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In 1922 Blumberg[1] introduced the notion of a real valued function on Euclidean space

being densely approached at a point in its domain. Continuous functions satisfy this condi-

tion at each point of their domains. This concept was generalized by Ptak[7] in 1958 who

used the term ’nearly continuous’, and by Husain[3] in 1966 under the name of ’almost con-

tinuity’. More recently, Mashhour et al. [5] have called this property of functions between

arbitrary topological spaces ’precontinuity’.

In this paper we define a new property of functions between topological spaces which

is the dual of Blumberg’s original notion, in the sense that together they are equivalent to

continuity. Thus we provide a new decomposition of continuity in Theorem 4 (iv) which is

of some historical interest.

In a recent paper [10] , Tong introduced the notion of an A–set in a topological space and

the concept of A–continuity of functions between topological spaces. This enabled him to

produce a new decomposition of continuity. In this paper we improve Tong’s decomposition

result and provide a decomposition of A–continuity.

Let S be a subset of a topological space (X, τ) . We denote the closure of S and the

interior of S with respect to τ by clS and intS respectively.

1



Definition 1 A subset S of (X, τ) is called

(i) an α–set if S ⊆ int(cl(intS)) ,

(ii) a semiopen set if S ⊆ cl(intS) ,

(iii) a preopen set if S ⊆ int(clS) ,

(iv) an A–set if S = U ∩ F where U is open and F is regular closed,

(v) locally closed if S = U ∩ F where U is open and F is closed.

Recall that S is regular closed in (X, τ) if S = cl(intS) . We shall denote the collec-

tions of regular closed, locally closed, preopen and semiopen subsets of (X, τ) by RC(X, τ),

LC(X, τ), PO(X, τ) and SO(X, τ) respectively. The collections of A–sets in (X, τ) will be

denoted by A(X, τ) . Following the notation of Njastad[6] , τα will denote the collection of

all α–sets in (X, τ) .

The notions in Definition 1 were introduced by Njastad [6], Levine [4], Mashhour et al.

[5], Tong [10] and Bourbaki [2] respectively. Stone [9] used them term FG for a locally closed

subset. We note that a subset S of (X, τ) is locally closed iff S = U ∩ clS for some open set

U ([2], I.3.3, Proposition 5).

Corresponding to the five concepts of generalized open set in Definition 1, we have five

variations of continuity.

Definition 2 A function f : X → Y is called α–continuous (semicontinuous, precontinuous,

A–continuous, LC–continuous respectively) if the inverse image under f of each open set in

Y is an α–set (semiopen, preopen, A–set, locally closed respectively) in X.

Njastad [6] introduced α–continuity, Levine [4] semicontinuity and Tong [10]A–continuity,

while LC–continuity seems to be a new notion. It is clear that A–continuity implies LC–

continuity. We now provide an example to distinguish these concepts.

Example 1 Let (X, τ) be the set N of positive integers with the cofinite topology. Define

the function f : X → X by f(1) = 1 and f(x) = 2 for all x 6= 1 . Then V = X \ {2} is open

and f−1(V ) = {1} which is (locally) closed but not an A–set. Not that the only regular
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closed subsets of (X, τ) are ∅ and X . For any subset V of X , f−1(V ) is {1} , X \ {1} ,

∅ or X , and these are all locally closed subsets of X . Hence f is LC–continous but not

A–continuous.

Theorem 1 Let S be a subset of a topological space (X, τ) . Then S is an A–set if and

only if S is semiopen and locally closed.

Proof. Let S ∈ A(X, τ) , so S = U ∩ F where U ∈ τ and F ∈ RC(X, τ) . Clearly S is

locally closed. Now intS = U ∩ intF , so that S = U ∩ cl(intF ) ⊆ cl(U ∩ intF ) = cl(intS)

, and hence S is semiopen.

Conversely, let S be semiopen and locally closed, so that S ⊆ cl(intS) and S = U ∩ clS

where U is open. Then clS = cl(intS) and so is regular closed. Hence S is an A–set. 2

Theorem 2 For a subset S of a topological space (X, τ) the following are equivalent:

(1) S is open.

(2) S is an α–set and locally closed.

(3) S is preopen and locally closed.

Proof. (1) ⇒ (2) and (2) ⇒ (3) are obvious.

(3) ⇒ (1) : Let S be preopen and locally closed, so that S ⊆ int(clS) and S = U ∩ clS .

Then S ⊆ U ∩ int(clS) = int(U ∩ clS) = intS , hence S is open. 2

Theorem 3 For a topological space (X, τ) the following are equivalent:

(1) A(X, τ) = τ .

(2) A(X, τ) is a topology on X .

(3) The intersection of any two A–sets in X is an A–set.

(4) SO(X, τ) is a topology on X .

(5) (X, τ) is extremally disconnected.
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Proof. (1) ⇒ (2) and (2) ⇒ (3) are clear.

(3) ⇒ (4) : Let S1, S2 ∈ SO(X, τ) . We wish to show S1∩S2 ∈ SO(X, τ) . Suppose there

is a point x ∈ S1 ∩ S2 such that x /∈ cl(int(S1 ∩ S2)) . So there is an open neighbourhood

U of x such that U ∩ intS1 ∩ intS2 = ∅ . Thus U ∩ clS1 ∩ intS2 = ∅ and hence we have

U ∩ int(clS1)∩ clS2 = ∅ . Therefore U ∩ int(clS1∩ clS2) = ∅ , so that x /∈ cl(int(clS1∩ clS2))

. But, on the other hand we have clS1, clS2 ∈ RC(X, τ) , so that clS1, clS2 ∈ A(X, τ) ⊆
SO(X, τ) . Then x ∈ clS1 ∩ clS2 implies x ∈ cl(int(clS1 ∩ clS2)) , which is a contradiction.

Thus no such point x exists, and so S1 ∩ S2 ∈ SO(X, τ) .

(4) ⇒ (5) : is due to Njastad [6] .

(5) ⇒ (1) : If A is an A–set then A = U ∩ F where U ∈ τ and F ∈ RC(X, τ) . Since

(X, τ) is extremally disconnected, F ∈ τ . Hence A ∈ τ . 2

Theorem 1 and 2 show that in any topological space (X, τ) we have the following

fundamental relationships between the classes of subsets of X we are considering, namely

(i) A(X, τ) = SO(X, τ) ∩ LC(X, τ) .

(ii) τ = τα ∩ LC(X, τ) .

(iii) τ = PO(X, τ) ∩ LC(X, τ) .

(iv) τ = PO(X, τ) ∩ A(X, τ) .

(v) τα = PO(X, τ) ∩ SO(X, τ) (is due to Reilly and Vamanamurthy [8])

These relationships provide immediate proofs for the following decompositions. We note

that (ii) of Theorem 4 is an improvement of Tong’s decomposition of continuity [10], Theorem

4.1, and that (iii) of Theorem 4 is due to Reilly and Vamanamurthy [8] . Theorem 4 (i), (iv)

and (v) seem to be new results and provide new decompositions of continuity.

Theorem 4 Let f : X → Y be a function. Then

(i) f is A–continuous if and only if f is semicontinuous and LC–continuous.

(ii) f is continuous if and only if f is α–continuous and LC–continuous.

(iii) f is α–continuous if and only if f is precontinuous and semicontinuous.

(iv) f is continuous if and only if f is precontinuous and LC–continuous.

(v) f is continuous if and only if f is precontinuous and A–continuous.
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