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A Decomposition Framework for Image Denoising

Algorithms
Gabriela Ghimpet,eanu, Thomas Batard, Marcelo Bertalmı́o and Stacey Levine

Abstract—In this paper we consider an image decomposition
model that provides a novel framework for image denoising. The
model computes the components of the image to be processed
in a moving frame that encodes its local geometry (directions
of gradients and level-lines). Then, the strategy we develop is
to denoise the components of the image in the moving frame in
order to preserve its local geometry, which would have been more
affected if processing the image directly. Experiments on a whole
image database tested with several denoising methods show that
this framework can provide better results than denoising the
image directly, both in terms of PSNR and SSIM [27] metrics.

Index Terms—Image denoising, local variational method,
patch-based method, differential geometry.

I. INTRODUCTION

DENOISING an image is a fundamental task for

correcting defects produced during the acquisition

process of a real-world scene and its reproduction on a

display, due to physical and technological limitations (see

e.g. [5] for more details). It can also be useful as a pre-

processing stage in order to improve the results of higher

level applications.

The problem of removing the noise of an image while

preserving its main features (edges, textures, colors,

contrast, etc.) has been extensively investigated over the

last two decades and several types of approaches have

been developed. The total variation-based denoising method

of Rudin el al. [25] had a great impact in the imaging

community and has inspired a large amount of variational

formulations for image denoising. Years after the model of

Rudin et al., a novel approach for image denoising based

on the comparison of pixel neighborhoods (patches) was

proposed simultaneously by Awate and Whitaker [1] with the

UINTA algorithm and Buades et al. [9] with the Non-Local

Means (NLM) algorithm. To a great extent, these patch based

methods outperformed the denoising models that existed

at that time. Since then, a number of patch-based methods

have been developed, comprising the majority of the current

state-of-the-art denoising methods. We refer the reader to

the paper of Lebrun et al. [17] for a complete description

of the denoising problem, as well as a detailed analysis and

comparison of state-of-the-art denoising methods. It has been

shown by Levin and Nadler [20] and Chaterjee and Milanfar
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[12] that the current state-of-the-art denoising methods are

close to optimal when applied to natural images. Nonetheless,

there is still room for improvement in several directions. For

instance, while these methods manage to correctly remove

most of the noise, they tend to not properly recover some of

the image details. These methods also primarily deal with

additive Gaussian noise, whereas for many images the noise

model is unknown; in such cases, there is still ample room for

improvement (see Lebrun et al. [19] and references therein for

blind denoising algorithms). Our proposal in this paper is to

develop a strategy to improve any image denoising technique

by more carefully taking into account the local geometry

(direction of gradients and level-lines) of the image to process.

Previous works of the authors: Motivated by the

construction of a Fourier theory for n-channel images that

would involve the local geometry of the image, Batard and

Berthier [2] proposed the following approach: construct an

orthonormal moving frame of R
n+2 over the image domain

where the first two vector fields are tangent to the image

graph and the n remaining vector fields are normal to that

surface. Then, representing the image in this n+2 dimensional

moving frame, compute the standard 2D Fourier transform of

each of the components, apply Gaussian kernels of different

sizes in the Fourier domain, and then project back. This

essentially applies a Euclidean heat diffusion on each of the

components, obtaining a heat diffusion on the original image

that preserves its local geometry throughout the diffusion

process. Later on, Batard and Bertalmı́o [3],[4] followed this

strategy for the purpose of image denoising. More precisely,

instead of applying a heat equation on the components of the

image in the moving frame, they applied a denoising method

and compared the results with applying that method directly

on the image. In [3], they dealt with the vectorial extension

of the total variation-based denoising method of Rudin et al.

[25] proposed by Blomgren and Chan [7], and in [4] they

dealt with the so-called vectorial total variation (VTV) of

Bresson and Chan [8]. In both cases, they showed that this

methodology can improve the standard approach in terms of

PSNR and Q-Index [26] metrics, the latter being more related

to perception than the PSNR.

A comparable framework was adopted by Bertalmı́o and

Levine [6]. Based on the observation that the curvature of

the level-lines of a gray-level image is less affected by the

noise than the intensity values of the image (assuming that

the image has been corrupted by additive Gaussian noise),

they conjectured that it can be easier to recover the curvature

of the clean image than the clean image itself. Experiments
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involving 4 different denoising methods: TV denoising

performed through gradient descent [25] and Bregman

iterative algorithm [22], orientation matching using smooth

unit tangents [15], NLM [9] and BM3D [13], confirmed that

applying a denoising method on the curvature of the noisy

image and then reconstructing an image from the denoised

curvature provides a better approximation to the clean image

(in terms of PSNR and Q-Index metrics) than applying this

denoising method directly on the noisy image.

A similar approach for image denoising is the one of Lysaker

et al. [21] who first smooth the unit normal field to the

image level-lines, then construct a denoised image whose

unit normal field would match the smooth field. Some similar

approaches for denoising that have been inspired by the work

of Lysaker et al. can be found in [15],[22],[23].

Contribution: This paper, a substantial extension of our

earlier work in [14], shows that given a denoising method we

can obtain better, cleaner results by denoising the components

of an image in a moving frame (as in [2],[3],[4]), compared

to what we would get by denoising the image directly. We

formally prove that, along image contours, the PSNR of

the components is higher than that of the image, which

would explain the ability of our framework to better preserve

image details regardless of the particular image denoising

technique that is applied. We have been able to improve

three denoising methods of different types: a local variational

method (VTV, [8]), a patch-based method (NLM, [9]), and

a method combining a patch-based approach with a filtering

in spectral domain approach (BM3D, [13]); the improvement

is both in terms of PSNR and SSIM [27] metrics, and for

grayscale and color images over a standard image database,

demonstrating the consistency of our strategy. Compared to the

curvature-based approach in [6] or the above mentioned meth-

ods based on denoising fields ([21],[15],[22],[23]), the asset

of our framework holds in the simplicity of the reconstruction

step, consisting simply in applying a matrix transform to the

denoised components to obtain the denoised image, instead

of a second or third order PDE evolution equation as in the

previous techniques.
Outline: The outline of the article is the following. In

section 2 we remind the reader of our image decomposition

model for gray-level and multi-channel images. In section 3

we prove that our approach is suitable for image denoising by

showing, both theoretically and numerically, that the PSNRs of

the components of the noisy image in a well-chosen frame are

higher than the PSNR of the noisy image itself on image con-

tours. Finally, in section 4, we test our framework with three

denoising methods: VTV minimization, NLM and BM3D. The

results confirm the suitability of our approach since they show

that it improves each aforementioned denoising method with

respect to the PSNR and SSIM metrics on a whole database of

gray-level and color images tested with different noise levels.

II. IMAGE DECOMPOSITION IN A MOVING FRAME

A. The gray-level case

Let I : Ω ⊂ R
2 −→ R be a gray-level image, and (x, y) be

the standard coordinate system of R2. We denote by Ix resp.

Iy the derivative of I with respect to x resp. y, and by ∇I
the gradient of I .

Our image decomposition model for I is a two-stages

approach: first, we construct an orthonormal moving frame

(Z1, Z2, N) of (R3, ‖ ‖2) over Ω that encodes the local

geometry of I . Then, we compute the components (J1, J2, J3)
of the R

3-valued function (0, 0, I) in that moving frame.

More precisely, we consider a scaled version µI of I ,

for µ ∈]0, 1], and its graph, which is the surface S in R
3

parametrized by

ψ : (x, y) 7−→ (x, y, µ I(x, y)) (1)

The orthonormal moving frame (Z1, Z2, N) we consider is

the following: the vector field Z1 is tangent to the surface

S and indicates the direction of the steepest slope at each

point of S; the vector field Z2 is tangent to S and indicates

the direction of the lowest slope at each point of S. It follows

that N is normal to the surface since we require (Z1, Z2, N)
to be orthonormal.

The moving frame (Z1, Z2, N) can be constructed as

follows. Let z1 = (µIx, µIy)
T be the gradient of µI and

z2 = (−µIy, µIx)T indicating the direction of the level-lines

of µI . On homogeneous regions of I , i.e. at pixel locations

(x, y) where Ix(x, y) = Iy(x, y) = 0, we define z1 = (1, 0)T

and z2 = (0, 1)T . Then, Z1 and Z2 are given by the following

expressions

Zi =
dψ(zi)

‖dψ(zi)‖2
, i = 1, 2 (2)

where dψ stands for the differential of ψ, which maps vector

fields on Ω to tangent vector fields of S. The expression of

the unit normal N is then obtained as the vectorial product

between Z1 and Z2.

The explicit expressions of the vector fields Z1, Z2, N are

given by the matrix field

P =

























Ix
√

|∇I|2(1 + µ2|∇I|2)

−Iy

|∇I|

−µ Ix
√

1 + µ2|∇I|2

Iy
√

|∇I|2(1 + µ2|∇I|2)

Ix

|∇I|

−µ Iy
√

1 + µ2|∇I|2

µ|∇I|2
√

|∇I|2(1 + µ2|∇I|2)
0

1
√

1 + µ2|∇I|2

























,

(3)

where the coordinates of the vector field Z1 are given in the

first column, the coordinates of Z2 in the second column,

and the coordinates of N in the third column.

Fig. 1 illustrates the moving frames (z1, z2) and

(Z1, Z2, N) aforementioned for a simple image. The left

image shows the moving frame (z1, z2) at two points p and

q of the domain Ω, and the right image shows the induced

moving frame (Z1, Z2, N) attached to the surface S at the

points ψ(p) and ψ(q).

Denoting by (e1, e2, e3) the orthonormal frame of

(R3, ‖ ‖2), where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),
the matrix P in (3) is nothing but the frame change field from
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Fig. 1. Moving frame encoding the local geometry of a gray-level image. Left: original gray-level image and a moving frame (z1, z2) indicating the
direction of the gradient and the level-line of the image at two points p and q of the image domain Ω. Right: the orthonormal moving frame (Z1, Z2, N) of
(R3, ‖ ‖2) over Ω indicating the direction of the steepest and lowest slopes of the surface S, for some smoothing parameter µ, at the points ψ(p) and ψ(q).

(e1, e2, e3) to (Z1, Z2, N), meaning that the components

of the R
3-valued function (0, 0, I) in the new frame, denoted

by (J1, J2, J3), are given by





J1

J2

J3



 = P−1





0
0
I



 . (4)

Computing formula (4) gives that the component J2 is

identically 0.

Fig. 2 shows the gray-level image ”Lena” and its

components J1 and J3 for µ = 0.05. We observe that the

component J1 contains the edges and textures of the image,

which was expected according to formula (4) since the third

component of the vector field Z1 is determined by the image

gradient’s norm, which is high on edges and textures. The

component J3 is similar to the original image from which

the gradient’s norm has been subtracted.

Finally, the parameter µ can be viewed as a smoothing

parameter for the moving frame encoding the local geometry

of the original image I . In fact, it turns out that µ plays a

key role in our strategy for image denoising, as shown in the

next sections.

B. The multi-channel case

We aim at extending the image decomposition model

of Sect. II.A from gray-level to n-channel images I =
(I1, · · · , In) : Ω ⊂ R

2 −→ R
n, n > 1, by following a

similar approach: first, we construct an orthonormal moving

frame (Z1, Z2, N1, · · · , Nn) of (Rn+2, ‖ ‖2) over Ω that

encodes the local geometry of I . Then, we compute the

components (J1, J2, · · · , Jn+2) of the R
n+2-valued function

(0, 0, I1, · · · , In) in that moving frame.

As in the gray-level case, the first step consists in consid-

ering a scaled version µI of I , for µ ∈]0, 1], and its graph,

which is the surface S in R
n+2 parametrized by

ψ : (x, y) −→ (x, y, µI1(x, y), · · · , µIn(x, y)) (5)

The moving frame (Z1, Z2, N1, · · · , Nn) we consider is

then the following: the vector field Z1 is tangent to the surface

S and indicates the direction of the steepest slope at each

point of S; the vector field Z2 is tangent to S and indicates

the direction of the lowest slope at each point of S, and

N1, · · · , Nn are normals to the surface. Note that, unlike the

gray-level case, there is an infinite number of unit normals to

the surface.

The moving frame (Z1, Z2, N1, · · · , Nn) can be con-

structed as follows. As in the gray-level case, Z1 and Z2

can be recovered from the directions z1 and z2 of highest

and lowest variations of the scaled image µI under the map

(2), these latter being the eigenvectors of the structure tensor

associated to µI , which is given by





∑n
k=1(µI

k
x )

2
∑n

k=1 µ
2Ikx I

k
y

∑n
k=1 µ

2Ikx I
k
y

∑n
k=1(µI

k
y )

2



 (6)

On homogeneous regions, i.e. at pixel locations (x, y) where

Ikx (x, y) = Iky (x, y) = 0 ∀k ∈ {1, · · · , n}, we set z1 =
(1, 0)T and z2 = (0, 1)T . It is worth noting that, unlike gray-

level images, multi-channel images do not have necessarily

level-lines, meaning that the smallest eigenvalues of the struc-

ture tensor are not necessarily 0.

We then need to select a set of n vector fields N1, · · · , Nn

normal to the surface and orthogonal to each other in order to

complete the orthonormal moving frame. A natural approach

for constructing them is to consider the canonical vectors

e3 = (0, 0, 1, 0, · · · , 0), · · · , en+2 = (0, · · · , 0, 1) from

which we apply the Gram-Schmidt orthonormalization process

to the frame field (Z1, Z2, e3, · · · , en+2).

Finally, denoting by P the matrix field encoding the mov-

ing frame (Z1, Z2, N1, · · · , Nn), i.e. the first column of

P contains the coordinates of Z1, the second column the

coordinates of Z2, and the i-th column the coordinates of

Ni−2 for i ∈ {3, · · · , n+2}, the components (J1, · · · , Jn+2)
of the R

n+2-valued function (0, 0, I1, · · · , In) in the frame
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Fig. 2. From left to right: gray-level image ”Lena”, component J1, component J3.

(Z1, Z2, N1, · · · , Nn) are given by














J1

J2

J3

...

Jn+2















= P−1















0
0
I1

...

In















(7)

Unlike the gray-level case, it is not possible to plot the

moving frame in a trivial way since the surface S lives in a

space of dimension greater than or equal to 4.

C. Application to image denoising

The framework we propose for denoising an image

while systematically taking into account its local geometry

is based on applying image denoising techniques to the

components of the image in the moving frame constructed

above instead of applying the technique to the image itself.

This methodology has already been used in [2],[3],[4] with

local regularization/denoising methods, but it can actually be

extended to any denoising technique. In this section, we give

more details about our approach dealing with gray-level and

color images.

1) Gray-level images: In the experiments performed

throughout this article, the strategy on gray-level images

I : Ω ⊂ R
2 −→ R is the following:

1) Process I with some denoising technique F and call the

output image Iden.

2) Compute the components (J1, J2, J3) of I in the mov-

ing frame (3), for some scalar µ, with formula (4). Apply

the same denoising technique F to the components

to obtain the processed components (J1
den, J

2
den, J

3
den).

Then, apply the inverse frame change matrix field to the

processed components, i.e.












I1denMF

I2denMF

I3denMF













: = P













J1
den

J2
den

J3
den













(8)

and denote by IdenMF the third component I3denMF .

3) Compare Iden and IdenMF with the metrics PSNR and

SSIM.

Remark 1: We have limµ→0 IdenMF = Iden since

limµ→0(J
1, J2, J3)T = limµ→0 P

−1(0, 0, I)T = (0, 0, I)T ,

in which case (I1denMF , I
2
denMF , I

3
denMF )

T =
P (J1

den, J
2
den, J

3
den)

T = P (0, 0, Iden)
T = (0, 0, Iden)

T .

2) Color images: The extension to color images is not

straightforward because of the flexibility of the choice of

color space and the way in which the moving frame approach

can be applied (channel-wise, only to selected channels, or

vectorially). We will see in the next two sections that the

color space and manner in which the approach is applied

both depend on the image denoising technique. However, in

all of the experiments performed throughout this article, our

approach for color images I : Ω ⊂ R
2 −→ R

3 is of the form:

1) Process I with an image denoising technique F and call

the output image Iden.

2) Apply the same image denoising technique F to the

components in some moving frame related to the chan-

nels of the image or the full image itself. Then apply

the inverse frame change matrix field to the processed

components, from which a color image IdenMV is

reconstructed.

3) Compare Iden and IdenMV with the metrics PSNR and

SSIM. Note that SSIM has been originally designed for

gray-level images, and we define the SSIM Index for

color images as the mean of the SSIM Index of each

color channel.

Finally, we would like to point out that the strategy described

above can actually be applied using any moving frame. The

problem regarding the choice of the moving frame has already

been treated in [4], where we demonstrated numerically that

when applying our approach to the Vectorial Total Variation-

based denoising method, the best results are obtained with the

frame constructed above, but close results are obtained when

Z1, Z2 are randomly chosen (but still orthornormal) in the

tangent planes of the surface parametrized by (1) dealing with

gray-level images and (5) for color images. We also observed

that very poor results are obtained when Z1, Z2 are not in the

tangent spaces anymore.
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III. THE NOISE LEVEL IS HIGHER ON THE INTENSITY

VALUES OF A GRAY-LEVEL IMAGE THAN ON ITS

COMPONENTS IN A WELL-CHOSEN MOVING FRAME

The aim of this section is to demonstrate that for properly

chosen µ, the components J1(I) and J3(I) of a gray-level

image I in the moving frame (3), determined by formula

(4), are less affected under additive Gaussian noise than the

image is. We then deduce that, for a given denoising method,

it can be easier to recover the clean components than the

clean image directly. In our analysis, we distinguish image

edges from the homogeneous regions.

Let I = a + n be a gray-level image resulting from

the corruption of an image a with additive Gaussian noise n
of zero mean and standard deviation σ.

A. Edges

Inspired by the approach of Bertalmı́o and Levine [6], we

obtain the following result:

Proposition 1: At the locations of the image domain where

|∇a| >> |∇n| (likely the case at contours of I), and assuming

that central differences are used to approximate ∇I , we have

that for µ > 0,

PSNR(J1(I)) ≥ PSNR(I)

PSNR(J3(I)) > PSNR(I)

Proof: The computation of the local PSNR of the com-

ponents J1(I) and J3(I) requires the knowledge of their

amplitude ampl. Assuming that I in is the range [0, 255] and

central differences are used to compute ∇I , the amplitudes

are

ampl(J3(I)) = 255 (9)

ampl(J1(I)) = 255×
√
2× 127.5µ

√

1 + 2(127.5µ)2
(10)

Indeed, from (3) and (4) we know that

J3(I) =
I

√

1 + µ2|∇I|2
(11)

and

J1(I) =
µI|∇I|

√

1 + µ2|∇I|2
(12)

From (11), it is clear that J3(I) ∈ [0, 255], meaning that

ampl(J3(I)) = 255.

The upper bound of J1(I) can easily be computed once we

notice that J1(I) is of the form

f : A 7−→ I
A√

1 +A2

for A = µ|∇I|. Then, as the function f is increasing, we

deduce that the maximum of J1(I) is reached when I = 255
and |∇I| is maximum, this latter quantity depending on the

discrete differentiation used. Assuming that central differences

are used, we obtain the following upper bound for J1(I):

255×
√
2× 127.5µ

√

1 + 2(127.5µ)2

which corresponds to its amplitude since its lower bound is

clearly 0.

At the locations of the image domain where |∇a| >> |∇n|
(likely the case at contours of I), we have

J1(I) =
µ(a+ n)|∇I|
√

1 + µ2|∇I|2

=
µa|∇a|

√

1 + µ2|∇a|2
|∇I|

√

1 + µ2|∇a|2
|∇a|

√

1 + µ2|∇I|2
+

µn|∇I|
√

1 + µ2|∇I|2

≈ µa|∇a|
√

1 + µ2|∇a|2
+

µn|∇I|
√

1 + µ2|∇I|2
= J1(a) + n1.

(13)

Then

n1 =
µn|∇I|

√

1 + µ2|∇I|2

can be considered as additive noise for the first component

J1(I) with local variance

V ar(n1) = V ar

(

µn|∇I|
√

1 + µ2|∇I|2

)

=
µ2|∇I|2

1 + µ2|∇I|2σ
2.

Indeed, we can assume |∇I| is constant at edge locations

and V ar(n) = σ2 since n is an independent and identically

distributed random variable.

Thus at likely edges,

PSNR(J1(I))=20 log10

(

255
127.5

√
2µ

√

1 + 2µ2(127.5)2
× (14)

√

1 + µ2|∇I|2
µ|∇I|σ

)

(15)

≥ 20 log10

(

255

σ

)

= PSNRloc(I).

As in the computation for J1(I), at likely edges, |∇I| ≈
|∇a| and thus

J3(I) =
a+ n

√

1 + µ2|∇I|2

=
a

√

1 + µ2|∇a|2

√

1 + µ2|∇a|2
√

1 + µ2|∇I|2
+

n
√

1 + µ2|∇I|2

≈ a
√

1 + µ2|∇a|2
+

n
√

1 + µ2|∇I|2
= J3(a) + n3

(16)

where

n3 =
n

√

1 + µ2|∇I|2

can be considered as additive noise for the third component

J3(I). Then its local variance at likely edges is approximately

V ar(n3) = V ar

(

n
√

1 + µ2|∇I|2

)

=
σ2

1 + µ2|∇I|2 .
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Thus at likely edges, we have that

PSNR(J3(I)) = 20 log10

(

255

√

1 + µ2|∇I|2
σ

)

(17)

> 20 log10

(

255

σ

)

= PSNR(I).

According to formula (17), PSNR(J3(I)) is a strictly

increasing function of µ that tends to +∞ when µ −→ +∞
and to PSNR(I) when µ −→ 0.

According to formula (14), PSNR(J1(I)) is a decreasing

function of µ that tends to PSNR(I) when µ −→ +∞ and

whose limit at µ = 0 is

20log10

(

255× 127.5
√
2

|∇I|σ

)

Hence, we deduce that, at the locations of likely edges, the

higher µ is, the better the recovery of the clean component

J3(a), whereas the smaller µ is, the better the recovery of the

clean component J1(a).
Finally, from the fact that |∇I| ≈ |∇a|, we have

P31(I) ≈ P31(a) P33(I) ≈ P33(a) (18)

(see (3)) and it follows from the reconstruction equation

IdenMF : = P13(I)J
1(I)den + P33(I)J

3(I)den (19)

(see (8)) that

IdenMF ≈ P13(a)J
1(I)den + P33(a)J

3(I)den (20)

From Prop. 1, we intuit that J1(I)den and J3(I)den are

respectively a better approximation of J1(a) and J3(a) than

Iden is an approximation of a. Hence, from (20) and

a = P13(a)J
1(a) + P33(a)J

3(a)

we claim that (19) is a better reconstruction of a than Iden,

from which it follows that the value for the parameter µ that

provides the better reconstruction of the edges of the clean

image is strictly positive since for µ = 0, we have IdenMF =
Iden.

B. Homogeneous regions

We now treat the case where |∇a| << |∇n| which occurs

on homogeneous or slowly varying regions. At such locations

in the image domain, we have

J1(I) ≈ µI|∇n|
√

1 + µ2|∇n|2
(21)

J3(I) ≈ I
√

1 + µ2|∇n|2
(22)

Note that for µ > 0, the range, and thus the fluctuations,

of J1(I) and J3(I) are attenuated with respect to that of I .

In addition, while it is challenging to give a formal proof, the

experiments in Table I (explained in the section C. Numerical

results) indicate that for small values of µ > 0,

PSNR(J1(I)) > PNSR(I). (23)

In the same case, for small values of µ > 0, we obtain the

approximation:

PNSR(J3(I)) ≈ PNSR(I). (24)

Therefore, in homogeneous regions, it also appears that

rather than denoising I directly it should be better to denoise

J1(I) and J3(I).
Furthermore, if |∇a| << |∇n| then

IdenMF = P13(I)J
1(I)den + P33(I)J

3(I)den

≈ µ|∇n|
√

1 + µ2|∇n|2
J1(I)den +

1
√

1 + µ2|∇n|2
J3(I)den.

so J1(I)den is given increasingly more weight in the

reconstruction as |∇n| gets larger. Given the observation in

(23) for appropriately chosen µ, this should also benefit the

result of the proposed approach. Therefore, in homogeneous

regions, we can expect that IdenMF should be at least as

good as Iden, and more likely, better. Experimental results in

Section IV corroborate this conjecture.

Finally, from the analysis performed in this section, we

conclude that the best reconstruction of the clean image a
should be obtained by taking µ very small.

C. Numerical results

From the two previous sections, we know that the parameter

µ plays a key role in the quality of the reconstruction of the

image. In order to get more insight on the optimal values

that µ should take, we run an experiment where we compute

the PSNR of the components J1(I) and J3(I) for several

(constant) values of µ and noise levels σ on the whole

Kodak database [16]. Table I reports the results for σ =
5, 10, 15, 20, 25 and µ = 1.0, 0.1, 0.01, 0.005, 0.001, 0.0001.

We observe that the PSNR of the components are higher than

the PSNR of the image for µ ∈]0, 0.005] at each of the noise

level aforementioned. Note also that the upper bound 0.005

can be raised to 0.01 for the noise levels σ = 5, 10.

IV. EXPERIMENTS

Preliminary experiments showed that the value of the pa-

rameter µ that provides the best denoising result depends

on the image content, the noise level, the denoising method

involved, and the measure we use for evaluating the denoised

image. As a consequence, it is rather difficult to automatize

the value of µ.

Nonetheless, we have found in all our experiments that the

value µ = 0.001 systematically provides better results than the

value µ = 0, this latter corresponding to the standard denoising

method according to Remark 1 in sect. II.C. Experiments also

showed that the optimal value is systematically very close

to 0.001 when testing non local methods (NLM and BM3D)

whatever the image content, the noise level, and the measure

we use for evaluating the denoised image are. On the other

hand, the optimal value for µ greatly depends on the noise

level when testing the local method VTV. In what follows,

we report our results for µ = 0, µ = 0.001 with the three

denoising methods VTV, NLM, BM3D, as well as for the

optimal values of µ in the VTV case.
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TABLE I
AVERAGE VALUES OF THE PSNR FOR THE COMPONENTS J1, J3 AND THE IMAGE I OVER THE KODAK DATABASE FOR DIFFERENT NOISE LEVELS AND

VALUES OF THE PARAMETER µ.

Noise level Function µ = 1 µ = 0.1 µ = 0.01 µ = 0.005 µ = 0.001 µ = 0.0001

σ = 5
Component J1 20.51 20.09 34.37 37.84 40.17 40.31

Component J3 18.56 26.02 34.24 34.22 34.19 34.19
Image I 34.19 34.19 34.19 34.19 34.19 34.19

σ = 10
Component J1 19.34 15.96 28.21 31.51 33.84 33.97

Component J3 16.94 19.84 28.27 28.24 28.21 28.21
Image I 28.21 28.21 28.21 28.21 28.21 28.21

σ = 15
Component J1 18.32 14.16 24.44 27.79 30.09 30.22

Component J3 16.32 16.93 24.80 24.77 24.73 24.73
Image I 24.73 24.73 24.73 24.73 24.73 24.73

σ = 20
Component J1 17.37 13.10 21.86 25.12 27.38 27.51

Component J3 15.98 15.22 22.38 22.33 22.28 22.27
Image I 22.27 22.27 22.27 22.27 22.27 22.27

σ = 25
Component J1 16.47 12.36 19.89 23.03 25.25 25.38

Component J3 15.77 14.10 20.50 20.44 20.37 20.37
Image I 20.37 20.37 20.37 20.37 20.37 20.37

A. The moving frame approach applied to the Vectorial Total

Variation-based denoising method

In this section, we apply our moving frame approach to the

Vectorial Total Variation-based denoising method of Bresson

and Chan [8], defined as follows on a n-channel image

I0 : Ω ⊂ R
2 −→ R

n

IV TV : = argmin
I

∫

Ω

1

2λ
‖I − I0‖22 + V TV (I) dΩ (25)

where the Vectorial Total Variation V TV (I) of I is defined

by

sup

(∫

Ω

〈I,∇∗η〉2 dΩ; η ∈ C∞
c (Ω;Rn), ‖η(x)‖2 ≤ 1 ∀x ∈ Ω

)

(26)

for ∇∗ being the adjoint of the Jacobian operator.

Notice that on gray-level images, this approach reduces to

the Rudin-Osher-Fatemi (ROF) model [25].

In what follows, we describe our methodology for both

gray-level and color images and report the PSNR and SSIM

index values.

1) Gray-level images: As shown by Chambolle [11], the

ROF denoising model can be solved through a projection

algorithm. In [8], Bresson and Chan showed that their

vectorial extension of the ROF denoising model can be solved

through a vectorial extension of Chambolle’s projection

algorithm. Our moving frame approach associated to the ROF

denoising model can then be summarized as follows:

1) Take a clean gray-level image a and add Gaussian noise

of variance σ to it to create a noisy image I .

2) Apply the ROF denoising model (25) to I using Cham-

bolle’s projection algorithm, obtaining a denoised image

IROF .

3) Consider the moving frame associated to I (see (3)), for

some parameter value µ, and compute the components

(J1, J2, J3)T of I in this moving frame (see (4)).

Then, apply the VTV-based denoising model (25) to

TABLE II
COMPARISON OF THE STANDARD AND OUR MOVING FRAME APPROACH

WITH µ = 0.001 FOR THE V TV -BASED DENOISING METHOD, AT

DIFFERENT NOISE LEVELS. AVERAGE PSNR AND SSIM INDEX (X100)
OVER THE KODAK DATABASE: THE GRAY-LEVEL CASE.

Approach \ Noise variance 5 10 15 20 25
PSNR Standard 35.44 31.45 29.30 27.83 26.79

PSNR Moving frame 35.54 31.56 29.39 28.02 26.89

Approach \ Noise variance 5 10 15 20 25
SSIM Index Standard 93.73 87.00 81.22 76.05 72.39

SSIM Index Moving frame 93.88 87.22 81.57 77.33 73.24

these components using the vectorial extension of Cham-

bolle’s projection algorithm, obtaining the denoised

components (J1
V TV , J

2
V TV , J

3
V TV ), from which a de-

noised image IROFMF : = I3ROFMF is reconstructed

using Eq. (8).

4) Compute the PSNR and SSIM index values of IROF

and IROFMF with respect to the ground truth a.

The ROF model that we compute in step 2 does not

have any parameter to tune (assuming that λ in (25) is a

Lagrange multiplier associated to the noise level), whereas

our moving frame approach associated to that model in step 3

is parametrized by the scalar µ involved in the moving frame.

Table II reports the average PSNR and SSIM index over

the Kodak database of both IROF and IROFMF images for

the parameter value µ = 0.001. We see that our moving

frame approach slightly outperforms the standard approach at

each noise level tested with respect to both PSNR and SSIM

metrics.

Table III reports the average PSNR and SSIM index over

the Kodak database for the values of µ that provides the

best average PSNR values on the database for our approach.

Comparing the results with the ones reported in Table II,

we see that the improvement is much more important when

optimizing µ on the whole database. Note that optimizing

µ for each image would have improved the results reported

even more.
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TABLE III
OUR MOVING FRAME APPROACH WITH OPTIMAL VALUE OF µ FOR THE

V TV -BASED DENOISING METHOD, AT DIFFERENT NOISE LEVELS.
AVERAGE PSNR AND SSIM INDEX (X100) OVER THE KODAK DATABASE:

THE GRAY-LEVEL CASE.

Approach \ Noise variance 5 10 15 20 25
PSNR Moving frame 36.36 32.23 30.04 28.60 27.49

SSIM Index Moving frame 94.61 88.37 83.22 78.71 74.78

Parameter \ Noise variance 5 10 15 20 25
µ 0.008 0.005 0.005 0.004 0.004

2) Color images: We proceed as follows.

1) Take a clean color image a and add Gaussian noise of

variance σ to it to create the noisy image I .

2) Apply the VTV-based denoising model (25) to I using

the vectorial extension of the Chambolle’s projection

algorithm, obtaining a denoised image IV TV .

3) Consider the moving frame associated to I following

the method described in sect. II-B, and compute the

components (J1, J2, J3, J4, J5)T of I in this moving

frame using (7).

Then apply the VTV-based denoising model

to these components using again the vec-

torial extension of Chambolle’s projection

algorithm, obtaining the denoised components

(J1
V TV , J

2
V TV , J

3
V TV , J

4
V TV , J

5
V TV )

T , to which

the inverse transform of (7) is applied, i.e.













I1V TVMF

I2V TVMF

I3V TVMF

I4V TVMF

I5V TVMF













: = P













J1
V TV

J2
V TV

J3
V TV

J4
V TV

J5
V TV













.

The output denoised color image is IV TVMF : =
(I3V TVMF , I

4
V TVMF , I

5
V TVMF ).

4) Compute the PSNR and SSIM index values of IV TV

and IV TVMF with respect to the ground truth a.

As in the gray-level case, the VTV-based denoising model

that we compute in step 2 does not have parameters to tune

(assuming that λ in (25) is a Lagrange multiplier associated

to the noise level), whereas our moving frame approach

associated to that model in step 3 is parametrized by the scalar

µ determining the moving frame.

Table IV reports the average PSNR and SSIM index over

the Kodak database of both IV TV and IV TVMF images for

the parameter value µ = 0.001, and Table V reports the

average PSNR and SSIM index over the Kodak database for

the values of µ that provides the best average PSNR values on

the database for our approach. As in the gray-level case, we

observe that the improvement is low for µ = 0.001 and much

more important when optimizing µ on the whole database.

Again, optimizing µ for each image would have improved our

results.

In Fig. 3 Rows 1-2, we show an example comparing our

approach with the standard VTV-based denoising model. Our

TABLE IV
COMPARISON OF THE STANDARD AND OUR MOVING FRAME APPROACH

WITH µ = 0.001 FOR THE V TV -BASED DENOISING METHOD, AT

DIFFERENT NOISE LEVELS. AVERAGE PSNR AND SSIM INDEX (X100)
OVER THE KODAK DATABASE: THE COLOR CASE.

Approach \ Noise variance 5 10 15 20 25
PSNR Standard 36.31 32.46 30.35 28.79 27.57

PSNR Moving frame 36.45 32.60 30.51 28.96 27.75

Approach \ Noise variance 5 10 15 20 25
SSIM Index Standard 93.82 87.79 82.77 78.24 74.34

SSIM Index Moving frame 93.97 88.10 83.21 78.65 74.98

TABLE V
OUR MOVING FRAME APPROACH WITH OPTIMAL VALUE OF µ FOR THE

V TV -BASED DENOISING METHOD, AT DIFFERENT NOISE LEVELS.
AVERAGE PSNR AND SSIM INDEX (X100) OVER THE KODAK DATABASE:

THE COLOR CASE.

Approach \ Noise variance 5 10 15 20 25
PSNR Moving frame 37.08 33.19 31.05 29.61 28.45

SSIM Index Moving frame 94.66 89.43 84.78 80.89 77.11

Parameter \ Noise variance 5 10 15 20 25
µ 0.0075 0.005 0.0045 0.004 0.004

method better preserves fine details such as, for example, the

texture of the tree leaves and grass.

B. The moving frame approach applied to the Non-Local

Means algorithm.

In this section, we apply our framework to the Non-Local

Means (NLM) algorithm of Buades et al. [9],[10], defined for

a multi-channel image I = (I1, · · · , In), by

IkNLM (p) : =
1

C(p)

∑

q∈B(p,r)

w(p, q) Ik(q) (27)

where

C(p) =
∑

q∈B(p,r)

w(p, q)

and B(p, r) denotes a neighborhood (patch) of the pixel p of

size (2r+1)× (2r+1); The weight function w(p, q) is of the

form

w(p, q) = e

−max(d2 − 2σ2, 0)

h2 (28)

where h is a function of the noise level decreasing with the

size of the patches, and d is a distance between patches, given

by d2(B(p, f),B(q, f)) =

1

n(2f + 1)2

n
∑

i=1

∑

j∈B(0,f)

(Ii(p+ j)− Ii(q + j))2 (29)

In what follows, we describe our approach for both

gray-level and color images and report the PSNR and SSIM

index values.
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1) The case of gray-level images: The way we apply the

moving frame approach in the context of the NLM algorithm

for gray-level images is described as follows.

1) Take a clean image a and add Gaussian noise of variance

σ to it to create the noisy image I .

2) Apply NLM to I using the code available online [10],

obtaining a denoised image INLM .

3) Consider the moving frame associated to I (see (3)),

for the parameter value µ = 0.001, and compute the

components (J1, J2, J3)T of I in this moving frame

(see (4)).

Then, apply the NLM algorithm in [10] channel-wise to

these components, obtaining the denoised components

(J1
NLM , J

2
NLM , J

3
NLM ), from which a denoised gray-

level image INLM MF : = I3NLM MF is constructed

(see formula (8)).

4) Compute the PSNR and SSIM index values of INLM

and INLM MF with respect to the ground truth a.

The NLM algorithm is parametrized by the size of the window

search (the parameter r in (27)), the size of the patches (the

parameter f in (29)), and the function h in (28). In step 2, we

test NLM with the default parameters that are given in [10]

and which depend on the noise variance σ.

Regarding the parameters used in step 3, let us first point out

that, in practice, the component J2 does not vanish identically,

which comes from the fact that the numerical computation

of the matrix P−1 in (4) does not correspond exactly to

the transpose PT of P . However, since the values of J2

are negligible, there is no need of denoising that component.

Moreover, taking µ small makes the component J1 have

small values too. Hence, J1 has little weight in the denoising

process, meaning that there is no need of optimizing the

corresponding parameters, and we can then use the default

parameters induced by the noise level σ for denoising the

components J1. Finally, the only parameter of our method

is the noise level σ3 that will determine the parameters r, f, h
used for denoising the component J3.

Table VI reports the average PSNR and SSIM index values

over the Kodak database of both INLM and INLMMF , as well

as the values of the parameter σ3 that have been used, and that

were chosen to give the best PSNR results on average over the

entire database for our approach. It is worth noting that, the

optimal noise parameter σ3 is slightly greater than σ in every

cases.

We can see that our approach is consistently better, for all

noise levels, both in terms of PSNR and SSIM metrics. Note

that the biggest improvement occurs when σ = 15.

2) The case of color images: Unlike the VTV-based de-

noising method in sect. IV.A, the extension to color images

is not trivial when dealing with NLM. Indeed, preliminary

experiments showed that denoising a color image by applying

our previous approach for gray-level images to each of its

channels does not improve the results of directly applying

NLM to the color image given by [10], regardless of the color

space. We tested RGB,Lab, Y UV, Y CrCb, as well as a new

TABLE VI
COMPARISON OF THE STANDARD APPROACH AND OUR MOVING FRAME

APPROACH WITH µ = 0.001 FOR NLM , AT DIFFERENT NOISE LEVELS.
AVERAGE PSNR AND SSIM INDEX (X100), AND OPTIMAL PARAMETER

σ3 OVER THE KODAK DATABASE: THE GRAY-LEVEL CASE.

Approach \ Noise variance 5 10 15 20 25
PSNR Standard 37.41 33.38 31.05 30.04 28.91

PSNR Moving frame 37.52 33.59 31.57 30.12 29.00

Approach \ Noise variance 5 10 15 20 25
SSIM Index Standard 94.96 88.71 82.17 80.34 75.94

SSIM Index Moving frame 95.11 89.54 85.37 81.03 76.95

Parameter \ Noise variance 5 10 15 20 25
σ3 5.6 11 16 21 26

color space Aopp introduced in Dabov et al. [13]
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(30)

where A1
opp encodes the luminance information, and both

A2
opp and A3

opp encode the chrominance information. Treating

the color image in the RGB color space in a vectorial way

by applying a 5D extension of NLM to the components

(J1, J2, J3, J4, J5)T following the construction in sect. II.B,

as we did for the VTV-based denoising method in sect. IV.A,

fails when dealing with NLM. On the other hand, the space

proposed in [13] gave the most promising results.

To this end, we were able to improve the standard NLM

algorithm by applying our moving frame approach only on the

component A1
opp of the color image and taking the components

A2
opp and A3

opp from the image denoised directly with NLM.

More precisely, our approach is the following one:

1) Take a clean color image a and add Gaussian noise of

variance σ to it to create a noisy image I . Compute its

component A1
opp(I) in the color space (30).

2) Apply NLM to I using the code available online

[10], obtaining a denoised image INLM , and com-

pute its chrominance components A2
opp(INLM ) and

A3
opp(INLM ) in the color space (30).

3) Apply step 3 of the previous section to the gray-

level image A1
opp(I), which produces a denoised

image (A1
opp(I))NLMMF . Then, consider the image

INLMMF whose components in the color space (30)

are ((A1
opp(I))NLMMF , A

2
opp(INLM ), A3

opp(INLM )).
4) Compute the PSNR and SSIM index values of INLM

and INLMMF with respect to the ground truth a in the

RGB color space.

The NLM algorithm in step 2 was applied with the default

parameters for color images, that depend on the noise level σ
and which can be found in [10], and the first component J1

of A1
opp(I) in the moving frame in step 3 was denoised using

the default parameters (for gray-level images) induced by the

noise level σ. Finally, the only parameter we tune is the noise

level σ3 for denoising the third component J3.

Table VII reports the average PSNR and SSIM index values
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TABLE VII
COMPARISON OF THE STANDARD APPROACH AND OUR MOVING FRAME

APPROACH WITH µ = 0.001 FOR NLM , AT DIFFERENT NOISE LEVELS.
AVERAGE PSNR AND SSIM INDEX (X100), AND OPTIMAL PARAMETER

σ3 OVER THE KODAK DATABASE: THE COLOR CASE.

Approach \ Noise variance 5 10 15 20 25
PSNR Standard 38.35 34.84 32.70 31.18 30.00

PSNR Moving frame 38.76 35.18 33.08 31.61 30.42

Approach \ Noise variance 5 10 15 20 25
SSIM Index Standard 96.01 91.92 87.74 83.74 79.93

SSIM Index Moving frame 96.32 92.69 88.85 85.04 81.08

Parameter \ Noise variance 5 10 15 20 25
σ3 2.75 6.2 9.6 12.3 16

over the Kodak database of both INLM and INLMMF , as well

as the values of the parameter σ3 that have been used, and that

were chosen in order to give the best PSNR results on average

over the entire database for our approach. As in the gray-level

case, our method outperforms the standard approach at each

noise level, for both PSNR and SSIM metrics. It is also worth

noting that unlike the gray-level case, the optimal value of the

noise level σ3 is systematically lower than σ.

In Fig. 3 Rows 3-4, we illustrate our approach on the

image in the database where the improvement of PSNR of

our method with respect to the standard approach is one of

the highest (0.41dB), and we compare this with the result of

the standard NLM algorithm. We can see that our method

better preserves fine details like the texture of the ground, for

example, which is consistent with the fact that our method

is aiming at preserving the local geometry of the processed

image.

C. The moving frame approach applied to the Block Matching

and 3D Filtering algorithm.

In order to emphasize the consistency of our framework

for image denoising, we test it on one of the best algorithms

available in the literature: the Block Matching and 3D filtering

algorithm BM3D introduced by Dabov et al. [13].

For both gray-level and color images, our approach follows

exactly the one of the NLM case, only replacing the NLM

algorithm in steps 2 and 3 by the BM3D algorithm whose

code is available online [18]. More precisely, in step 2, we test

BM3D with the default parameters determined by the noise

level σ. In step 3, we apply BM3D on the component J1 with

the default parameters induced by the noise levels σ1 = σ, and

we test several values of the noise levels σ3 when applying

BM3D on the component J3, in order to find the ones that

provide the best average results on the whole database in terms

of PSNR.

Results on gray-level images are reported in table VIII and

results on color images are reported in table IX. In both cases,

we can see that our approach is consistently better, though very

slightly, for all noise levels, and for both PSNR and SSIM

metrics. The increase in PSNR that we obtain, while modest,

is in agreement with the optimality bounds estimated by Levin

and Nadler [20], and Chaterjee and Milanfar [12], and are

TABLE VIII
COMPARISON OF THE STANDARD APPROACH AND OUR MOVING FRAME

APPROACH WITH µ = 0.001 FOR BM3D, AT DIFFERENT NOISE LEVELS.
AVERAGE PSNR AND SSIM INDEX (X100), AND OPTIMAL PARAMETER

σ3 OVER THE KODAK DATABASE: THE GRAY-LEVEL CASE.

Approach \ Noise variance 5 10 15 20 25
PSNR Standard 38.23 34.34 32.26 30.89 29.88

PSNR Moving frame 38.25 34.38 32.31 30.93 29.92

Approach \ Noise variance 5 10 15 20 25
SSIM Index Standard 95.71 91.38 87.52 84.19 81.32

SSIM Index Moving frame 95.74 91.49 87.71 84.38 81.44

Parameter \ Noise variance 5 10 15 20 25
σ3 4.9 9.7 14.4 19.1 23.9

TABLE IX
COMPARISON OF THE STANDARD APPROACH AND OUR MOVING FRAME

APPROACH WITH µ = 0.001 FOR BM3D , AT DIFFERENT NOISE LEVELS.
AVERAGE PSNR AND SSIM INDEX (X100), AND OPTIMAL PARAMETER

σ3 OVER THE KODAK DATABASE: THE COLOR CASE.

Approach \ Noise variance 5 10 15 20 25
PSNR Standard 40.35 36.50 34.32 32.83 31.72

PSNR Moving frame 40.38 36.53 34.36 32.88 31.77

Approach \ Noise variance 5 10 15 20 25
SSIM Index Standard 97.05 94.22 91.49 88.89 86.50

SSIM Index Moving frame 97.08 94.26 91.62 89.06 86.71

Parameter \ Noise variance 5 10 15 20 25
σ3 2.75 5.6 8.2 11.1 13.8

comparable with the ones obtained through recent boosting

techniques [24]. Finally, we notice that the optimal values of

σ3 are systematically lower than the true noise level σ.

In Fig. 3 Rows 5-6, we show an example of our approach

where we compare the result with the one of the standard

BM3D denoising model. We can see that our method preserves

better fine details like the wooden decoration engraved in the

balcony, for example.

V. CONCLUSION

In this paper, we have developed a framework that en-

ables any denoising method to take more into account the

local geometry of the image to be denoised by preserving

the moving frame describing the graph of a scaled version

of the image. Experiments with the VTV-based denoising

method, NLM and BM3D algorithms on both gray-level and

color images tested over the Kodak database showed that

our strategy systematically improves the denoising method

it is applied to, in terms of PSNR and SSIM metrics. The

fact that we have been able to improve the performance of

three denoising methods of different types: a local variational

method, a patch-based method, and a method combining

a patch-based approach with a filtering in spectral domain

approach, demonstrates the consistency of our methodology.

In the proposed strategy for denoising, we either combine

the components into a single vector-valued function to which

we apply a denoising method (VTV) or treat them separately

applying the same denoising method but with different
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parameters (NLM and BM3D). However, as the components

have different geometric meaning, one shall wonder whether

they should not rather be denoised with different denoising

methods, and we are currently investigating that point.

Further work will be devoted to applying our framework to

denoising methods that treat images whose noise model is

unknown; this setting is more realistic, and there is more

room for improvement than with methods treating additive

Gaussian noise.

ACKNOWLEDGMENT

This work was supported by the European Research Coun-

cil, Starting Grant ref. 306337, by the Spanish government,

grant ref. TIN2012-38112, and by the Icrea Academia Award.

The last author is supported in part by NSF-DMS 1320829.

REFERENCES

[1] S.P. Awate and R.T. Whitaker,“Higher-order image statistics for unsuper-
vised, information-theoretic, adaptive, image filtering”, Proc. IEEE Int.

Conf. Comput. Vis. Pattern Recognit., vol. 2, pp. 44-51, 2005.

[2] T. Batard and M. Berthier,“Spinor Fourier transform for image process-
ing”, IEEE J. Sel. Topics Signal Process., vol. 7, no. 4, pp. 605-613,
2013.

[3] T. Batard and M. Bertalmı́o,“Generalized gradient on vector bundle-
application to image denoising”, Lecture Notes Comput. Sci., vol. 7893,
pp. 12-23, 2013.

[4] T. Batard and M. Bertalmı́o, “On covariant derivatives and their appli-
cations to image regularization ”, SIAM J. Imag. Sci., vol. 7, no. 4, pp.
2393-2422, 2014.

[5] M. Bertalmı́o, Image Processing for Cinema, Boca Raton, FL: CRC Press;
Taylor and Francis, 2014.

[6] M. Bertalmı́o and S. Levine,“Denoising an image by denoising its
curvature image ”, SIAM J. Imag. Sci., vol. 7, no. 2, pp. 187-201, 2014.

[7] P. Blomgren and T.F. Chan,“Color TV: total variation methods for
restoration of vector-valued images”, IEEE Trans. Image Process, vol.
7, no. 3, pp. 304-309, 1998.

[8] X. Bresson and T.F. Chan, “Fast dual minimization of the vectorial total
variation norm and applications to color image processing”, Inverse Probl.

Imaging, vol. 2, no. 4, pp. 455-484, 2008.

[9] A. Buades, B. Coll and J.-M. Morel, “A non-local algorithm for image
denoising”, Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., vol. 2,
pp. 60-65, 2005.

[10] A. Buades, B. Coll and J.-M. Morel,“Non-local means denoising”, Image

Processing On Line, vol. 1, 2011.

[11] A. Chambolle, “An algorithm for total variation minimization and
applications”, J. Math. Imaging Vis., vol. 20, pp. 89-97, 2004.

[12] P. Chaterjee and P. Milanfar,“Is denoising dead?”, IEEE Trans. Image

Process, vol. 19, no. 4, pp. 895-911, 2010.

[13] K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, “Image denoising by
sparse 3D transform-domain collaborative filtering”, IEEE Trans. Image

Process., vol. 16, no. 8, pp. 2080-2095, 2007.

[14] G. Ghimpet,eanu, T. Batard, M. Bertalmı́o and S. Levine, “Denoising an
image by denoising its components in a moving frame”, Lecture Notes

Comput. Sci., vol. 8509, pp. 375-383, 2014.

[15] J. Hahn, X.-C. Tai, S. Borok and A. M. Bruckstein, “Orientation-
matching minimization for image denoising and inpainting”, Int. J.

Comput. Vis., vol. 92, no. 3, pp. 308-324, 2011.

[16] http://r0k.us/graphics/kodak/

[17] M. Lebrun, M. Colom, A. Buades and J.M. Morel,“Secrets of image
denoising cuisine”, Acta Numerica, vol. 21, no. 1, pp. 475-576, 2012.

[18] M. Lebrun, “An analysis and implementation of the BM3D image
denoising method”, Image Processing On Line, vol. 2, pp.175-213, 2012.

[19] M. Lebrun, M. Colom and J.M. Morel,“The noise clinic: a universal
blind denoising algorithm”, Proc. IEEE Int. Conf. Image Process., 2014.

[20] A. Levin and B. Nadler, “Natural image denoising: Optimality and
inherent bounds”, Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit.,
vol. 2, pp. 2833-2840, 2011.

[21] M. Lysaker, S. Osher and X.C. Tai,“Noise removal using smoothed
normals and surface fitting”, IEEE Trans. Image Process., vol. 13, no.
10, pp. 1345-1357, 2004.

[22] S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, “An iterative regu-
larization method for total variation-based image restoration”, Multiscale

Modeling and Simulation, vol. 4, no. 2, pp.460
[23] T. Rahman, X.-C. Tai, and S. Osher, “A tv-stokes denoising algorithm”,

Lecture Notes Comput. Sci., vol. 4485, pp. 473-483, 2007. vol. 8509, pp.
375-383, 2014.

[24] Y. Romano, M. Elad,“Boosting of image denoising techniques”, SIAM

J. Imag. Sci., vol. 8, no.2, pp. 1187-1219, 2015.
[25] L.I. Rudin, S. Osher and E. Fatemi,“Nonlinear total variation based noise

removal algorithms”, Physica D: Nonlinear Phenomena., vol. 60, no. 1-4,
pp. 259-268, 1992.

[26] Z. Wang and A.C. Bovik,“A universal image quality index”, IEEE Signal

Process. Lett., vol. 9, pp. 81-84, 2002.
[27] Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli,“Image quality

assessment: From error visibility to structural similarity,” IEEE Trans.

Image Process., vol. 13, no. 4, pp. 600-612, 2004.



12

Fig. 3. Examples of our framework for different denoising algorithms. Row 1: our framework with VTV [8] as denoising method. Left: noisy image “kodim13”
with σ = 15. Middle: result of applying VTV to the image, PSNR=27.00. Right: our result, applying VTV to the components, PSNR=27.56. Row 2: zoomed-in
details from the first row. Row 3: our framework with NLM [9] as denoising method. Left: noisy image “kodim05” with σ = 20. Middle: result of applying
NLM to the image, PSNR=29.29. Right: our result, applying NLM to the components, PSNR=29.70. Row 4: zoomed-in details from the third row. Row 5: our
framework with BM3D [13] as denoising method. Left: noisy image “kodim24” with σ = 20. Middle: result of applying BM3D to the image, PSNR=31.26.
Right: applying BM3D to the components with optimized parameters, PSNR=31.40. Row 6: zoomed-in details from the fifth row.


