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Let H be a complex Hilbert space and let ®&(H) denote the algebra of all
bounded linear operators on H. Then T ¢ ®&(H) is abnormal (sometimes, com-
pletely non-normal) if there is no non-trivial subspace M & H which reduces
T and such that the restriction of 7' to M is normal. Every T ¢ ®(H) may be
written uniquely as the direct sum of a normal operator 7, with an abnormal
operator T, . We shall refer to Ty and T', as the normal and abnormal parts
of T, respectively.

A theorem of von Neumann ([8], p. 96), rediscovered and sharpened by
Halmos ([3]), asserts that every isometry V on a Hilbert space H is unitarily
equivalent to the direct sum of a unitary operator and a pure isometry of
multiplicity d = dim [(VH)"] (cf. [4], problem 118). It develops that the scalar
d is a complete set of unitary invariants for the abnormal part of the isometry V.
An operator T is quasinormal if T commutes with T*T. In particular, every
isometry is quasinormal. In [1] Brown obtains both a canonical form and a
complete set of unitary invariants for the abnormal part of a quasinormal
operator. In the isometric case Brown’s results specialize to those of
von Neumann.

In section 1 of this paper we obtain a decomposition for operators, which,
as is shown in section 3, is a generalization of Brown’s work on quasinormal
operators. We associate with each T ¢ @(H) a (not necessarily proper) subspace
H(T) of H which is invariant under 7% and reduces [T] = T*T — TT* If
V ¢ ®(H) is isometric, for instance, one has H,(V) = (VH)*. We establish that
the abnormal part of T' is completely determined up to unitary equivalence by
the restrictions of T* and [T] to H,(T). In case d = dim (H,(T)) < =, the
structure of the abnormal part of T is determined by two d-by-d matrices.

The results of section 1 are of little interest if H,(T) is too large. In section 2
we study conditions under which H,(T) = H. We show that if 7' is abnormal
and nearly a finite-dimensional operator (in some appropriate sense), then
H,(T) = H. This suggests that the results of section 1 will be of most interest
if the operator being studied is far from being finite-dimensional.
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The main result of section 3 is that if T is subnormal, then H,(T') is the closure
of the range of [T]. This means, for example, that the structure results given
in section 1 may be easily applied to subnormal operators whose self-commutator
is of finite rank. It also enables us to deduce the results of Brown and von Neu-
mann mentioned above from our results in section 1.

In section 4 we give an application of our results to the study of quasitri-
angular operators.

The author would like to express his thanks to P. R. Halmos, T. L. Kriete,
III, and to Marvin Rosenblum for a number of helpful conversations concerning
the results in this paper and to the referee for his helpful comments and sug-
gestions concerning the paper.

§1. We begin with several lemmas which may be of interest independent of
their application here.

Lemma 1.1: Let H be a Hilbert space and let A, B ¢ ®(H). Then the largest
subspace M of H for which BM & M and ABv = BAuv for every ve M 1s

M = (Nker (AB° — B'A).
g=1

Proof: It is clear that M is a subspace of H. Pick v ¢ M and let w = Bu.
Then for all integers s = 1, we have AB'w = AB*"'v = B°™'Av = B*(BAv) =
B (ABv) = B*Aw, since ve M. Hence BM C M. The relation M C ker (AB —
BA) implies that ABy = BAv for allve M.

Next, let ¥ be a subspace of H such that BY C Y and ABy = BAy for all
yeY. Then B°Y C Y foralls = 1.If ye Y, then AB*% = AB(By) = BA(By) =
B(4ABy) = B’Ay. By induction, B°’Ay = AB’y for every y ¢ Y and all s = 1.
Hence Y C M.

An easy modification of the proof of Lemma 1.1 yields a proof of the following
result:

Lemma 1.2: Let A, B & ®(H). Then the largest subspace M < H such that
AM C M, BM C M and ABv = BAv for every ve M 1is

M = N\ Nker (A’B° — B°A").
r=1 g=}

Although we shall not use the results in this generality, we note that Lemmas
1.1 and 1.2 both hold in case the underlying space is a Banach space.

An immediate consequence of Lemma 1.2 and the definition of reducing
subspace is the following:

Corollary 1.3: Let T & ®(H). Then the largest subspace H, of H which reduces
T and such that T|H, is normal is

©

H, = N fcj\ker {I*T — T°(T*N.

r=1
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Furthermore, T|(H,)"* is abnormal.
Our next lemma is the basis for the subsequent decomposition theorems.

Lemma 1.4: Let T e ®(H). Put M, = H and, for all k = 1, define

=

w©

M, =N f) er (T*)"1° — T°(T*)").

pe=

-

Then
.) M, 2 My, forall k
i.) TM, C M, for all k
i) T*M, S M, for all k 1,
W) T*M," € M,* for al kb = 0

v) TM," © My..* forallk = 0.

v v
wvEe

Proof: Parts v.) and v.) of the assertion follow immediately from parts #:.) and
#44.) upon taking orthogonal complements, and part <.) follows directly from
the definition of the subspaces M, .

Part 44.) is trivially true if k¥ = 0. For » = 1, Lemma 1.1 implies that the
intersection (taken over s = 1) of the subspaces ker [(T*)"T° — T°(T*)7] is
itself an invariant subspace for T, and hence, so also is M, for every &k = 1.

Part ¢4¢.) is trivial if £ = 1, so suppose that £ = 2, Let x ¢ M, and put z = T*x.
Then since z ¢ M, C M, , we have (T*)"T"z = (T*)T(T*’T*x) (T*) ' T*x.
But if » + 1 £ k, then, since a ¢ M, for every p = k, we have (T*)' 1"z =
T (T "' T"(T*) 2. Thus z e M,_, and 4.) holds.

If we let {e,Jk = 0} be the standard orthonormal basis for £* and if we let T
be the unilateral shlft on £°, then it is instructive to note that

M, = sple; | =k} for k=0.

Theorem 1.5: Let T ¢ ®(H). Then there exisis a (finite or infinite) sequence
{H;|j = 0} of pairwise orthogonal subspaces of H such that

iVH=H®PH P - PHP ---,

#.) H, reduces T, T|H, is normal, and T|H," is abnormal,

wi.) T*H, C H,,

w.) T*H, C H,_, @D H, forall k =

v.) TH, C H, @ H,..forallk = 1,

vi) He@ H,,y = VvV {H,, TH,} forall k = 1,

ve.) dim H, = dim H,., forall k = 1.

Proof: We associate with T the subspaces M, as was done in Lemma 1.4. Put
= MM, = N Nker (T*T" — T°(T*)].
k=1 r=1 s=1

From Corollary 1.3, H, reduces T, T|H, is normal, and T|(H,)" is abnormal.
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Next, define H, = (M) M M,_, for all k = 1. Since H, is the intersection
of the subspaces M, , k = 1, we have H, 1. H, for every j > 0. Noting that
H, C M, for every j = 1 and that H, € (M,)* C (M,_,)* whenever { <
j — 1, we conclude that H, 1. H; if ¢ < j, or equivalently, H, 1. H; if 7 # j.
By induction,

i =H @H,P ---DH,, k=1,
It follows immediately that

H=HOHQ® - OH -
Thus, both 2.) and 2.) hold.
Part 44.) follows from Lemma 1.4, since
T*H, = T*(M\)* € (M)" = H, .

A glance at the matrix representation of 7 relative to the decomposition
H=H @ H P ---PH, P - reveals that #.) and v.) are equivalent and
that they both follow immediately from parts 42.) and v.) of Lemma 1.4.

Since TH, C H, @ H,,,foreveryk = 1,wehave V {H,,TH,} CH. @ H,.,
for every k¥ = 1. Assume that v ¢ H, @ H,,, and that v is orthogonal to
V {H,, TH,}, where k = 1is fixed. Clearly, ve H,,, . The fact that (v, Tz) = 0
for every x ¢ H, together with v.) implies (v, Tz) = Oforeveryze H, P --- D H,.
Thus, T*» is orthogonal to H, @ .- @ H, ; that is, T%» ¢ M, . But since v,
T*ve M, , we have

T (T*)** ' = T°(T*)*(T*v)
= (T%T(T%)
= (T*)*(T*T*v)
= (T*)lH—lTsv

for every s = 1. Hence ve My, . Thenve [H,,, N\ M,.,] = {0} and vi.) holds.
Part viv.) follows immediately from v¢.).

It is worth noting that if 7' is the unilateral shift, then H, = {0}, while for
k = 1, H, is precisely the one-dimensional subspace spanned by ¢,_, .

If T ¢« ®(H), then we shall use the notation H,(T), k = 0,1, 2, - - -, to denote
the subspaces associated with T as-in Theorem 1.5. Note that in case H =
H(T) @ H,(T), Theorem 1.5 is nothing more than the decomposition of T'
into a normal and an abnormal part. In case H = H(T) @ H,(T), we shall
say that T has a trivial decomposition.

If T e ®(H) is abnormal (so that H,(T) = {0}) and if we let P, : H — H,(T)
denote the orthogonal projection of H onto H,(T) for k = 1, and if we define

T = PiTlHj

for all 4, j = 1, then T is represented by the matrix of operators {T';;} acting on
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the direct sum of the spaces H, , k = 1. Parts 44.), @0.), and v.) of Theorem 1.5
assert that T';; = 0 if either j > ¢ or j < ¢ — 1. Thus 7 is represented by a
matrix of operators whose non-zero (operator) entries liec on either the main
diagonal or the first subdiagonal of the matrix. To simplify the notation, let
D, =T, ;andlet S; = T,,, , for every ¢+ = 1. From part #:.) of Theorem 1.5,
we have ran S; dense in H,., for ¢ = 1, or, equivalently, that ker (S,)* = {0}
for < = 1.

In the next two theorems we exhibit a canonical form for operators which
have a non-trivial decomposition. The technique to be used is a modification
of the proof of the fact that every weighted shift is unitarily equivalent to a
weighted shift with non-negative weights (ef. [4], problem 75). Roughly speaking,
we wish to show that the matrix of operators {T';;} described above is unitarily
equivalent to a matrix of operators of the same form with non-negative operator
weights along the first subdiagonal. Some technical difficulties arise from the
fact that the spaces {H,} may be of different dimensions.

For simplicity, we break the reduction to canonical form into two parts.

Theorem 1.6: Let T & ®(H) be abnormal. Then there exists a (fintte or infinite)
sequence of Hilbert spaces J, 2 J, 2 - - - and corresponding sequences of operators
D,:J;—J;and 8, : J; — J;y withker (§)* = {0} andker S, = J, © J,.,,
such that T is unitarily equivalent to the operator T defined on J, D J. @ --- by
the matriz {T. ;} of operators given by T; . = D; , Tiori = 8, ,and T,;, = 0
i #5,5+ 1

Further, H(T) = J, for k = 1.

Proof: We shall assume that all of the subspaces H,(T), k = 1, are non-zero.
Put J, = H,(T) and define (W,)* : H(T) — J, by (W)* = I on H,(T). Put
D, =D,.

Recall that 8, : J, — H,(T) and that cl (ran S,) = H,(T). Let J, = (ker S;)*
C J,. Then dim J, = dim [(ker S,)*] = dim [el (ran S,)] = dim H.(T). Pick
a unitary operator (W.)* : Hy(T) — J, (onto J,) and define 8, = (W,)*S, W, =
(W)*S8, . Then S, : J;, — J, . Since ker (S)* = {0}, we have ker (§))* =
ker [(S;)*W,] = {0}, and since J, = (ker S,)*, we have ker (S,) = ker 8, =
J1© J, . Setting D, = (W.)*D,W, , we see that D, : J, — J, .

Suppose that we have defined Hilbert spaces J, 2 J, 2 - 2 J,. , that

we have picked unitary operators (W )* mapping H,(T) onto J, ,1=1,2, - -+,
m, and that we have put D, = (W)*D,W,fori = 1,2, --- ,m, and 8, =
W )*S;W, fori = 1,2, .- m — 1. Then define J,.., = [ker (S.W.)]"

Since ¢l (ran S,) = H,.,(T), we have dim (J,.,) = dim (H,,.(T)). Pick a
unitary operator (W,.,)* mapping H,.,(T) onto J,,, and define S, =
(W 1) *SW,, . Then, as above, S,, maps J,, into J,.,, , ker (§,)* = {0}, and
ker S, = J,. © Jne1 . Next, put Doy = (Wi )*Ds Wiy , noting that
D,.,is an operator on J,, ., .

Continuing this process, we obtain a sequence J, 2 J, 2 --- of Hilbert
spaces and a sequence of unitary operators {W,} with W, mapping J; onto
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H,(T) for all ¢ = 1. The associated sequences of operators {D;} and {S.} are
as in the statement of the theorem.

Nextput J = J, D J, D -+ and define W = W, W, P --- . Then Wis
a unitary operator mapping J onto H, and, of course, the operator T = W*TW ¢
®(J) is unitarily equivalent to T. A straightforward computation with the
representations of T' and W as matrices of operators shows that the matrix of T
relative to the decomposition J = J, P Jo P - - - is as desired.

Since T = W*T'W, we find that for all », s = 1, the equation

(T* (D) — (T)(T%" = WHT*'T* — T"(T*'IW
holds, so that W* maps M,(T) onto M,(T) in a one-to-one fashion for all k = 1.
It follows immediately that H,(T) = J, for all k = 1.

Definition: let J, 2 J, D --- be a finite or infinite sequence of Hilbert
spaces and let J = J, P J, D - @ J. P -+ . Let E; denote the partial
isometry of J, onto J,., defined for all 7 > O by E,v = Foforallve J;, where
F; e ®(J,) is the orthogonal projection on J,,, C J, . Let 7; denote the partial
isometry of J onto J; defined analogously for all ¢ > 0. Then we say that
T e ®(J) is in standard form if M (T) = J4o1 P 1o P --- for k = 1 and if
there exist operators D; ¢ ®(J,) and non-negative operators P, e ®(J,) with
ker P, = J, O J;,, such that =, T|J, = 0ifk > tork < 4 — 1, =;,T|J, = D,
and =, T|J, = E,P; foralli > 0.

Theorem 1.7: Let T e ®(H) be abnormal. Then T is unitarily equivalent to an
operator in standard form.

Proof: We may as well replace T by the operator T of Theorem 1.6. We
also retain the notation of Theorem 1.6.

Define V, = I on J, . Next, write §, = U,[(8,)*S,]'* = U,P,, so that P, is
a non-negative operator on J, and U, is a partial isometry with initial space
(ker S))* = J, C J, and final space cl (ran S,) = J, . Since U, is onto J, ,
it follows that (U,)* : J, +» J, is an isometry with range J, . Thus, (V,)* =
E,(U,)*is a unitary operator on J, and (V,)*S,V, = (V)*U,P, = E,(U)*U,P,
= F.,P, . Suppose that we have defined unitary operators V, e ®(J) such that
VI*Si_)*V,ey = E,_,\P._, for 1 £ ¢ £ m and non-negative operators
P, e®(J,) by P, = [(V)*(8)*S.V.]'? for 1 £ 4 £ m. We consider the polar
factorization S,V, = U,P. of 8.V, . Arguing as above, (U,)* : Jpi1 — Jm
is an isometry with final space J,.., , so that (V,.)* = E,(U,)* is a unitary
operator on J,.; . Thus we obtain a (finite or infinite) sequence of unitary
operators V. e ®&(J;) and a sequence P, ¢ ®(J ;) of non-negative operators such
that ker P; = J, © J;\, and (V.. )*8.V, = E,P; for all i > 0. We define
D, = (V)*D,V . foralli > Oandput V=V, PV.P - - PV.PD - . Then
V &£ ®(J) is unitary, so that ' = V*T'V is unitarily equivalent to T, and hence,
to T. A straightforward calculation shows that =, T|J, = 0ifk > dork < 7 — 1,
that =, T|J, = V*D,V, = D, for i > 0, and that =, .,T|J, = (V,,)*S.V, =
E.P,; forall 7 > 0.
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Finally, we note that an argument analogous to that used in Theorem 1.6
shows that H,(T) = J, for all k > 0. We note also that H.(T) = VWH,(T)
and H(T) = (VW)*H(T) for all k > 0.

To simplify our notation, we shall agsume in the future that if 7' ¢ ®(H) is
abnormal and is in standard form, then H = H, @ H, @ --- , where H, D
H, D --- . The diagonal (operator) entries of the matrix representation for T'
will be denoted by D, and the subdiagonal entries by S, = E, P, forall &k = 1.

Definition: Let TV e ®(H'") and T® e ®(H ) be abnormal and in standard
form and suppose that there exists a unitary operator U from H onto H®
such that T = U*T® U and such that the matrix representation of U relative
to the decompositions of H™ and H® is a diagonal matrix of operators with
unitary entries along the main diagonal. We shall say that 7 and T® are
equivalent if the diagonal entries of U satisfy Uy, = B, P U (B, ) *forallk = 1.
" In case dim H,” = dim H," forallk = 1,¢ = 1, 2, we note that the E,“"’s
are unnecessary and that the last condition in the preceding definition devolves
to U, = U, forall k = 1. In the general case, this condition amounts to U,.; =
Uy|Hy.'" for all b = 2.

Although it is clear that the equivalence of 7' and 7 implies their unitary
equivalence, the special form of U which we require in the definition of equiv-
alence suggests that equivalence is a much stronger relation than unitary
equivalence. Surprisingly, perhaps, this is not the case.

Theorem 1.8: Let T’ ¢ ®(H), ¢ = 1, 2, be abnormal operators in standard
form. Then TV and T are equivalent if and only if they are unitarily equivalent.

Proof: As noted above, one half of the result is trivial. Let the unitary
operator U satisfy T = U*T® U. Arguing as in Theorem 1.6, we see that
U maps M, (T™) onto M (T*®) for all k = 1. Viewing T, T, and U as
matrices of operators, this means that U is a diagonal matrix with diagonal
(operator) entries U, , where U, is a unitary operator mapping H,(T‘") onto
H(T®) forall k = 1.

An elementary matrix computation shows that D, = (U,)*D,” U, and
that S, = (U, )*S,” U, for all k = 1. The last equation yields

(Sk(l))*Sk(l) = UIT(SIc(z))*UIc+1U;ck+1 lc(Z)Uk
UHS:®)*8. 2 U, ,

or,
(g (1) (1) p(» (2) r1(2) (2)p (2)
Plc (Ek )*EkPk = ;ckk(Elc )*Ek Plc Ulc
1,2,k =1, we

for every k = 1. Recalling that ¢l (ran P,“) = H,.,'" fori = =

obtain the identity (E,")*E,°P,'” = P, for¢ = 1, 2, k = 1. Substituting
above, we obtain (P,V)* = (U)*(P,®)°U, for all k = 1. Hence, P,V =
{U)*PS) U for all k = 1. Finally, since (U,)*(P,”)*U, = 0 and since

[(Uk)*Pk(2)Uk]2 = (Uk)*(Pk(z))zUk we haVe Pk(l) = (Uk)*Pk<2) Uk fOI‘ all & g 1.
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Thus, S, = E, P, = B,V (U)*P,® U, for k = 1. From above, however,
we have S, = (U, )*S. P U, = (U )*E, PP, U, for all k = 1. Hence,
E.CWUY* = (Uw)*E,® on el (ran P,%) = H,.,*Y € H®, for all k > 1.
Since both E, "V (U)* and (Ui, ,)*E,” are zero on ker P, = ker E,®, we
have B, (U)* = (U )*E,® for all k = 1. Thus, E,* U (E,")* = E,*®
B2V Uy = Ui forallk = 1, and T and T are equivalent.

The next theorem deals with the relations that hold among the entries in the
standard form for 7. It shows that the structure of the abnormal part of an
operator is determined by the action of the operator on the subspace H,(T).

Theorem 1.9: Let T ¢ ®(H) be abnormal and in standard form. Put C =
[T | H(T). Then
7.) [D] = C — 8,*S,,
) [D;] = S,.:S;_* — 8.*8, fori = 2.
#i.) S;*D; = D;S* fori = 1.
Further, the operators D, , 1 = 2 and the operators P; , E., i = 1, may be determined
explicitly in terms of C and D, .

Proof: Note first that
ker [T] 2 M(T) = (\ker (T*T" — T'T*).
r=1

Hence, ¢l (ran [T]) S (M (T)* = H(T). It follows that H,(T) reduces [T],
so that C = [T]]| H,(T) is well-defined. In fact, [T] = C @ 0. If we represent [T
as a matrix of operators relative to the decomposition

H=H1@H2@"'®Hk®":;

then we obtain a matrix {C, ;} of operators with ¢, , = C and C,; = 0 if
i 47> 2.

Using the matrix representation for 7' relative to this same decomposition
for H, we obtain another expression for [T']. Direct comparison of the cntries
in these two representations for [T'] yields equations 1.}, 4¢.), and 41.).

To complete the proof, note first that ker S, = ker ((S,)*S;) = ker (C — [D.]),
so that H, = (ker S))* = cl {ran (C — [D,])}. Hence, H, (and thus, L) is
determined by C and D, . Noting that (S,)*S, = P, (¥,)*E,P, and that (E,)*E, ¢
®(H ) is the orthogonal projection of H, onto H,, we have, since H, = ¢l (ran P,),
that (S))*8; = (P,)? or,

P = (Siksl)]/z = (C - [Dl])l/z-

We note for future reference that S,(S,)* = E,(P)*(E)* = (P,)°|H, .

From 1.}, (S)*D, = D, (S)* If X e ®(H,) is any operator satisfying (S,)*X
= D,(8))* then (8)*(D, — X) = 0 and, since ker (S,)* = {0}, D, = X. Note
also that S,(S)*D, = S.D,(8,)* and hence, D, = [S,(S)*]7'S.D,(S))*. The
expression on the right in the last equation represents a bounded operator
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even though S,(8,)* will not, in general, have a bounded inverse. Substitution
from above yields

Dy = (C — [Dl])_1/2D1(C - [Dll)l/zv
forallve H, .

A messy but rather easy use of induction completes the proof. We omit the
details.

The formulas in Theorem 1.9 are much more manageable in the special case
dim H, = dim H, for all k¥ = 1. The operators E, are unnecessary in this case,
go that S, = P, = 0 for all £ = 1. In this case, one obtains the formulas

Ph

I

(C— :V_:[Di])l/z

t=1

and
D/H—l = Plc_lePk fOI‘ al]. k é 1.

The formulas in Theorem 1.9 are casy to handle only in special cases. An
important observation, however, is that the structure of an abnormal operator T
is determined by its action on the subspace H,(T). In case H,(T') is an infinite-
dimensional subspace, then, in the absence of stronger hypotheses on [T] and
D, , nothing has been gained. If dim H,(T) < «, however, Theorem 1.9 asserts

that the structure of (the abnormal part of) T is determined by two finite-
dimensional operators.

§2. Tt is easily seen that the decomposition for operators given in Section 1
may be trivial. If T is normal, for instance, then H = H(T). Even if T is
abnormal, the decomposition will be trivial if ker [T] = {0}, since H = H,(T)
in this case. In this section we shall consider other conditions which imply
that our decomposition is trivial.

Lemma 2.1: Let T « ®(H) and suppose that M s a subspace of H such that
TM C M and M C ker [T]. Then T\M 4s hyponormal. If T|M s normal, then

M reduces T.
0 C

Proof: Write
with respect to the decomposition H = M @ M™*. Then
7] = [[A] — BB* A*B — BC*J‘
B*4 — CB* [C] 4 BB*

The fact that M C ker [T] implies that M reduces [7']. Let X = [T}|M*. Then
[T] has the representation [T] = 0 @ X rclative to H = M @ M*. Equating
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corresponding entries in the two representations for [T] yields [A] = BB* = 0,
so that A = T | M is hyponormal. If 4 is normal, then BB* = 0. Thus B = 0
and M reduces T.

Theorem 2.2: Let T e ®(H) have compact real part. Then H = H(T) P H,(T).

Proof. We may as well assume that 7' is abnormal. Assume that H = H (T)
and let A = T|(H,(T))*. From Lemma 2.1, A is hyponormal. Since Re T is
compact, so also is Re 4.

Putnam has shown ([6], p. 43) that if T is hyponormal and abnormal, then
the measure of the spectrum of Re 7T is positive. Since a compact self-adjoint
operator hag countable spectrum, it follows that a hyponormal operator with
compact real part is normal. In particular, A is normal. By Lemma 2.1 again,

[H.(T)]* reduces T and T|(H.(T))" is normal, a contradiction, since 7' was
assumed to be abnormal.

It is interesting to note what happens in case H is a finite-dimensional Hilbert
space. Since every operator on a finite-dimensional space is compact, it follows
from Theorem 2.2 that our decomposition is always trivial for finite-dimensional
operators. Hence, non-trivial examples of our decomposition, much like non-
unitary isometries, are purely infinite-dimensional phenomena.

As a conscquence of Theorem 2.2 we obtain a simpler expression for the
normal subspace of an operator having compact real part.

Corollary 2.3: If T ¢ ®&(H) has compact real part, then
Hy(T) = (ker (T*T" — T'T¥).
r=1
Proof:
Hy(T)

H O H(T)
= MI(T)

= MNYker (T*T" — T'T*).
r=1

§3. Since our decomposition is trivial for operators on a finite-dimensional
Hilbert space, we shall assume hereinafter that the underlying Hilbert space H
is infinite-dimensional. Note that the easiest way to guarantee that the de-
composition of an abnormal opecrator T is non-trivial is to assume that
dim H,(T) < . This ensures that H % H,(T'), of course, but it also means that
H,(T) # {0} for all k = 1, since, from Theorems 1.5 and 1.6, we have

dim (H,(T) @ --- @ H(T)) = kdim H,(T) < .

The condition dim H,(T) < « is difficult to verify in many cases. In this section
we will show that this condition is easy to verify in case T is subnormal.
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We recall that 7' e ®(H) is subnormal if there exists a Hilbert space K 2 H
and a normal operator N e &(K) such that NH € H and T = N|H, in which
case N is called a normal extension of 7. We say that N is a minimal normal
extension of T if the smallest subspace of K which contains H and reduces N
is K itself. Halmos has shown that every subnormal operator has a minimal
normal extension and that this extension is unique up to unitary equivalence.

For proofs of these facts and an excellent discussion of subnormal operators,
see [4], Chapter 16.

Lemma 3.1: Let T ¢ ®(H) be subnormal. Then
7.) ker [T"] € ker (T*)'T" — T°(T*)") for r,s > 0.

ii) ker ('] = (Yker (T'T° — T@¥) forall > 0.
i) (Yker [T'] = Hy(D).

Proof: Let N e®(K), K D H, be the minimal normal extension of 7T'. Since
NH C Hand T = N|H, we may write

2

with respect to the decomposition K = H @ H*. Then

0 Y*

forallk = 1, where X, = X and X,,, = TX, + XY" = T"X, + X.Y for all
n = 1. Computing both (N*)"N* and N°(N*)" and equating corresponding
entries yields

ey (T*T —1T(T* = X, XF
and
2 (I*yX, = X(Y*)

for all r, s > 0. Putting » = s in (1) and recalling that ker T = ker (T*T) for
T ¢ ®(H) yields ker [77] = ker (X, (X,)*) = ker (X,)* for all r = 1. Thus,
ker ((T*)'T* — T°(T*)") = ker (X,(X,)*) C ker (X,)* = ker [T"], and <.) holds.

From 2.), the intersection, taken over s = 1, of the subspaces ker ((T*)"T* —
T°(T*") contains ker [T"] for r 2 1. Since the reverse containment is trivial,

the two sets are cqual. Part 444.) is an immediate consequence of part 47.) and
Lemma 1.3.

Recall that if T e ®(H), then

MJT) = Q éker @ — 7°(T*".
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If 7' is subnormal, then, applying Lemma 3.1, we obtain
k
M(T) = (ker [T7].
r=l

In particular, if T' ¢ ®(H) is subnormal, then H,(T) = (M,(T))* = cl (ran [T]).
This shows that if 7' is subnormal and abnormal and if H # cl (ran [T']) (in
particular, if [7] has finite rank), then our decomposition for 7' will be non-
trivial.

It follows from Theorem 1.5 and the remarks above that if 7' is subnormal,
then M,(T) is invariant under 7'. Actually, a stronger statement is at hand.
Taking adjoints in equation (2) in the proof of Lemma 3.1 and putting r = 1,
we get (X )*T = Y(X,)* for all s > 0. Thus, ker [T"] = ker (X,)* is invariant
under T for all » = 1. In case r = 1 this observation is due to Stampfli ([7]).

If T is subnormal and abnormal and if H # cl (ran [T]), or equivalently, if
ker [T] # {0}, then it follows from Theorem 1.9 that the structure of 7 is
determined (up to unitary equivalence) by [7] and T*|H(T). In the special
case in which [7'] is of finite rank, the structure of the abnormal part of T is
determined by two matrices. In case 7' is abnormal and [7T'] is of rank one, there
are two constants which are a complete set of unitary invariants for 7'.

Proposition 3.2: Let T & ®(H) be subnormal with one-dimensional self-
commutator. Let U denote the unilateral shift on £2. Then there exist scalars s, , d,

(sy > 0) such that T is unilarily equivalent to the direct sum of a normal operator
and s, U + d,I.

Proof: We may as well assume that T is abnormal. We have dim (H,(T)) =
dim (cl (ran [T))) = 1. It follows from Theorem 1.5 that dim (H,(T)) < 1 for
all k = 1. Since H is the direct sum of the spaces H (T), & = 1, and since H is
infinite-dimensional, we must have dim (H,(T)) = 1 for £ = 1. From Theorem
1.9, T is unitarily equivalent to a matrix with scalars d; on the main diagonal,
positive scalars s; on the first subdiagonal, and zeros in the other entries. Further,
since §idy., = 4,5, and since s, > 0,k = 1, we haved, = d, forallk = 1. From
Theorem 1.8 again we have 0 = [d,] = 8,151 — &8, = [s,4f° — [s:]” for all
k =z 2. We then have s, = s, for all & = 1 and we conclude that T is unitarily
equivalent to s, U + d.I.

A careful examination of the proof of Proposition 8.2 shows that the result
holds if we assume only that 7' ¢ ®(H) satisfies dim (H,(T)) = 1. Since one'may
conclude from this that T is subnormal, the apparent generalization is really
an artificial one. Finally, we note that Proposition 3.2 has been obtained inde-
pendently by K. Clancey ([2]).

Recall that T e B(H) is quasinormal if T’ commutes with 77, or, equivalently,
if T¥[T] = 0 = [T]T. Thus, if T is quasinormal, then T*r = 0 for every x ¢
cl (ran [T1). The following lemma was first proved by A. Brown in [1].

Lemma 3.3: If T ¢ ®(H) s quasinorinal, then T is subnormal.
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Proof: Write x ¢ H as ® = xz, + x, , where x; € ker [T'] and z, ¢ ¢l (ran [T]).
Then

Tz, ) = ([Tle, z.) + ([Tle, z2)
= (z, [Tz + (x, [T]xs)
= (@, [T]as) + (22, [T]as)
= (x; , T*Txy) — (x, , TT*xy)
= |[Tz|[* 2 0.

Thus, T is hyponormal. Note that cl (ran [T]"%) = ¢l (ran [T]), so that T*[T]"*
= 0 = [T]"*T. A direct computation shows that the operator X defined on

H@® Hby
|~
0 T*

is normal. Henece, T is subnormal.

Theorem 3.4: (A. Brown, [1]) Let T ¢ ®(H) be quasinormal. Put B =
cl (ran [T1*) and C = [T)|R. Then T is unitarily equivalent to the direct sum of a
normal operator with the operator defined on R R P - - - by the matriz of operators
(T, with Tipyc = Cforiz 1, T, ; =04fij+ 1

Proof: We may as well assume that T is both abnormal and in standard
form. Since T is subnormal, we have H, = R, and since T*[T] = 0, we have
T*H, = 0, or, in the notation of section 1, D, = 0. Since (S,)*D,,, = D,(8;*)
and ker (S,)* = {0} forall? = 1, we have D, = Qforallz = 1.

We next observe that since D; = 0 for ¢ = 1, the inclusion ker S; C ker T
holds for all 2 = 1. But 7' is both abnormal and hyponormal, and hence, ker 7' =
{0}. Thus ker S; = {0} for all 7 = 1, and, since H,,; = ¢l (S;H,), we have
dim H,; = dim H, for all ¢ = 2. We have shown that 7" is a matrix of operators
on R@ R @ --- whose only non-zero entries are the non-negative operators
S; = P, , 7 = 1, which appear on the first subdiagonal.

From part 2.} of Theorem 1.9, we have 0 = [D;] = (S;_1)® — (8,)” for all
1 = 1, and hence, S; = 8, for all ¢ = 2. From part ¢.) of Theorem 1.9, 0 =
D)l =C — (S)° Hence S; = C**foralli = 1.

If V e ®(H) is isometric, then V*V = I and V is quasinormal. Recall that
if V is isometric and if P denotes the orthogonal projection on (VH)*, then
VV* =T — P,sothat [V] = I — (I — P) = P. This implies that H,(V) =
cl (ran [V]) = (VH)".

Corollary 3.5: (von Neumann-Halmos) Every isometry V ¢ G(H) s unitarily

equivalent to the direct sum of a unitary operator with a undlateral shift of multi-
plicity dim (VH)*.
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Proof: A normal isometry is unitary, since V*V = I = VV* Noting that
[V|H,(V) is the identity operator on (VH)" and applying Theorem 3.4, we see
that V is unitarily equivalent to the direct sum of a unitary operator and a
matrix of operators on R @ R @ - -- with identity operators on the first sub-
diagonal and zeros elsewhere, 7.e., a unilateral shift of multiplicity dim B =
dim (VH)".

We note that if T is quasinormal, then a complete set of unitary invariants
for [T is a complete set of unitary invariants for the abnormal part of T'. In case
V is an isometry, the fact that [V] = I on H,;(V) = ran [V] = (VH)" means that
the sealar dim (ran [V]) = dim (VH)" is a complete set of unitary invariants
for the abnormal part of V.

§4. We conclude with a simple application of our decomposition theorems
to the study of quasitriangular operators. Recall that 7' ¢ ®(H) is triangular if
there exists an increasing sequence {F,} of projections of finite rank such that
{E,} — I strongly as k¥ — o and such that TE, — E,TE, = 0 for all k. We
say that T is quasitriangular if there exists an increasing sequence {K,} of
projections of finite rank such that {E,} — I strongly as k — « and ||TE, —
E,TE}| — 0 as k — o. It is clear that every triangular operator is quasi-
triangular. We note that the study of quasitriangular operators was initiated
by Halmos ([5]). We shall use the facts, first proved in [5], that every normal
operator is quasitriangular and that the direct sum of two quasitriangular
operators is quasitriangular.

Proposition 4.1: Let T ¢ ®(H) be abnormal with dim (H,(T)) < . Then T*
18 a triangular operator.

Proof: Let E, denote the orthogonal projection of H onto [M,(T)]* for all
k = 1. From Theorem 1.5 the sequence {F,} is an increasing sequence of pro-
jections of finite rank, and since TM (T) € M (T) for all k = 1, we also have
T*E, — E,T*E, = 0 for all k¥ = 1. The abnormality of T implies that the
intersection of the subspaces M (T'), k = 1, is the zero subspace, or, equivalently,
that F, tends strongly to [ as k tends to infinity.

The preceding proposition, together with Lemma 1.3 and Halmos’ results,
yield the following:

Corollary 4.2: Let T ¢ ®(H) satisfy dim (H,(T)) < «. Then T* is quasi-
triangular.

Corollary 4.3: Suppose that T ¢ ®&(H) is subnormal and that its self-com-
mutator has finite rank. Then T* 1s quasitriangular.

The answer to the following question is apparently unknown.

Question: If T is subnormal and has compact (or, trace-class) self-com-
mutator, is T* quasitriangular?
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