Example 4.1. Assume G = SO(2) is the group of rotations g through an angle
φ ∈ [0, 2π] around the polar axis, with Haar measure dg = dφ/(2π). We obtain

ΓSO(2)(ξ1, ξ2) =
∫ 2π

0

Γ(ξ1, ξ2)
dφ2

2π
= − 1

4π
log

e(1 − cos θ1)(1 + cos θ2)
4

.

Under H0: U
SO(2)
Γ,n →

∑∞
�=1

C�(1)
�(�+1) and under H ′

0: U
SO(2)

Γ,n →
∑∞

�=1
C�(2�)
�(�+1) .

Example 4.2. Antipodal symmetry is invariance under the action of the group
{I, σ} where I is the identity and σ the reflection through the origin. The corre-
sponding kernel is

ΓI,σ(ξ1, ξ2) =
Γ(ξ1, ξ2) + Γ(ξ1, σ · ξ2)

2
= − 1

4π
log

e

2
(1 − |−→ξ1 · −→ξ2 |2).

Under H0: UI,σ
n →

∑
� even

C�(2�+1)
�(�+1) and under H ′

0: U
I,σ

Γ,n →
∑

� odd
C�(2�+1)

�(�+1) .

Example 4.3. The aim of this example is to show how the character table of a
finite group can be used in order to write (3.8) explicitly. We follow the notation
introduced in [15], §5.8. If G is the symmetry group of a regular tetrahedron it has
24 elements partitioned into 5 equivalence classes denoted 1, (ab), (ab)(cd), (abc)
and (abcd). Furthermore we have Ĝ = {χ0, ε, θ, ψε, ψ}, and these five characters
are real valued. Hence Γ can be decomposed into five components. For example
one of them corresponds to χ = θ, a character of degree dθ = θ(1) = 2. Therefore
(3.8) is written, in view of the character table of G,

Γθ(ξ1, ξ2) =
2
24

[2Γ(ξ1, ξ2) +
∑

g∈(ab)(cd)

2Γ(ξ1, gξ2) −
∑

g∈(abc)

Γ(ξ1, gξ2)].

Remark 4.4. We are now in a position, as claimed in the introduction, to show
that Watson’s identity and generalizations given in [9], Theorem 3, are related to
the canonical decomposition of a group representation. These identities correspond
to a decomposition of the form (3.16), applied to the covariance function or tra-
jectories of the Gaussian processes appearing in these identities in the following
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way. Consider a group G acting on a set S, on which is defined a Gaussian process
f(x, ω) = f(x), x ∈ S. Assume moreover that the latter has a covariance function
Φ satisfying the invariance property,

Φ(x, y) = Φ(g · x, g · y) whence f(x)
(in law)

= f(g · x) (x ∈ S, g ∈ G).

We restrict ourselves to the case of Watson’s identity given in [16], relation (7),
with a new proof and references for different proofs. In [10] we gave an elementary
proof of this identity, based on the decomposition of a function f : S = [0, 1] → R

in the form f(x) = f1(x) + f2(x) := [f(x) + f(1 − x)]/2 + [f(x) − f(1 − x)]/2.
The group G of isometries of [0, 1] is {ι, s} with ι(x) = x, s(x) = 1 − x. One has
Ĝ = {χ1, χ2} with χ1(ι) = χ1(s) = 1 and χ2(ι) = −χ2(s) = 1 hence dχ1 = dχ2 = 1.
In this setting the decomposition f = f1 + f2 becomes f = Pχ1f +Pχ2f where the
projections are defined by (3.8).
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