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Abstract. We develop a method to decompose functions with mean value zero that are defined
on a (possibly unbounded) John domain into a countable sum of functions with mean value zero and
support in cubes or balls. This method enables us to generalize results known for simple domains
to the class of John domains and domains satisfying a certain chain condition. As applications we
present the solvability of the divergence equation div u = f , the negative norm theorem, Korn’s
inequality, Poincaré’s inequality and a localized version of the Fefferman–Stein inequality. We
present the results for weighted Lebesgue spaces and Orlicz spaces.

1. Introduction

In this paper we present a technique that allows to generalize results known for
simple domains such as balls or cubes to very general domains. The natural class of
domains to which this method is applicable is the one of John domains. The concept
of (bounded) John domains has been introduced by John in [21] and named after
him by Martio and Sarvas in [23], who also introduced the concept of unbounded
John domains. We shall use the terminology of Näkki and Väisälä [24], who gave
an exposition of the basic theory of John domains. Roughly speaking, a domain is
a John domain if it is possible to travel from one point of the domain to another
without getting too close to the boundary. This class contains Lipschitz domains
but is much larger. John domains may possess fractal boundaries or internal cusps
while external cusps are excluded. Bounded John domains can also be characterized
by the Boman chain condition. We generalize this idea to the case of unbounded
John domains and present our result assuming the more general emanating chain
condition. In particular, aperture domains and domains with conical outlets satisfy
this condition. The precise definitions of John domains, the Boman chain condition,
and the emanating chain condition are given in section 3.

The relation between these three conditions is the following (see Remarks 3.10,
3.16, and 3.17):

bounded domain: John = Boman chain = emanating chain
unbounded domain: John = Boman chain $ emanating chain
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The idea of our method is the following. Let Ω be a domain satisfying the emanating
chain condition and 1 < q < ∞. We consider a function f ∈ Lq

0(Ω), i.e. f is q-
integrable and has vanishing mean if Ω is bounded. We decompose the domain Ω by
the Whitney method into cubes (or balls) Wi. Then we decompose f in Lq

0(Ω) as the
sum of functions gi ∈ Lq

0(Wi) such that
( ∑

i∈N

‖gi‖q
Lq

0(Wi)

) 1
q

≤ c ‖f‖Lq
0(Ω).

The functions gi are extended outside of Wi by zero.
We show that the decomposition technique described above is also applicable

in the weighted setting, where Lq
0(Ω) and Lq

0(Wi) are replaced by their weighted
counterparts Lq

w,0(Ω) and Lq
w,0(Wi), respectively. The biggest class of weight functions

to which our proofs apply is the one of Muckenhoupt weights, see Definition 2.2
below. The reason is that the continuity of the decomposition operator is based
on the continuity of the Hardy–Littlewood maximal operator M on Lq

w(Ω), which
requires that w is in the Muckenhoupt class Aq, see Theorem 2.4. The presence
of the weight function barely complicates the proofs in this article. However, it
increases the significance of our results. The reason is that the results can be easily
generalized by the powerful extrapolation technique of Rubio de Francia [26] from
weighted Lebesgue spaces to a large class of Banach function spaces. As an example
we apply this technique to generalize our results to the setting of Orlicz spaces. We
need these results in a forthcoming article for the numerical analysis of the q-Stokes
system.

We propose several important applications of our decomposition method. First
we give a proof of Poincaré’s inequality. Then we consider the existence of a solution
u ∈ (D1,q

w,0(Ω))n of the divergence equation div u = f on Ω satisfying ‖∇u‖Lq
w(Ω) ≤

c ‖f‖Lq
w,0(Ω) for a given function f ∈ Lq

w,0(Ω). This is a famous auxiliary problem
and fundamental tool in fluid dynamics. The solvability of the divergence equation is
now a straightforward consequence of the corresponding result for Lipschitz domains
[15, 27] and of the above decomposition. As a consequence we are able the generalize
Nečas theorem on negative norms (Lions-Lemma) and Korn’s inequality to the case
of domains satisfying the emanating chain condition.

Next, we apply the decomposition technique to obtain a weighted, localized ver-
sion of the famous Fefferman–Stein inequality [13] for bounded domains satisfying
the emanating chain condition. In particular, we show that

‖f − 〈f〉Ω‖Lq
w(Ω) ≤ c

∥∥M ]
res,Ω,σ1

f
∥∥

Lq
w(Ω)

for every f ∈ L1(Ω),

where M ]
res,Ω,σ1

is the restricted sharp maximal operator and σ1 ∈ [1,∞), see Sec-
tion 5.3.

2. Preliminaries

Let us start with the necessary notation and convention we use in the paper. By c
we denote a generic constant, i.e. its value may change from line to line, but does not
depend on the important quantities. We write f ∼ g if there exist constants c1, c2 > 0
so that c1f ≤ g ≤ c2g. We use δj,k for the Kronecker delta, i.e. δj,k = 0 for j 6= k and
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δj,j = 1. The set of non-negative real numbers is denoted by R≥. For an open (non-
empty) set Ω ⊂ Rn we denote by L0(Ω) the space of real-valued, Lebesgue measurable
functions on Ω and by L1

loc(Ω) the space of real-valued, locally integrable functions
on Ω. We understand “locally integrable” in the sense that f is integrable on every
compact subset of Ω. We equip L1

loc(Ω) with the usual topology of L1-convergence on
compact subsets. By C∞

0 (Ω) we denote the space of smooth functions with compact
support. The set C∞

0,0(Ω) is the set of functions f ∈ C∞
0 (Ω) with

∫
Ω

f(x) dx = 0. An
open connected set Ω ⊂ Rn is called a domain. We use 〈f, g〉 for the duality pairing
and for

∫
Rn f(y)g(y) dy. By lq := lq(N0) we denote the sequence Lebesgue space with

q-summability. We use χE for the characteristic function of a Lebesgue measurable
set E ⊂ Rn. By Lq(Ω) and W 1,q(Ω) with q ∈ [1,∞] we denote the usual Lebesgue
and Sobolev spaces, respectively. We use |Ω| for the n-dimensional Lebesgue measure
of Ω and diam(Ω) as the diameter of Ω. By Br(x) we denote the ball in Rn with
center x and radius r. For f ∈ L1(E) with |E| > 0 we denote the mean value of f
over E by

〈f〉E := −
∫

E

f(y) dy :=
1

|E|
∫

E

f(y) dy.

Throughout the paper all cubes have sides parallel to the axes. Moreover, all cubes
and balls are open sets. If f ∈ L1(E) for some Lebesgue measurable set E ⊂ Rn,
then we often implicitly extend f outside of E by zero, so that f ∈ L1(Rn). For a
cube Q ⊂ Rn and λ > 0 we denote by λQ the cube with the same center as Q and
λ-times the diameter of Q.

For f ∈ L1
loc(R

n) we define the maximal operator M by

(Mf)(x) = sup
Q3x

−
∫

Q

|f(y)| dy,(2.1)

where the supremum is taken over all cubes Q in Rn that contain x.

Definition 2.2. For 1 < q < ∞ let Aq, the set of Muckenhoupt weights, be given
by all w ∈ L1

loc(R
n) with w > 0 almost everywhere and

Aq(w) := sup
Q

[(
−
∫

Q

w dx

)(
−
∫

Q

w− 1
q−1 dx

)q−1
]

< ∞.(2.3)

The supremum is taken over all cubes in Rn. The value Aq(w) is called the Aq-
constant of w.

The class A∞ is defined by A∞ =
⋃

q>1 Aq. For w ∈ A∞ we define the A∞-
constant A∞(w) by the limit of Aq(w) as q → ∞. This limit is well defined, since
Aq(w) is non-increasing for q →∞.

The class A1 is the set of all w ∈ L1
loc(R

n) with w > 0 almost everywhere and

A1(w) := sup
Q

[
−
∫

Q

w dx sup
x∈Q

1

w(x)

]
< ∞.

For convenience of notation we write w(E) :=
∫

E
w dx for every w ∈ Aq with

1 ≤ q ≤ ∞ and every Lebesgue measurable set E ⊂ Rn.
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A constant C = C(w) is called Aq-consistent if it depends on w only via Aq(w).
For w ∈ Aq and an open set Ω ⊂ Rn we define

Lq
w(Ω) :=

{
f ∈ L1

loc(Ω) : ‖f‖Lq
w(Ω) :=

(∫

Ω

|f |qw dx

) 1
q

< ∞
}

.

It is easy to verify that (Lq
w(Ω))′ = Lq′

w′(Ω) with 1
q

+ 1
q′ = 1 and w′ := w− 1

q−1 ∈ Aq′

for 1 < q < ∞. Moreover, Lq
w(Ω) ↪→ L1(Ω) for every bounded Ω using Hölder’s

inequality and (2.3).
One has the following well-known close connection between the Muckenhoupt

class Aq and the maximal operator.

Theorem 2.4. Let 1 < q < ∞ and w ∈ Aq. Then the maximal operator M is
continuous on Lq

w(Rn). More precisely, there exists an Aq-consistent constant c such
that

‖Mf‖Lq
w(Rn) ≤ c ‖f‖Lq

w(Rn) for every f ∈ Lq
w(Rn).

Proof. See [14], Theorems 2.1 and 2.9. For the Aq-consistence of the constants
one has to re-read the proof of [14], Theorem 2.9. ¤

Let Ω ⊂ Rn be a domain, 1 ≤ q < ∞, and w ∈ Aq. We define

W 1,q
w (Ω) :=

{
u ∈ Lq

w(Ω) : ‖u‖W 1,q
w (Ω) := ‖u‖Lq

w(Ω) + ‖∇u‖Lq
w(Ω) < ∞

}
,

where ∇u is the weak derivative of u. Moreover, we set

W 1,q
w,0(Ω) = C∞

0 (Ω)
‖·‖

W
1,q
w (Ω) .

3. John domains and the emanating chain condition

3.1. John domains. We use John domains in the sense of Martio, Sarvas [23]
and Näkki, Väisälä [24]. This includes the case of unbounded John domains. Several
equivalent characterizations for John domains can be found in [24]. In the present
paper we shall adopt the definition based on cigars and carrots.

Let γ ⊂ Rn be a rectifiable path with endpoints a and b and length |γ|. We as-
sume that all our paths are parameterized by its arclength. In particular, γ : [0, |γ|] →
Rn. We define the α-cigar with core γ and parameter α > 0 by

cig(γ, α) :=
⋃

t∈[0,|γ|]

{
B

(
γ(t),

1

α
min {t, |γ| − t}

)}
.

Further, we define the β-carrot with core γ and parameter β > 0 by

car(γ, β) :=
⋃

t∈[0,|γ|]

{
B

(
γ(t),

1

β
t
)}

.

Definition 3.1. A domain Ω ⊂ Rn is called an α-John domain, α > 0, if
every pair of distinct points a, b ∈ Ω can be joined by a rectifiable path γ such that
cig(γ, α) ⊂ Ω.

If the constant α is not important, we just say that Ω is a John domain.

John domains may possess fractal boundaries or internal cusps while external
cusps are excluded. For example the interior of Koch’s snow flake is a John domain.
The half space {(x1, . . . , xn) ∈ Rn : xn > 0} and the whole space Rn are also John
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domains, while the aperture domain {(x1, x2) ∈ Rn : x2 6= 0 or |x1| < 1} is not a John
domain. We will see later that our technique still applies to this kind of domains,
since it satisfies (see Remark 3.17) the emanating chain condition, which is defined
below.

Remark 3.2. If Ω is bounded, then Definition 3.1 is equivalent to several other
definitions (cf. [24]). In particular, if Ω is a bounded, α-John domain, then there
exists x0 ∈ Ω (the John center) and β = β(α) > 0 such that each a ∈ Ω \ {x0} can
be joined to x0 by a rectifiable path γ such that car(γ, β) ⊂ Ω.

3.2. The emanating chain condition. We show now that α-John domains
can be decomposed into a suitable set of balls or cubes that satisfy a certain chain
condition.

It can be shown (cf. [30, Chapter 6], [9, Chapter 1], [6, Theorem 3.2], [28, Sec-
tion 2], [11, Lemma C.1]) that every proper, open subset Ω ⊂ Rn possesses a suitable
Whitney decomposition, which we summarize in the following proposition.

Proposition 3.3. There exist κ1, κ2 with 1 < κ1 < κ2 and N > 0 such that for
every open set Ω ⊂ Rn with Ω 6= Rn there exists a family Qj, j ∈ N0, of cubes (or
balls) such that

(W1) Ω =
⋃

j∈N0
κ1 Qj =

⋃
j∈N0

2κ1 Qj,
(W2) 1

2
κ1 diam(Qj) ≤ dist(Qj, ∂Ω) ≤ κ2 diam(Qj),

(W3)
∑

j∈N0
χ2κ1Qj

≤ NχΩ on Rn.

A family of cubes (or balls) {Qj} which satisfies (W1)–(W3) is called a Whitney
covering of Ω with constants κ1, κ2, N . Two different cubes from a Whitney covering
are called neighbors if their closures intersect each other.

Remark 3.4. Due to (W3) every cube from a Whitney covering has at most
c(N) neighbors. Moreover, if follows from (W2) that two neighbors have comparable
size. Indeed, if Q1 and Q2 are neighbors and y ∈ Q1 ∩Q2, then it follows from (W2)
that diam(Q1) ∼ dist(y, ∂Ω) ∼ diam(Q2) with constants depending on κ1, κ2, N ,
and n.

Let us first treat the case of a bounded John domain. For this we introduce a
new chain condition.

Definition 3.5. Let Ω ⊂ Rn be a bounded domain and let σ1, σ2 ≥ 1. Then we
say that Ω satisfies the emanating chain condition with constants σ1 and σ2 if there
exists a covering W = {Wi : i ∈ N0} of Ω consisting of open cubes (or balls) such
that:

(C1) We have σ1W ⊂ Ω for all W ∈ W and
∑

W∈W χσ1W ≤ σ2 χΩ on Rn.
(C2) For every Wi ∈ W there exists a chain of (pairwise different) Wi,0,Wi,1, . . . ,

Wi,mi
from W such that Wi,0 = Wi, Wi,mi

= W0, and Wi,k1 ⊂ σ2Wi,k2 for
0 ≤ k1 ≤ k2 ≤ mi. Moreover, Wi,k ∩Wi,k+1, 0 ≤ k < mi, contains a ball Bi,k

such that Wi,k ∪ Wi,k+1 ⊂ σ2Bi,k. The chain Wi,0, . . . , Wi,mi
is called chain

emanating from Wi. The number mi ∈ N0 is called the length of this chain.
(C3) The set {i ∈ N0 : Wi ∩K 6= ∅} is finite for every compact subset K ⊂ Ω.

The family W is called the chain-covering of Ω. The cube W0 is called the central
cube (or ball), since every chain ends in W0.
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Remark 3.6. Let Ω be a bounded domain satisfying the emanating chain con-
dition with constants σ1 and σ2 and central cube W0. Then Ω ⊂ σ2W0 and hence
diam(W0) ≤ diam(Ω) ≤ σ2 diam(W0). This follows from the fact that every chain
ends in W0 and is therefore contained in σ2W0.

Remark 3.7. Domains Ω satisfying only the requirements (C1) and (C2) in
Definition 3.5 are known as domains satisfying the Boman chain condition. The
concept of a Boman chain condition appears to our knowledge first in the article
of Iwaniec and Nolder [20], where they refer to a preprint of Boman [3]. A related
decomposition can be found in a paper by Hurri [16].

It has been shown by Buckley, Koskela, and Lu [4] that a bounded domain is a
John domain if and only if it satisfies the Boman chain condition. We now improve
this statement slightly in proving that a bounded John domain satisfies the emanating
chain condition. We also need this proof later for the case of unbounded domains.

Theorem 3.8. Let Ω ⊂ Rn be a bounded α-John domain with center x0 and let
{Qi}i∈N0

be a Whitney covering of Ω with constants κ1, κ2, N such that x0 ∈ Q0. Let
σ1 := 4

3
. Define Wi := 3

2
κ1Qi for i ∈ N0 and W := {Wi : i ∈ N0}. Then there exists

σ2 = σ2(κ1, κ2, N, α, n) ≥ 1 such that Ω satisfies the emanating chain condition with
constants σ1 and σ2 and chain-covering W .

Proof. We use the characterization of Remark 3.2 of bounded α-John domains.
So let β > 0 be as in Remark 3.2. For every j ∈ N let xj denote the center of Wj

defined in the theorem. We do not need that x0 is the center of W0. However, it is
possible to show that the center of W0 is also a John center of Ω, so we could replace
x0 by the center of W0. This could possibly change the value of α by a fixed constant
depending on κ1. We set W := {Wi : i ∈ N0}.

For every i ∈ N0 we construct a finite sequence Qi,1, . . . , Qi,mi
∈ {Qj : j ∈ N0}

with mi ∈ N0 with the following properties.

(c1) Qi,0 = Qi, Qi,mi
= Q0 for i ∈ N0.

(c2) κ1Qi,k ∩ κ1Qi,k+1 6= ∅ for i ∈ N0 and k = 0, . . . , mi − 1.
(c3) There exists a constant σ2 = σ2(κ1, κ2, N, α, n) ≥ 1 such that Qi,k1 ⊂ σ2Qi,k2

whenever 0 ≤ k1 ≤ k2 ≤ mi.
(c4) Qi,k1 6= Qi,k2 for i ∈ N0, k1, k2 ∈ {0, . . . , mi} with k1 6= k2.

The exact value of σ2 will be determined below in the construction. Once we have
found our Qi,k, we define Wi,k := 3

2
κ1Qi,k for i ∈ N0 and k = 0, . . . , mi. It is easy to

see that the Wi,k and W satisfy the conditions (C1) and (C2) of Definition 3.5. Note
that the balls Bi,k satisfying condition (C2) can be chosen, since κ1Qi,k∩κ1Qi,k+1 6= ∅,
Qi,k and Qi,k+1 have comparable size, and Wi,k = 3

2
κ1Qi,k. For a compact subset

K ⊂ Ω we set δ0 := dist(K, ∂Ω) > 0. For Wi = 3
2
κ1Qi such that Wi ∩ K 6= ∅ we

easily deduce from the properties of the Whitney covering that |Wi| ≥ c(κ2) δn
0 . Let

N0 ∈ N be the number of sets Wi intersecting K. Using the last estimate and (W3)
we get

N0 c(κ1) δn
0 ≤

∑

Wi,k∩K 6=∅

∫

K

χWi,k
dx ≤ N |K|,

which shows (C3).
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Now, let i ∈ N0. If i = 0, then it suffices to set m0 := 0 and Q0,0 := Q0. So
assume in the following that i ≥ 1. According to Remark 3.2 there exists a rectifiable
path γi which joins xi with x0 and car(γ, β) ⊂ Ω. Using this path we inductively
construct the finite sequence Qi,0, . . . , Qi,mi

. As a compact subset γi intersects only
finitely many Qj, j ∈ N0. We construct a chain from these Qj.

Certainly we set Qi,0 := Qi. Assume that we have constructed the sequence
Qi,0, . . . , Qi,m satisfying (c2), (c3), and (c4) with mi replaced by m. If Qi,m = Q0,
then we are finished. If Qi,m 6= Q0, then we consider

tm+1 := sup
{
s : γi(s) ∈ κ1Qi,m

}
.(3.9)

Then due to (W1) we can find Qi,m+1 ∈ {Qj : j ∈ N0} such that γi(tm+1) ∈ κ1Qi,m+1.
By construction we have γi(tm+1) ∈ κ1Qi,m ∩ κ1Qi,m+1. So (c2) is satisfied for k ∈
0, . . . ,m. By definition of tk it follows that Qi,m+1 6= Qi,k for k = 0, . . . , m. This
proves (c4). Only (c3) with k2 = m + 1 requires a real proof. Fix 0 ≤ k ≤ m + 1.
Let xi,k and xi,m+1 be the center of Qi,k and Qi,m+1, respectively. Let y ∈ Qi,k. Then

|xi,m+1 − y| ≤ tm+1 + diam Qi,k + diam Qi,m+1.

Since 2κ1Qi,k ⊂ Ω, we have
diam(κ1Qi,k) ≤ c dist(κ1Qi,k, ∂Ω),

where c only depends on n. Note that the sub-path γi : [0, tm+1] → Ω intersects
κ1Qi,k and κ1Qi,m+1, so

dist(κ1Qi,k, ∂Ω) ≤ tm+1 + dist(κ1Qi,m+1, ∂Ω).

Since car(γ, β) ⊂ Ω, we have

tm+1 ≤ β dist
(
γ(tm+1), ∂Ω

) ≤ β
(
dist(κ1Qi,m+1, ∂Ω) + diam(κ1Qi,m+1)

)
.

Due to (W2) we further have
dist(κ1Qi,m+1, ∂Ω) ≤ dist(Qi,m+1, ∂Ω) ≤ κ2 diam(Qi,m+1).

Combining the estimates above we get
|xi,m+1 − y| ≤ c (1 + β) (1 + κ2) diam(κ1Qi,m+1)

for all y ∈ Qi,k. This proves
Qi,k ⊂ c (1 + β) (1 + κ2)2κ1Qi,m+1,

where c = c(n). Since the constant on the right-hand side is independent of m it
suffices to choose σ2 ≥ c (1 + β) (1 + κ2) 2κ1 in order to ensure (c3). ¤

Remark 3.10. From the results in [4] and Theorem 3.8 follows that for bounded
domains the notions of a John domain, a domain satisfying the Boman chain condi-
tion, and a domain satisfying the emanating chain condition coincide.

The treatment of unbounded domains differs only slightly. Different from the
bounded case the chains are infinitely long.

Definition 3.11. Let Ω ⊂ Rn be an unbounded domain. Further, let σ1, σ2 ≥ 1.
Then we say that Ω satisfies the emanating chain condition with constants σ1 and σ2

if there exists a covering W = {Wi : i ∈ N0} of Ω consisting of open cubes (or balls)
such that:
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(C1’) We have σ1W ⊂ Ω for all W ∈ W and
∑

W∈W χσ1W ≤ σ2 χΩ on Rn.
(C2’) For every Wi ∈ W there exists a chain of (pairwise different) Wi,0,Wi,1,Wi,2 . . . ,

from W such that Wi,0 = Wi and Wi,k1 ⊂ σ2Wi,k2 for 0 ≤ k1 ≤ k2. Moreover,
Wi,k ∩ Wi,k+1, k ≥ 0, contains a ball Bi,k such that Wi,k ∪ Wi,k+1 ⊂ σ2Bi,k.
The chain Wi,0,Wi,1,Wi,2, . . . is called chain emanating from Wi. We define
mi := ∞ and call it the length of this chain.

(C3’) The set {i ∈ N0 : Wi ∩K 6= ∅} is finite for every compact subset K ⊂ Ω.
The family W is called the chain-covering of Ω.

Note that the only difference between bounded and unbounded domains is that
for bounded domains all chains are finite and end in the central cube W0 while for
unbounded domains all chains are infinite. For domains Ω satisfying the emanating
chain condition it is easy to see that Ω is bounded if and only if |Ω| < ∞.

The following theorem shows that unbounded John domains satisfy the emanat-
ing chain condition.

Theorem 3.12. Let Ω ⊂ Rn be an α-John domain with Ω 6= Rn, and let
{Qi}i∈N0

be a Whitney covering of Ω with constants κ1, κ2, N . Let σ1 := 4
3
. De-

fine Wi := 3
2
κ1Qi for i ∈ N0 and W := {Wi : i ∈ N0}. Then there exists σ2 =

σ2(κ1, κ2, N, α, n) ≥ 1 such that Ω satisfies the emanating chain condition with con-
stants σ1 and σ2 and chain-covering W .

Proof. The case of bounded domains is already covered by Theorem 3.8, so let us
assume that Ω is unbounded. Let Wi := 3

2
κ1Qi for i ∈ N0 and W := {Wi : i ∈ N0}.

For every i ∈ N0 let xi denote the center of Qi. Since Ω is unbounded, we can
find a sub-sequence (ij)j∈N such that |xij | → ∞ for j →∞.

Fix i ∈ N0. We construct the chain emanating from Wi. For every j ∈ N with i 6=
ij, there exists a rectifiable path γi,j from xi to xij such that cig(α, γi,j) ⊂ Ω. Let yi,j

denote the midpoint of γi,j and let γ̂i,j denote the first half of γi,j. Then car(α, γ̂i,j) ⊂
Ω. With the help of the carrot car(α, γ̂i,j) it is possible to construct exactly as in
Theorem 3.8 a (finite) chain Ci,j of cubes from W which emanates from Wi and
satisfies (C1) and (C2) with W0 replaced by a cube from W containing yi,j.

We claim that the length of Ci,j goes to infinity as j → ∞. Indeed, since
|xij | → ∞ for j → ∞, we have |xi − xij | → ∞ and |γi,j| → ∞ for j → ∞.
Due to cig(α, γi,j) ⊂ Ω, this implies dist(yi,j, ∂Ω) → ∞ for j → ∞. In particu-
lar, |xi − yi,j| → ∞ for j → ∞. Since any two neighbours of the Whitney covering
have comparable size (see Remark 3.4), two subsequent elements of the chain Ci,j

also have comparable size. This and |xi − yi,j| → ∞ for j →∞ imply that the length
of Ci,j goes to infinity as j →∞.

Now, we get back to the construction of our chain Wi,0,Wi,1,Wi,2, . . . . Certainly,
we define Wi,0 := Wi. Due to (C1) and (C2) there is only a finite number of possible
choices of W for the second cube in the chains Ci,j, j ∈ N. So we can pick a sub-
sequence of Ci,j which has always the same cube as the second cube. We define
Wi,1 to be this cube. By the same argument we can pick a sub-sub-sequence which
has always the same cube as the third cube, which defines our cube Wi,2. By this
recursive procedure we get our sequence (Wi,k)k∈N0 satisfying (C1’) and (C2’). The
proof of condition (C3’) is as in the proof of Theorem 3.8. ¤
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Remark 3.13. Note that is irrelevant if we use cubes or balls in Definition 3.5
and 3.11 for our chain-covering W . In fact, it is easy to construct from any chain-
covering W consisting of cubes a different chain-covering W ′ consisting of balls with
corresponding chains. Also the reverse is true. The idea is to replace every cube W ∈
W by a finite number of smaller balls with comparable size (the number depends only
on n) which cover this cube W . In particular, the definition of the emanating chain
condition is independent of the use of cubes or balls. Certainly, by this procedure
the constants σ1 and σ2 might change.

Remark 3.14. Although the case Ω = Rn is excluded in Theorem 3.12, it is
easy to see that Rn satisfies the emanating chain condition. Indeed, by Theorem 3.12
we see that Rn\{0} satisfies the emanating chain condition with a chain-covering W .
Now, just add the cube [−1, 1]n to the family W and remove the cubes contained in
[−1/2, 1/2]n.

Remark 3.15. Let Ω ⊂ Rn be a domain satisfying the emanating chain con-
dition with chain-covering W . Then it is possible to choose the balls Bi,k in (C2)
and (C2’) from a family B of balls with

∑

B∈B

χB ≤ σ2 χΩ on Rn.

Indeed, let Y denote the set of pairs (W,W ′) ∈ W × W with W 6= W ′ such that
there exists a ball BW,W ′ with BW,W ′ ⊂ W ∩ W ′ ⊂ σ2BW,W ′ . We can assume that
BW,W ′ = BW ′,W for (W,W ′) ∈ Y . Let B := {BW,W ′ : (W,W ′) ∈ Y }. Then by (C1)
follows

∑

B∈B

χB ≤ σ2 χΩ.

Now, it suffices to choose the Bi,k in (C2) and (C2’) from the family B.

Remark 3.16. Iwaniec and Nolder define in [20] also the Boman chain condition
for unbounded domains. They say that an unbounded domain Ω ⊂ Rn satisfies the
Boman chain condition with constants σ1 and σ2 if it can be written as the countable
union of bounded domains Ωi with Ω1 ⊂ Ω2 ⊂ . . . which satisfy the Boman chain
condition with constants σ1 and σ2. Note that the same construction can be used to
characterize unbounded John domains starting from bounded ones. As a consequence
of the characterization “John = Boman” for bounded domains, see Buckley, Koskela,
and Lu [4], we get that “John = Boman” also for unbounded domains.

Remark 3.17. The half space {(x1, . . . , xn) ∈ Rn : xn > 0}, the whole space Rn

and exterior Lipschitz domains are unbounded John domains, which satisfy the Bo-
man chain condition and the emanating chain condition.

We have seen in Theorem 3.12 that every unbounded John domain also satisfies
the emanating chain condition. However, the converse is not true. Indeed, the
aperture domain

{
(x1, x2) ∈ R2 : x2 6= 0 or |x1| < 1

}

and domains with (at least two) conical outlets (cf. [25]) satisfy the emanating chain
condition but are no John domain.
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4. Decomposition of Lq
w,0(Ω)

In the following let Ω ⊂ Rn be a domain satisfying the emanating chain condition.
Let w ∈ Aq. For the definition of the space Lq

w,0(Ω) we distinguish the cases, when
Ω is bounded and when Ω is unbounded.

If Ω is bounded, 1 ≤ q < ∞, and w ∈ Aq, then we define

Lq
w,0(Ω) :=

{
f ∈ Lq

w(Ω) :

∫

Ω

f dx = 0

}
.

If Ω is unbounded, 1 < q < ∞, and w ∈ Aq, then we define

Lq
w,0(Ω) := Lq

w(Ω).

We equip Lq
w,0(Ω) with the norm of Lq

w(Ω).

Remark 4.1. It can be shown that if 1 < q < ∞ and w ∈ Aq, then Lq
w,0(Ω) is

the closure of C∞
0,0(Ω) for bounded and unbounded Ω.

Our main result of this section is the following decomposition result.

Theorem 4.2. (Decomposition Theorem) Let Ω ⊂ Rn be a domain satisfy-
ing the emanating chain condition with constants σ1, σ2 and chain-covering W =
{Wi : i ∈ N0}. Then there exists a family of linear operators Ti : C∞

0,0(Ω) → C∞
0,0(Wi),

i ∈ N0 such that for all 1 < q < ∞ and all w ∈ Aq the following holds:
(a) For each i ∈ N0 the operator Ti maps Lq

w,0(Ω) continuously into Lq
w,0(Wi).

(b) For each i ∈ N0 and all f ∈ Lq
w,0(Ω) holds

|Tif | ≤ c σ2 χWi
Mf almost everywhere.(4.3)

(c) The family Tif is a decomposition of f in Lq
w,0(Ω), i.e.

f =
∑
i≥0

Tif in Lq
w,0(Ω)(4.4)

for all f ∈ Lq
w,0(Ω). The convergence is unconditionally, i.e. every permuta-

tion of the series converges.
(d) The mapping f 7→ ‖Tif‖Lq

w,0(Wi)
from Lq

w,0(Ω) into lq(N0) is bounded and

1

c
‖f‖Lq

w,0(Ω) ≤
( ∑

i≥0

‖Tif‖q
Lq

w,0(Wi)

) 1
q

≤ c ‖f‖Lq
w,0(Ω)(4.5)

with c = c(σ1, σ2, q, Aq(w)).
(e) If Ω is bounded and f ∈ C∞

0,0(Ω), then {i ≥ 0 : Tif 6= 0} is finite.

Proof. We treat the case that the domain Ω is bounded and the case that
it is unbounded simultaneously. In the case of an unbounded domain we use the
convention that in the arguments below the conditions (C1) and (C2) has to be
replaced by (C1’) and (C2’). Recall that mi = ∞ for unbounded domains.

In the following let 1 < q < ∞ and w ∈ Aq. We begin with the construction of our
operators Ti. Let f ∈ C∞

0,0(Ω). Due to (C1) and Ω =
⋃

i≥0 Wi, there exists a smooth
partition of unity {ξi}i≥0 subordinate to the covering {Wi}i≥0, cf. [2, Theorem 3.14].
For f ∈ L1

loc(Ω) we define Sif := ξif for all i ∈ N0. Then the Si are linear maps
from L1

loc(Ω) to L1(Wi) and from C∞
0 (Ω) to C∞

0 (Wi). Moreover, |Sif | ≤ χWi
|f | and∑

i≥0 Sif = f almost everywhere, and if f ∈ Lq
w(Ω), then

∑
i≥0 Sif = f in Lq

w(Ω) by
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the dominated convergence theorem. We have not finished our proof yet, since Sif
in general does not satisfy

∫
Sif dx = 0.

Let Wi,k and Bi,k be as in (C2). Due to Remark 3.15 we can assume that all
these Bi,k are from a family B of balls which satisfies

∑

B∈B

χB ≤ σ2 χΩ on Rn.(4.6)

For every B ∈ B let ηB ∈ C∞
0 (B) with ηB ≥ 0,

∫
ηB dx = 1, and ‖ηB‖∞ ≤ c/|B|,

where c = c(n). For Bi,k ∈ B we define ηi,k := ηBi,k
. From the properties of Bi,k

follows
ηi,k ∈ C∞

0 (Wi,k) ∩ C∞
0 (Wi,k+1),

‖ηi,k‖∞ ≤ c min

{
1

|Wi,k| ,
1

|Wi,k+1|
}

(4.7)

for all i, k ≥ 0 with 0 ≤ k ≤ mi − 1.
In the case of a bounded domain Ω we pick a function η0 ∈ C∞(W0) with η0 ≥ 0,∫

η0 dx = 1 and ‖η0‖∞ ≤ c/|W0|, where c = c(n). Then we define ηi,mi
:= η0 for

every i ≥ 0. In particular, we have
ηi,mi

∈ C∞
0 (Wi,mi

),

‖ηi,mi
‖∞ ≤ c

|Wi,mi
|

(4.8)

for all i ≥ 0.
We define Tif for all f ∈ C∞

0,0(Ω) and all f ∈ Lq
w,0(Ω) by

Tif := Sif −
∫

Wi

Sif dx ηi,0 +
∑
j≥0
j 6=i

( ∫

Wj

Sjf dx
∑

k:0<k≤mj

Wj,k=Wi

(
ηj,k−1 − ηj,k

))
.(4.9)

The sum over j could be restricted to all j such that Wi is contained in the chain
emanating from Wj, since for all other j the sum over k is empty. Note that the
sum over k consists of at most one summand, since all cubes in a chain are pairwise
different. Since the sum over j may still be countable, it is not clear if Tif is well
defined by (4.9). Therefore, we show now that the sum on the right-hand side
of (4.9) converges almost everywhere, absolutely and can be estimated in terms of
the maximal function Mf . From this follows immediately that Tif is well defined
for all f ∈ C∞

0,0(Ω) and all f ∈ Lq
w,0(Ω). We define pointwise

Uif :=
∑
j≥0
j 6=i

(∣∣∣∣
∫

Wj

Sjf dx

∣∣∣∣
∑

k:0<k≤mj

Wj,k=Wi

(
ηj,k−1 + ηj,k

))
,(4.10)

which is well defined but may be infinite. Now, fix i, j, k ≥ 0 with 0 < k ≤ mj be
such that Wi = Wj,k. Together with (C2) we have

Wj = Wj,0 ⊂ σ2Wj,k = σ2Wi.(4.11)

Moreover, the choice of ηj,k and ηj,k+1, see (4.7) and (4.8), imply

ηj,k−1 + ηj,k ≤
c χWj,k

|Wj,k| =
c χWi

|Wi| .
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Also the summation over k in (4.10) contains at most one summand. So we get
almost everywhere

∑

k:0<k≤mj

Wj,k=Wi

(
ηj,k−1 + ηj,k

) ≤ c χWi

|Wi| .(4.12)

With |Sjf | ≤ |f |, (4.11), and (C1) we conclude

Uif ≤
∑
j≥0
j 6=i

∫

Wj

|f | dx
c χWi

|Wi| ≤ c σ2

∫

σ2Wi

|f | dx
χWi

|Wi| ≤ c σ2 χWi
Mf.(4.13)

Analogously, we estimate∣∣∣∣
∫

Wi

Sif dx

∣∣∣∣ηi,0 ≤ c χWi
Mf,

|Sif | ≤ χWi
|f | ≤ χWi

Mf

(4.14)

almost everywhere. With (C1), (4.13), and (4.14) we can conclude that the sum in
the definition of Ti, see (4.9), converges almost everywhere, absolutely and

|Tif | ≤ c σ2 χWi
Mf almost everywhere.(4.15)

This proves (b). Now, Theorem 2.4 shows that the linear operators Ti : Lq
w,0(Ω) →

Lq
w,0(Wi) are bounded.

We now prove (a). It remains to show that
∫

Tif dx = 0 for every f ∈ Lq
w,0(Ω).

We have shown above that the sum in the definition of Ti, see (4.9), converges almost
everywhere absolutely. This, (4.15), Theorem 2.4, and the dominated convergence
theorem imply that the sum in the definition of Ti also converges in Lq

w(Wi). Since
w ∈ Aq we have Lq

w(Wi) ↪→ L1(Wi), and thus the sum in the definition of Ti also
converges in L1(Wi). This,

∫
ηj,k dx = 1 for every j, k ≥ 0 with 0 ≤ k ≤ mj ,

and (4.9) imply
∫

Tif dx =

∫
Sif dx−

∫
Sif dx = 0,(4.16)

which proves (a). It also shows that Ti : C∞
0 (Ω) → L1

0(Wi), since Lq
w,0(Wi) ↪→ L1

0(Wi).
Let f ∈ C∞

0,0(Ω) and fix i ≥ 0. Since the balls Bi,k with i, k ∈ N0, 0 ≤ k < mi,
are all from the family B, it follows from (4.6), and the construction of the ηi,k that
only finitely many different functions ηB with B ∈ B appear in the definition of Tif ,
see (4.9). All of these functions are from C∞

0,0(Wi). Since we can resort the sum in the
definition of Tif arbitrarily (see above), Tif can be written as the linear combination
of finitely many C∞

0,0(Wi)-functions. This proves Tif ∈ C∞
0,0(Wi), so with (4.16) we

get Ti : C∞
0,0(Ω) → C∞

0,0(Wi).
Now, we prove that

∑
i≥0

Tif = f almost everywhere(4.17)

for all f ∈ Lq
w,0(Ω). Let us fix f ∈ Lq

w,0(Ω) and i0 ∈ N0. We show that (4.17)
holds on Wi0 . Due to (C1), the sum on the left-hand side of (4.17) involves on Wi0

only finitely many summands. Moreover, we have shown above that the sum in the
definition of Ti, see (4.9), converges almost everywhere absolutely. This allows us
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in the following calculations to resort the sums as we like. On Wi0 we calculate
pointwise

∑
i≥0

Tif =
∑
i≥0

[
Sif −

∫

Wi

Sif dx ηi,0

∑
i≥0

(
+

∑
j≥0
j 6=i

( ∫

Wj

Sjf dx
∑

k:0<k≤mj

Wj,k=Wi

(
ηj,k−1 − ηj,k

))
]
.

With
∑

i≥0 Sif = f we get pointwise on Wi0

∑
i≥0

Tif = f −
∑
i≥0

( ∫

Wi

Sif dx ηi,0

)

+
∑
j≥0

[ ∫

Wj

Sjf dx
∑

k:0<k≤mj

((
ηj,k−1 − ηj,k

) ∑
i≥0
i 6=j

Wi=Wj,k

1

)]
.

(4.18)

Let us consider the last sum over i. For this, we fix j, k ≥ 0 with 0 < k ≤ mj. Then
there exists a unique i ≥ 0 such that Wj,k = Wi. Since k > 0, we have by (C2) that
Wi = Wj,k 6= Wj,0 = Wj, which implies i 6= j. Therefore, we have

∑
i≥0
i6=j

Wi=Wj,k

1 = 1

for all j, k ≥ 0 with 0 < k ≤ mj. This and (4.18) prove pointwise on Wi0

∑
i≥0

Tif = f −
∑
i≥0

( ∫

Wi

Sif dx ηi,0

)

+
∑
j≥0

[ ∫

Wi

Sjf dx
∑

k:0<k≤mj

(
ηj,k−1 − ηj,k

)]

= f −
∑
i≥0

( ∫

Wi

Sif dx ηi,0

)
+

∑
j≥0

[ ∫

Wj

Sjf dx
(
ηj,0 − ηj,mj

)]

= f −
∑
j≥0

( ∫

Wj

Sjf dx ηj,mj

)
.

(4.19)

Note that for unbounded Ω the terms involving ηj,mj
do not appear, which

proves (4.17) in this case. Let us continue with the case of a bounded domain Ω. In
that case we have ηj,mj

= η0, so pointwise on Wi0

∑
i≥0

Tif = f − η0

∑
j≥0

∫

Wj

Sjf dx.(4.20)

Since
∑

j≥0 Sjf = f in Lq
w(Ω) and Lq

w(Ω) ↪→ L1(Ω), we have
∑

j≥0 Sjf = f in L1(Ω).
Thus,

∑
j≥0

∫
Wj

Sjf dx =
∫
Ω

f dx = 0. This and (4.20) prove (4.17) on Wi0 and
therefore on Ω.

Let us show the unconditional convergence of
∑

i≥0 Tif in Lq
w,0(Ω) for f ∈

Lq
w,0(Ω). We have to show that for every permutation σ of N0 the sum

∑
i≥0 Tσ(i)f
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converges to f . With (4.17), (b) and (C2) we estimate
∥∥∥∥f −

k∑
i=0

Tσ(i)f

∥∥∥∥
Lq

w,0(Ω)

≤ c

∥∥∥∥
∑

i>k

χWσ(i)
Mf

∥∥∥∥
Lq

w(Ω)

.(4.21)

Due to (C1) we have
∑

i>k χWσ(i)
≤ NχΩ and therefore

∑
i>k χWσ(i)

→ 0 almost
everywhere for k → ∞. So by Theorem 2.4 and the dominated convergence theo-
rem the right-hand side of (4.21) converges to zero. This proves the unconditional
convergence of

∑
i≥0 Tif in Lq

w,0(Ω). We have proved (c).
For f ∈ Lq

w(Ω) we estimate with (b) and (C1)
( ∑

i≥0

‖Tif‖q
Lq

w,0(Wi)

) 1
q

≤ c

( ∑
i≥0

‖χWi
Mf‖q

Lq
w(Wi)

) 1
q

≤ c

( ∫

Ω

∑
i≥0

χWi
(Mf)qw dx

) 1
q

≤ c ‖Mf‖Lq
w(Ω)

≤ c ‖f‖Lq
w,0(Ω).

This proves the second part of (4.5). On the other hand with (c) and (C1) we get

‖f‖Lq
w,0(Ω) =

∥∥∥∥
∑
i≥0

Tif

∥∥∥∥
Lq

w,0(Ω)

≤ c

( ∑
i≥0

‖Tif‖q
Lq

w,0(Wi)

) 1
q

.

This proves (d).
Let us prove finally (d). Thus, let Ω be bounded and f ∈ C∞

0,0(Ω). We have
to show that J := {i ≥ 0 : Tif 6= 0} is finite. Define G := {i ≥ 0 : Sif 6= 0}. Since
f ∈ C∞

0,0(Ω), it follows by (C3) that G is a finite set. Since Ω is bounded, every
chain emanating from Wj with j ∈ G has finite length. In particular, the collection
of chains emanating from some Wj with j ∈ G passes only through a finite number
of cubes. Let H denote the indices of all these cubes. Now, it is easy to see that
Tif = 0 for every i ∈ N0 \ (G∪H). Indeed, for i ∈ N0 \G the first two terms in the
definition of Tif , see (4.9), are zero. For i ∈ N0 \H the last term in the definition
of Tif is zero, since j ∈ G or the sum over k is empty. Since G and H are finite sets,
we have |J | ≤ |G ∪H| < ∞. So (e) holds. ¤

Lemma 4.22. Let Ω ⊂ Rn be a bounded domain satisfying the emanating chain
condition with constants σ1, σ2, let 1 < q < ∞, and w ∈ Aq. Let η ∈ L∞(Ω) with∫

Ω
η dx = 1. Then Uη : f 7→ f − η

∫
Ω

f dx and Vη : f 7→ η
∫

Ω
f dx are a bounded,

linear mappings from Lq
w(Ω) to Lq

w,0(Ω) and from Lq
w(Ω) to Lq

w(Ω), respectively. The
mapping Uη is onto and

∥∥∥∥∥f − η

∫

Ω

f dx

∥∥∥∥∥
Lq

w,0(Ω)

≤ c ‖f‖Lq
w(Ω),

∥∥∥∥∥η

∫

Ω

f dx

∥∥∥∥∥
Lq

w,0(Ω)

≤ c ‖f‖Lq
w(Ω),

(4.23)
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for all f ∈ Lq
w(Ω). The constants depend only on q, Aq(w), σ2, and ‖η‖∞|Ω|. If

η ∈ C∞
0 (Ω), then Uη : C∞

0 (Ω) → C∞
0,0(Ω).

Proof. Let W0 denote the central cube of Ω. Then with Hölder’s inequality and
Ω ⊂ σ2W0 (see Remark 3.6)∥∥∥∥∥η

∫

Ω

f dx

∥∥∥∥∥
Lq

w(Ω)

≤ |Ω|
|W0|‖η‖∞‖χΩ‖Lq

w(Rn)‖f‖Lq
w(Ω)‖χΩ‖Lq′

w′ (R
n)

≤ σn
2

‖χσ2W0‖Lq
w(Rn)‖χσ2W0‖Lq′

w′ (R
n)

|σ2W0| ‖η‖∞|Ω| ‖f‖Lq
w(Ω)

≤ σn
2

(
Aq(w)

) 1
q ‖η‖∞|Ω| ‖f‖Lq

w(Ω),

where we have used w ∈ Aq in the last step. This proves (4.23). The mapping Uη is
onto, since it is the identity on Lq

w,0(Ω). Since
∫

η dx = 1, we have
∫
Ω

Uηf dx = 0.
That Uη maps C∞

0 (Ω) into C∞
0,0(Ω) for η ∈ C∞

0 (Ω) is obvious. ¤

Remark 4.24. If Ω ⊂ Rn is a bounded domain satisfying the emanating chain
condition, 1 < q < ∞, and w ∈ Aq, then we can combine Lemma 4.22 with Theo-
rem 4.2 to extend our operators Ti : Lq

w,0(Ω) → Lq
w,0(Wi) to T̂i : Lq

w(Ω) → Lq
w,0(Wi)

for i ≥ 0. Indeed, let η be as in Lemma 4.22, then the operators T̂i := Ti ◦ Uη have
the desired property. Moreover,

∑
i≥0

T̂if =
∑
i≥0

Ti(Uηf) = Uηf = f − η

∫

Ω

f dx

with unconditional convergence in Lq
w,0(Ω). It is easily seen that the operators T̂i

satisfy (a), (b), and (d) of Theorem 4.2.
If additionally η ∈ C∞

0 (Ω), then T̂i : C∞
0 (Ω) → C∞

0,0(Ω) and the T̂i also satisfy (e)
of Theorem 4.2.

The following results will also be useful for the applications.

Lemma 4.25. Let Ω ⊂ Rn be a bounded domain satisfying the emanating chain
condition, 1 < q < ∞, and w ∈ Aq. Further let η ∈ L∞(Ω) with

∫
Ω

η dx = 1. Then

‖f‖Lq
w(Ω) ≤ c ‖f − 〈f〉Ω‖Lq

w,0(Ω) +
∣∣〈f, η〉

∣∣‖χΩ‖Lq
w(Ω)

for all f ∈ Lq
w(Ω). The constants depend only on q, Aq(w), σ2, and ‖η‖∞|Ω|.

Proof. For f ∈ Lq
w(Ω) we estimate

‖f‖Lq
w(Ω) = sup

‖g‖
L

q′
w′ (Ω)

≤1

〈f, g〉 = sup
‖g‖

L
q′
w′ (Ω)

≤1

(
〈f, Uηg〉+ 〈f, η〉

∫

Ω

g dy

)
,

where Uηg = g − η
∫

Ω
g dy ∈ Lq′

w′,0(Ω). With Lemma 4.22 we get

‖f‖Lq
w(Ω) ≤ c sup

‖h‖
L

q′
w′,0(Ω)

≤1

〈f, h〉+ sup
‖g‖

L
q′
w′ (Ω)

≤1

〈f, η〉
∫

Ω

g dy

≤ c ‖f − 〈f〉Ω‖Lq
w,0(Ω) +

∣∣〈f, η〉
∣∣‖χΩ‖Lq

w(Ω).

This proves the claim. ¤
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5. Applications

In this section we show how our Decomposition Theorem 4.2 can be used to
generalize several results known for cubes or balls to domains satisfying the emanating
chain condition.

5.1. Poincaré’s inequality. First, we give a simple proof of Poincaré’s in-
equality for bounded domains which satisfy the emanating chain condition using our
Decomposition Theorem 4.2. The result has already been proved by Chua in [5] using
the Boman chain condition. More general cases have been considered in [18].

Theorem 5.1. Let Ω ⊂ Rn be a bounded domain satisfying the emanating chain
condition with constants σ1 and σ2. Then for all f ∈ W 1,q

w (Ω) holds

‖f − 〈f〉Ω‖Lq
w(Ω) ≤ c diam(Ω) ‖∇f‖Lq

w(Ω).

The constant only depends on σ1, σ2, q, and Aq(w).

Proof. Let f ∈ Lq
w(Ω). Then with Theorem 4.2 (using balls for Wi) follows

‖f − 〈f〉Ω‖Lq
w,0(Ω) = sup

‖g‖
L

q′
w′,0(Ω)

≤1

〈f, g〉

= sup
‖g‖

L
q′
w′,0(Ω)

≤1

∑
i≥0

〈f, Tig〉

= sup
‖g‖

L
q′
w′,0(Ω)

≤1

∑
i≥0

〈f − 〈f〉Wi
, Tig〉.

≤ sup
‖g‖

L
q′
w′,0(Ω)

≤1

∑
i≥0

‖f − 〈f〉Wi
‖Lq

w(Wi)
‖Tig‖Lq′

w′,0(Ω)
.

It has been proven in [12, Theorem 1.5] that Poincaré’s inequality holds for balls, i.e.

‖f − 〈f〉Wi
‖Lq

w(Wi)
≤ c diam(Wi)‖∇f‖Lq

w(Wi)
,

where c depends only on q and Aq(w). This, diam(Wi) ≤ diam(Ω), Hölder’s inequal-
ity, (C1), and Theorem 4.2 imply

‖f − 〈f〉Ω‖Lq
w(Ω) ≤ c diam(Ω) sup

‖g‖
L

q′
w′,0(Ω)

≤1

∑
i≥0

‖∇f‖Lq
w(Wi)

‖Tig‖Lq′
w′,0(Ω)

≤ c diam(Ω) sup
‖g‖

L
q′
w′,0(Ω)

≤1

( ∑
i≥0

‖∇f‖q
Lq

w(Wi)

) 1
q
( ∑

i≥0

‖Tig‖q′

Lq′
w′,0(Ω)

) 1
q′

≤ c diam(Ω) sup
‖g‖

L
q′
w′,0(Ω)

≤1

‖∇f‖Lq
w(Ω)‖g‖Lq′

w′,0(Ω)

≤ c diam(Ω) ‖∇f‖Lq
w(Ω).

This proves the claim. ¤
5.2. The divergence equation, negative norm theorem, and Korn’s

inequality. For a domain Ω ⊂ Rn and 1 < q < ∞ we define the weighted ho-
mogeneous Sobolev space D1,q

w,0(Ω) to be the completion of C∞
0 (Ω) with respect to

the gradient norm ‖∇·‖Lq
w(Ω). Then D1,q

0 (Ω) is a Banach space. Note that if Ω is
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bounded, then D1,q
w,0(Ω) = W 1,q

w,0(Ω). We refer to [29] for more details on homogeneous
Sobolev spaces.

Theorem 5.2. Let Ω ⊂ Rn be a domain satisfying the emanating chain con-
dition with constants σ1 and σ2. Then there exists a linear operator B : C∞

0 (Ω) →
(L1

loc(Ω))n which for all 1 < q < ∞ and all w ∈ Aq extends uniquely to an operator
B : Lq

w,0(Ω) → (D1,q
w,0(Ω))n with

div Bf = f,(5.3)
‖∇Bf‖Lq

w(Ω) ≤ c ‖f‖Lq
w,0(Ω).(5.4)

The constant c only depends on σ1, σ2, q, and Aq(w).
If Ω is bounded, and f ∈ C∞

0,0(Ω), then Bf ∈ (C∞
0 (Ω))n.

Proof. The simple proof is based on the Decomposition Theorem 4.2, which
enables us to reduce the original problem from Ω to the corresponding problem for
balls. Since Ω satisfies the emanating chain condition, we can find a chain-covering W
consisting of balls with the corresponding chains. Let Ti : Lq

w(Ω) → Lq
w,0(Wi) be as

in Theorem 4.2.
It has been shown in [27, Theorem 1.1, Lemma 3.3] and [15, Satz 1.25, Satz 1.42]

that there exists a linear operator Bref which maps C∞
0,0(B1(0)) to (C∞

0 (B1(0)))n and
maps Lq

w,0(B1(0)) to (W 1,q
w,0(B1(0)))n for every 1 < q < ∞ and w ∈ Aq. Moreover, the

operator satisfies (5.3) and (5.4) with Ω replaced by B1(0). By a simple translation
and scaling argument it follows that there exist linear operators Bi : Lq

w,0(Wi) →
(W 1,q

w,0(Wi))
n which satisfy

div Big = g,(5.5)
‖∇Big‖Lq

w(Wi)
≤ c ‖g‖Lq

w,0(Wi)
,(5.6)

for all g ∈ Lq
w,0(Wi), where c only depends on q and Aq(w). Moreover, Bi maps

C∞
0,0(Wi) to (C∞

0 (Wi))
n.

Let f ∈ Lq
w(Ω). We extend BiTif outside of Wi by zero, so that BiTif ∈

(D1,q
w,0(Ω))n. We define our operator B by Bf :=

∑
i≥0 BiTif almost everywhere. Due

to (C3) and W 1,q
w,0(Wi) ↪→ W 1,1

0 (Wi) the sum converges in (L1
loc(Ω))n and therefore in

the sense of distributions. The same argument ensures that ∇Bf =
∑

i∇BiTif in
(L1

loc(Ω))n×n.
The estimate (5.6) and (d) of Theorem 4.2 imply∑

i≥0

‖∇BiTif‖q
Lq

w(Wi)
≤ c

∑
i≥0

‖Tif‖q
Lq

w,0(Wi)
≤ c ‖f‖q

Lq
w,0(Ω)

.(5.7)

So with supp(BiTif) ⊂ Wi and (C1), we conclude that Bf =
∑

i≥0 BiTif in (D1,q
w,0(Ω))n

and ∇Bf =
∑

i∇BiTif in (Lq
w(Ω))n×n. Moreover,

‖∇Bf‖q
Lq

w(Ω)
≤ c

∑
i≥0

‖∇BiTif‖q
Lq

w(Wi)
≤ c ‖f‖q

Lq
w,0(Ω)

,

which proves (5.4). From ∇Bf =
∑

i∇BiTif in (Lq
w(Ω))n×n follows

div Bf =
∑
i≥0

div BiTif =
∑
i≥0

Tif = f(5.8)

for f ∈ Lq
w,0(Ω). This proves (5.3).
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Assume now, that Ω is bounded and f ∈ C∞
0 (Ω). Then Tif ∈ C∞

0 (Wi) for all
i ≥ 0 and Tif 6= 0 for only finitely many i ≥ 0. Therefore, by the properties of Bi,
we have BiTif ∈ (C∞

0 (Wi))
n for all i ≥ 0 and BiTif 6= 0 for only finitely many i ≥ 0.

This proves Bf ∈ (C∞
0 (Ω))n. ¤

Remark 5.9. The solvability of the divergence equation in bounded John do-
mains without weights has been shown before by Acosta, Durán, and Muschietti
in [1], where they construct an involved explicit solution by means of an integral
operator.

For 1 < q < ∞ and w ∈ Aq we define the negative, weighted homogeneous
Sobolev space D−1,q

w (Ω) to be the dual space of D1,q′
w′,0(Ω).

As a consequence of Theorem 5.2 we are able the generalize Nečas theorem on
negative norms (Lions-Lemma) to the case of domains satisfying the emanating chain
condition.

Theorem 5.10. (Negative norm theorem) Let Ω ⊂ Rn be a domain satisfying
the emanating chain condition with constants σ1 and σ2. Then

‖∇f‖D−1,q
w (Ω) ≤ ‖f‖Lq

w,0(Ω) ≤ c ‖∇f‖D−1,q
w (Ω)(5.11)

for all f ∈ Lq
w,0(Ω). If Ω is additionally bounded, then

‖f‖Lq
w(Ω) ≤ c ‖∇f‖D−1,q

w (Ω) +
c

diam(Ω)
‖f‖D−1,q

w (Ω)(5.12)

for all f ∈ Lq
w(Ω). The constants only depend on σ1, σ2, q, and Aq(w).

Proof. Let f ∈ Lq
w,0(Ω). Then

(5.13) ‖∇f‖D−1,q
w,0 (Ω) = sup

‖h‖
D

1,q′
w′,0(Ω)

≤1

〈∇f,h〉 = sup
‖h‖

D
1,q′
w′,0(Ω)

≤1

〈f, div h〉,

which implies by Hölder’s inequality

‖∇f‖D−1,q
w,0 (Ω) ≤ ‖f‖Lq

w,0(Ω).

On the other hand with (5.13) and Theorem 5.2 we get

‖∇f‖D−1,q
w,0 (Ω) ≥ sup

‖Bg‖
D

1,q′
w′,0(Ω)

≤1

〈f, div Bg〉 = sup
‖Bg‖

D
1,q′
w′,0(Ω)

≤1

〈f, g〉

≥ c sup
‖g‖

L
q′
w′,0(Ω)

≤1

〈f, g〉 = c ‖f‖Lq
w,0(Ω),

where the constant only depends on σ1, σ2, q, and Aq(w). This proves (5.11).
Assume in the following that Ω is bounded. Let W0 be the central cube of Ω and

choose η ∈ C∞
0 (W0) with η ≥ 0,

∫
W0

η(x) dx = 1, ‖η‖∞ ≤ c/|W0|, and ‖∇η‖∞ ≤
c/(|W0| diam(W0)), where c = c(n). For f ∈ Lq

w(Ω) we estimate with Lemma 4.25
and (5.11)

‖f‖Lq
w(Ω) ≤ c ‖f − 〈f〉Ω‖Lq

w,0(Ω) +
∣∣〈f, η〉

∣∣‖χΩ‖Lq
w(Ω)

≤ c ‖∇f‖D−1,q
w (Ω) + ‖f‖D−1,q

w (Ω)‖η‖D1,q′
w′,0(Ω)

‖χΩ‖Lq
w(Ω).
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By Remark 3.6 we have diam(W0) ≤ diam(Ω) ≤ σ2 diam(W0). Therefore,

‖η‖
D1,q′

w′,0(Ω)
‖χΩ‖Lq

w(Ω) ≤ ‖∇η‖∞‖χΩ‖Lq′
w′ (Ω)

‖χΩ‖Lq
w(Ω)

≤ c σ2

diam(Ω)

‖χΩ‖Lq′
w′ (Ω)

‖χΩ‖Lq
w(Ω)

|W0|
≤ c σ2

diam(Ω)

(
Aq(w)

) 1
q .

(5.14)

This and the previous estimate prove (5.12). ¤
We now use the negative norm theorem, Theorem 5.10, to prove Korn’s inequality

in the first and second case: the first case is concerned with functions with zero
boundary values; the second deals with the general case. In the first case we do not
need any regularity conditions on our domain Ω, while in the second case we need
a bounded domain which satisfies the emanating chain condition. In the following,
we denote by Du := 1

2
((∇u) + (∇u)>) the symmetric gradient of u, where u is a

function from Ω ⊂ Rn to Rn.

Theorem 5.15. (Korn’s inequality; first case) Let Ω ⊂ Rn be an arbitrary
domain. Let 1 < q < ∞ and w ∈ Aq. Then for all u ∈ (D1,q

w,0(Ω))n it holds that

‖∇u‖Lq
w(Ω) ≤ c ‖Du‖Lq

w(Ω).(5.16)

The constant only depends on q and Aq(w).

Proof. Since every function u ∈ (D1,q
w,0(Ω))n can be extended by zero to a function

u ∈ (D1,q
w,0(R

n))n, it suffices to consider the case Ω = Rn.
By Theorem 5.10 and the identity ∂j∂kui = ∂jDkiu + ∂kDiju − ∂iDjku (in the

sense of distributions) follows

‖∇u‖Lq
w(Rn) ≤ c ‖∇∇u‖D−1,q

w (Rn) ≤ c ‖∇Du‖D−1,q
w (Rn) ≤ c ‖Du‖Lq

w(Rn),

where we used that Lp
w(Rn) = Lp

w,0(R
n). ¤

Theorem 5.17. (Korn’s inequality; second case) Let Ω ⊂ Rn be a bounded
domain satisfying the emanating chain condition with constants σ1 and σ2. Let
1 < q < ∞ and w ∈ Aq. Then for all u ∈ (W 1,q

w (Ω))n it holds that
∥∥∇u− 〈∇u〉Ω

∥∥
Lq

w(Ω)
≤ c

∥∥Du− 〈Du〉Ω
∥∥

Lq
w(Ω)

,(5.18)
∥∥∇u

∥∥
Lq

w(Ω)
≤c

∥∥Du−〈Du〉Ω
∥∥

Lq
w(Ω)

+
c

diam(Ω)

∥∥u−〈u〉Ω
∥∥

Lq
w(Ω)

.(5.19)

The constants only depend on σ1, σ2, q, and Aq(w).

Proof. Using the identity ∂j∂kui = ∂jDkiu + ∂kDiju − ∂iDjku (in the sense of
distributions) the claim follows immediately from Theorem 5.10. Indeed, for bounded
Ω

‖∇u− 〈∇u〉Ω‖Lq
w,0(Ω) ≤ c ‖∇∇u‖D−1,q

w (Ω) ≤ c ‖∇Du‖D−1,q
w (Ω)

≤ c ‖Du− 〈Du〉Ω‖Lq
w,0(Ω).

This proves (5.18). The proof of (5.19) is similar to the one of (5.12). Let W0

be the central cube of Ω and choose η ∈ C∞
0 (W0) with η ≥ 0,

∫
W0

η(x) dx = 1,
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‖η‖∞ ≤ c/|W0|, and ‖∇η‖∞ ≤ c/(|W0| diam(W0)), where c = c(n). For u ∈ W 1,q
w (Ω)

we estimate with Lemma 4.25

‖∇u‖Lq
w(Ω) ≤ c ‖∇u− 〈∇u〉Ω‖Lq

w,0(Ω) + c

n∑

j,k=1

∣∣〈∂kuj, η〉
∣∣‖χΩ‖Lq

w(Ω).

Since 〈∂kuj, η〉 = 〈∂k(uj − 〈uj〉Ω), η〉, we get with (5.18)

‖∇u‖Lq
w(Ω) ≤ c ‖Du−〈Du〉Ω‖Lq

w,0(Ω)+c

n∑

j,k=1

∣∣〈uj−〈uj〉Ω, ∂kη〉
∣∣‖χΩ‖Lq

w(Ω)

≤ c ‖Du− 〈Du〉Ω‖Lq
w,0(Ω) + c ‖u− 〈u〉Ω‖Lq

w,0(Ω)‖∇η‖
Lq′

w′ (Ω)
‖χΩ‖Lq

w(Ω).

Exactly as in (5.14) we have ‖∇η‖
Lq′

w′ (Ω)
‖χΩ‖Lq

w(Ω) ≤ c/diam(Ω) where c depends
only on σ2, q, and Aq(w). This and the previous estimate prove (5.19). ¤

Remark 5.20. Korn’s inequality in the second case in the form of (5.19) for John
domains without weights has been shown before by Acosta, Durán, and Muschietti
in [1].

5.3. Local Fefferman–Stein inequality. Let Ω ⊂ Rn be a domain satisfying
the emanating chain condition. For f ∈ L1(Ω), σ ≥ 1 or f ∈ L1

loc(Ω), σ > 1
we define the restricted maximal function Mres,Ω,σf : Rn → [0,∞] and the restricted
sharp maximal function M ]

res,Ω,σf : Rn → [0,∞] by

(Mres,Ω,σf)(x) := sup
Q3x:σQ⊂Ω

−
∫

Q

|f(y)| dy,

(M ]
res,Ω,σf)(x) := sup

Q3x:σQ⊂Ω
−
∫

Q

|f(y)− 〈f〉Q| dy,

for all x ∈ Ω, where the supremum is taken over all cubes Q ⊂ Rn with σQ ⊂ Ω and
x ∈ Q. We extend Mres,Ω,σf and M ]

res,Ω,σf outside of Ω by zero.
Iwaniec [19, Lemma 4] proved the following local version of the Fefferman and

Stein inequality.

Lemma 5.21. Let Q0 ⊂ Rn be a cube, 1 ≤ q < ∞, and f ∈ L1(Q0). If
M ]

res,Q0,1f ∈ Lq(Q0), then Mres,Q0,1f ∈ Lq(Q0) and
(
−
∫

Q0

|Mres,Q0,1f |q dx

) 1
q

≤ 105nq

(
−
∫

Q0

|M ]
res,Q0,1f |

q
dx

) 1
q

+ 10n+1−
∫

Q0

|f | dx.

This result has a nice consequence for the space Lq
0(Q0) of functions with mean

value zero.

Corollary 5.22. Let Q0 ⊂ Rn be a cube, 1 ≤ q < ∞, and let f ∈ L1
0(Q0). If

M ]
res,Q0,1f ∈ Lq(Q0), then f ∈ Lq

0(Q0) and
∥∥f

∥∥
Lq

0(Q0)
≤ 105nq+n+1

∥∥M ]
res,Q0,1f

∥∥
Lq(Q0)

.

Proof. Since 〈f〉Q0 = 0, we have −
∫

Q0
|f | dy ≤ M ]

res,Q0,1f(x) for all x ∈ Q0.
Taking the mean value of this inequality we get also using −

∫
Q0
|M ]

res,Q0,1f | dx ≤
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(−
∫

Q0
|M ]

res,Q0,1f |
q
dx)

1
q and Lemma 5.21

(
−
∫

Q0

|Mres,Q0,1f |q dx

) 1
q

≤ 105nq+n+1

(
−
∫

Q0

|M ]
res,Q0,1f |

q
dx

) 1
q

.

Multiplying by |Q0|
1
q and using |f | ≤ Mres,Q0,1f proves the claim. ¤

We generalize this result to domains satisfying the emanating chain condition
including the weighted case.

Theorem 5.23. Let Ω ⊂ Rn be a bounded domain satisfying the emanating
chain condition with constants σ1 and σ2. Let 1 < q < ∞, w ∈ Aq, f ∈ L1

loc(Ω), and
σ1 > 1. If M ]

res,Ω,σ1
f ∈ Lq

w(Ω), then f ∈ Lq
w(Ω) and

∥∥f − 〈f〉Ω
∥∥

Lq
w,0(Ω)

≤ c
∥∥M ]

res,Ω,σ1
f
∥∥

Lq
w(Ω)

.(5.24)

The constant c depends only on σ1, σ2, q, and Aq(w). If f ∈ L1(Ω), then it suffices
to assume σ1 ≥ 1.

Using our Decomposition Theorem 4.2 and Corollary 5.22 we would be able to
prove the unweighted version of Theorem 5.23. However, for the proof of the weighted
version we need the following weighted version of Corollary 5.22.

Lemma 5.25. Let Q0 ⊂ Rn be a cube, 1 ≤ q < ∞, w ∈ Aq, and f ∈ L1
0(Q0). If

M ]
res,Q0,1f ∈ Lq

w(Q0), then f ∈ Lq
w,0(Q0) and

∥∥f
∥∥

Lq
w,0(Q0)

≤ c
∥∥M ]

res,Q0,1f
∥∥

Lq
w(Q0)

,

where the constant only depends on q and Aq(w).

Since we want to show in this section how our Decomposition Theorem 4.2 and
Lemma 5.25 imply Theorem 5.23, we postpone the proof of Lemma 5.25 to the
appendix and continue with the proof of Theorem 5.23.

Proof of Theorem 5.23. Let 1 < q < ∞, w ∈ Aq, and f ∈ L1
loc(Ω) with

M ]
res,Ω,σ1

f ∈ Lq
w(Ω). Since w ∈ Aq, we have w′ = w

1
1−q ∈ Aq′ .

Let h ∈ C∞
0,0(Ω), then by Theorem 4.2 we can decompose h in Lq′

w′,0(Ω) into sum
of functions Tih ∈ C∞

0,0(Wi) such that

( ∑
i≥0

‖Tih‖q′

Lq′
w′,0(Wi)

) 1
q′
≤ c ‖h‖

Lq′
w′,0(Ω)

.(5.26)

Moreover, Theorem 4.2 ensures (using the boundedness of Ω) that only finitely many
summands of h =

∑
i≥0 Tih are non-zero.

Since f ∈ L1
loc(Ω) and h ∈ C∞

0,0(Ω), 〈f, h〉 is well defined. Only finitely many of
the Tih are non-zero and

∫
Wi

Tih dx = 0, so we have

〈f, h〉 =
∑

i

〈f, Tih〉 =
∑

i

〈f − 〈f〉Wi
, Tih〉,
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where we also used that f ∈ L1(Wi), since σ1 > 1 and consequently W1 ⊂ σ1Wi ⊂ Ω.
We estimate with Lemma 5.25 (in the second step)

〈
f, h

〉 ≤
∑

i

‖f − 〈f〉Wi
‖Lq

w,0(Wi)
‖Tih‖Lq′

w′,0(Wi)

≤ c
∑

i

‖M ]
res,Wi,1

f‖
Lq

w(Wi)
‖Tih‖Lq′

w′,0(Wi)

≤ c
∑

i

‖χWi
M ]

res,Ω,σ1
f‖

Lq
w(Ω)

‖Tih‖Lq′
w′,0(Wi)

≤ c

( ∑
i

‖χWi
M ]

res,Ω,σ1
f‖q

Lq
w(Ω)

) 1
q
( ∑

i

‖Tih‖q′

Lq′
w′,0(Wi)

) 1
q′

≤ c ‖M ]
res,Ω,σ1

f‖
Lq

w(Ω)
‖h‖

Lq′
w′,0(Ω)

(5.27)

for all h ∈ C∞
0,0(Ω), where we have used in the last step

∑
W∈W χσ1W ≤ σ2 χΩ

and (5.26).
We have shown that the mapping T : h 7→ 〈f, h〉 is bounded as a mapping from

(C∞
0,0(Ω), ‖·‖

Lq′
w′,0(Ω)

) to R. Since C∞
0,0(Ω) is dense in Lq′

w′,0(Ω), there exists a unique

T̄ ∈ (Lq′
w′,0(Ω))∗ with T̄ (f) = 〈f, h〉 for all h ∈ C∞

0,0(Ω). Since (Lq′
w′,0(Ω))∗ ∼= Lq

w,0(Ω)

there exists f̄ ∈ Lq
w,0(Ω) such that T (h) = 〈f̄ , h〉 for all h ∈ Lq′

w′,0(Ω). In particular,
we have 〈f̄ − f, h〉 = 0 for all h ∈ C∞

0,0(Ω). Since the operator div maps C∞
0 (Ω;Rn)

into C∞
0,0(Ω), if follows that 〈f̄ − f, div w〉 = 0 for all w ∈ C∞

0 (Ω,Rn). This implies
that ∇(f̄ − f) = 0 in the sense of distributions. So by the Theorem of DuBois–
Reymond there exists a constant c0 ∈ R such that f = f̄ + c0. Thus, f ∈ Lq

w(Ω)
and 〈f〉Ω = c0. From 〈f − 〈f〉Ω, h〉 = 〈f̄ , h〉 = 〈f, h〉 for all h ∈ C∞

0,0(Ω) and (5.27)
follows (5.24). ¤

Remark 5.28. Note that Theorem 5.23 generalizes Corollary 5.22 by Iwaniec
even in the unweighted case in the sense that M ]

res,Ω,1 is replaced by M ]
res,Ω,σ1

. So the
supremum is only taken over cubes which are after enlargement by σ1 > 1 still in Ω.
This is in particular of interest in applications to partial differential equations.

Remark 5.29. It is possible to deduce Theorem 5.23 from [20, Theorem 3]
together with Lemma 5.25. However, our motivation was to show that our Decom-
position Theorem 4.2 also provides a simple proof of the result.

Remark 5.30. It is also possible to use Theorem 5.23 for another proof of Korn’s
inequality Theorem 5.17. We refer to [10, section 5], where Korn’s inequality is
deduced from Theorem 5.23 for the Sobolev spaces of variable exponents W 1,p(·)(Ω).
The arguments for D1,q

w,0(Ω) are exactly the same.

6. Extrapolation

Using the extrapolation technique of Rubio de Francia [26] it is possible to extend
our result to many other Banach function spaces. We do this in the following for
unweighted Orlicz spaces, since we need these results in a forthcoming article for the
numerical analysis of the q-Stokes system. However, the technique can be applied
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to many other situations. We refer to [7] for a detailed study of the extrapolation
technique.

The following definitions and results are standard in the context of Orlicz spaces
[22]. A real function ϕ : R≥0 → R≥0 is said to be an N-function if it satisfies the
following conditions: There exists the derivative ϕ′ of ϕ. This derivative is right
continuous, non-decreasing and satisfies ϕ′(0) = 0 and ϕ′(t) > 0 for t > 0. Especially,
ϕ is convex.

We say that ϕ satisfies the ∆2–condition, if there exists c1 > 0 such that for all
t ≥ 0 holds ϕ(2t) ≤ c1 ϕ(t). By ∆2(ϕ) we denote the smallest constant c1. Since
ϕ(t) ≤ ϕ(2t), the ∆2 condition is equivalent to ϕ(2t) ∼ ϕ(t). For a family ϕλ of
N-functions we define ∆2({ϕλ}) := supλ ∆2(ϕλ). By (ϕ′)−1 : R≥0 → R≥0 we denote
the function

(ϕ′)−1(t) := sup {u ∈ R≥0 : ϕ′(u) ≤ t}.
If ϕ′ is strictly increasing then (ϕ′)−1 is the inverse function of ϕ′. Then ϕ∗ : R≥0 →
R≥0 with

ϕ∗(t) :=

∫ t

0

(ϕ′)−1(s) ds

is again an N-function and (ϕ∗)′(t) = (ϕ′)−1(t) for t > 0. It is the complementary
function of ϕ. Note that (ϕ∗)∗ = ϕ.

For an open set Ω ⊂ Rn and an N-function ϕ with ∆2(ϕ) < ∞ we define

Lϕ(Ω) :=

{
f ∈ L1

loc(Ω) :

∫

Rn

ϕ(|f(x)|) dx < ∞
}

.

Note that Lϕ(Ω) becomes a Banach space with the norm

‖f‖Lϕ(Ω) := inf

{
λ > 0 :

∫

Rn

ϕ

( |f(x)|
λ

)
dx ≤ 1

}
.

For Ω bounded we define Lϕ
0 (Ω) := {f ∈ Lϕ(Ω) :

∫
Ω

f(x) dx = 0} and for Ω un-
bounded we define Lϕ

0 (Ω) := Lϕ(Ω). For this we have used that Lϕ(Ω) ↪→ L1(Ω)
for bounded domains. In both cases Lϕ

0 (Ω) is the closure of all Lϕ(Ω)-functions
with compact support in Ω and vanishing integral. We define W 1,ϕ(Ω) to be the
space of functions f ∈ Lϕ(Ω) with ∇f ∈ Lϕ(Ω). The space is equipped with the
norm ‖f‖W 1,ϕ(Ω) := ‖f‖Lϕ(Ω) + ‖∇f‖Lϕ(Ω). By W 1,ϕ

0 (Ω) we denote the completion of
C∞

0 (Ω) within W 1,ϕ(Ω). For a domain Ω ⊂ Rn we define D1,ϕ
0 (Ω) to be the closure

of C∞
0 (Ω) with respect to the gradient norm ‖∇·‖Lϕ(Ω). Note that if Ω is bounded,

then W 1,ϕ
0 (Ω) = D1,ϕ

0 (Ω).
We need the following extrapolation result of Cruz-Uribe, Martell, and Pérez [8,

Theorem 3.1].

Proposition 6.1. Let 1 < q < ∞ and let F be a family of couples (f, g) from
L1

loc(R
n) × L1

loc(R
n) such that there exists an Aq-consistent constant K1 > 0 such

that ∫

Rn

|f(x)|qw(x) dx ≤ K1

∫

Rn

|g(x)|qw(x) dx(6.2)
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for all (f, g) ∈ F and all w ∈ Aq. Then for all N-functions ϕ with ∆2(ϕ), ∆2(ϕ
∗) <

∞, there exists K2 > 0 such that for all (f, g) ∈ F holds

‖f‖Lϕ(Rn) ≤ K2 K1 ‖g‖Lϕ(Rn),∫

Rn

ϕ(|f |) dx ≤ K2

∫

Rn

ϕ(K1 |g|) dx.
(6.3)

The constant K2 only depends on ∆2(ϕ), ∆2(ϕ
∗), and q.

Proof. There are two details which differ from the original version of the propo-
sition in [8, Theorem 3.1], which we explain in the following.

First, the linear dependence in (6.3) of the constant K1 is omitted. How-
ever, the dependence follows if we apply [8, Theorem 3.1] to the family F2 :=
{(f, K1 g) : (f, g) ∈ F}, which satisfies (6.2) with K1 replaced by 1.

Second, in the original version it is required for (6.3) that the left-hand sides
of (6.3) are already finite. This condition, however, is not needed. For k ∈ N we
define the family F3 := {(fk, g) : (f, g) ∈ F , k ∈ N}, where fk := χBk(0)∩{|f |≤k}f .
Then the family F3 satisfies (6.2). Since the left-hand side of (6.3) is finite for all
(fk, g) ∈ F3, we get that

‖fk‖Lϕ(Rn) ≤ K2 K1 ‖g‖Lϕ(Rn),∫

Rn

ϕ(|fk|) dx ≤ K2

∫

Rn

ϕ(K1 |g|) dx.
(6.4)

We will derive now from this (6.3). If g 6∈ Lϕ(Rn), then the right-hand sides of (6.3)
are both∞ and there is nothing to show. So we can assume in the following that g ∈
Lϕ(Rn), which implies that the right-hand sides of (6.3) are both finite. Moreover,
0 ≤ |fk| ≤ |f | and |fk| ↗ |f | pointwise, so we get by the Fatou property of Lϕ(Rn)
(see [22]) for the norm and the modular that ‖fk‖ϕ → ‖f‖ϕ and

∫
Rn ϕ(|fk|) dx →∫

Rn ϕ(|f |) dx, respectively. In particular, this and (6.4) imply (6.3). ¤
Using Proposition 6.1 and our result for the weighted Lebesgue spaces Lq

w(Ω),
we immediately get the corresponding result for unweighted Orlicz spaces. Let us
exemplary present Theorem 5.1, Theorem 5.2, Theorem 5.15 and Theorem 5.17 for
unweighted Orlicz spaces. For related results see [17].

Theorem 6.5. Let Ω ⊂ Rn be a bounded domain satisfying the emanating chain
condition with constants σ1 and σ2. Let ϕ be an N-function with ∆2(ϕ), ∆2(ϕ

∗) < ∞.
Then for all f ∈ W 1,ϕ(Ω) holds

∫

Ω

ϕ(|f − 〈f〉Ω|) dx ≤ c

∫

Ω

ϕ
(
diam(Ω)|∇f |) dx,

‖f − 〈f〉Ω‖Lϕ(Ω) ≤ c diam(Ω) ‖∇f‖Lϕ(Ω).

The constants only depends on σ1, σ2, ∆2(ϕ), and ∆2(ϕ
∗).

Theorem 6.6. Let Ω ⊂ Rn be a domain satisfying the emanating chain con-
dition with constants σ1 and σ2. Then there exists a linear operator B : C∞

0 (Ω) →
L1

loc(Ω) which extends uniquely for all N-functions ϕ with ∆2(ϕ), ∆2(ϕ
∗) < ∞ to an
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operator B : Lϕ
0 (Ω) → (D1,ϕ

0 (Ω))n with

div Bf = f(6.7)
‖∇Bf‖Lϕ(Ω) ≤ c ‖f‖Lϕ

0 (Ω),(6.8)
∫

Ω

ϕ
(|∇Bf |) dx ≤ c

∫

Ω

ϕ
(|f |) dx.(6.9)

The constant c only depends on σ1, σ2, ∆2(ϕ), and ∆2(ϕ
∗).

If Ω is bounded, and f ∈ C∞
0,0(Ω) with then Bf ∈ (C∞

0 (Ω))n.

Theorem 6.10. (Korn’s inequality; first case) Let Ω ⊂ Rn be an arbitrary do-
main. Let ϕ be an N-function with ∆2(ϕ), ∆2(ϕ

∗) < ∞. Then for all u ∈ (D1,ϕ
0 (Ω))n

it holds that

‖∇u‖Lϕ(Ω) ≤ c ‖Du‖Lϕ(Ω),(6.11) ∫

Ω

ϕ(|∇u|) dx ≤ c

∫

Ω

ϕ(|Du|) dx.(6.12)

The constants only depend on σ1, σ2, ∆2(ϕ), and ∆2(ϕ
∗).

Theorem 6.13. (Korn’s inequality; second case) Let Ω ⊂ Rn be a bounded
domain satisfying the emanating chain condition with constants σ1 and σ2. Let ϕ be
an N-function with ∆2(ϕ), ∆2(ϕ

∗) < ∞. Then for all u ∈ (W 1,ϕ(Ω))n it holds that∥∥∇u− 〈∇u〉Ω
∥∥

Lϕ(Ω)
≤ c

∥∥Du− 〈Du〉Ω
∥∥

Lϕ(Ω)
,(6.14)

∫

Ω

ϕ
(∣∣∇u− 〈∇u〉Ω

∣∣) dx ≤ c

∫

Ω

ϕ
(|Du− 〈Du〉Ω|

)
dx.(6.15)

The constants only depend on σ1, σ2, ∆2(ϕ), and ∆2(ϕ
∗).

Remark 6.16. Also our Decomposition Theorem 4.2 holds in the context of
Orlicz spaces. We just need to replace Lq

w,0(Ω) by Lϕ
0 (Ω) and (4.5) by

1

c

∫
ϕ(|f |) dx ≤

∑
i≥0

∫

Wi

ϕ(|Tif |) dx ≤ c

∫
ϕ(|f |) dx.

7. Appendix (proof of Lemma 5.25)

In the following we present the proof of Lemma 5.25. It is based on the ideas
of [19, Lemma 4]. We need the following version of the Calderón–Zygmund decom-
position by Iwaniec which is contained in the proof of [19, Lemma 3].

Lemma 7.1. Let Q0 ⊂ Rn be a cube and let f ∈ L1(Q0). For every α ≥ 〈|f |〉Q0

there exist disjoint cubes Qα
j ⊂ Q0, j ∈ N such that

(a) α < −
∫

Qα
j
|f | dx ≤ 2nα,

(b) If α ≥ β ≥ 〈|f |〉Q0 , then each cube Qα
j is a subset of a cube from the family

{Qβ
j : j ∈ N},

(c) |f | ≤ α on the set Q0 \
⋃

j Qα
j ,

(d)
⋃

j Qα
j ⊂ {Mres,Q0,1f > α} for all α ≥ 〈|f |〉Q0 ,

(e) {Mres,Q0,1f > 5nα} ⊂ ⋃
j 5Qα

j for all α ≥ 〈|f |〉Q0 .

We are now prepared to generalize Lemma 5.21 to the weighted case. The proof
is similar to the unweighted case by Iwaniec.
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Lemma 7.2. Let Q0 ⊂ Rn be a cube, 1 ≤ q < ∞, w ∈ A∞, and let f ∈ L1(Q0).
If M ]

res,Q0,1f ∈ Lq
w(Q0), then Mres,Q0,1f ∈ Lq

w(Q0) and
∫

Q0

|Mres,Q0,1f |qw dx ≤ c

∫

Q0

|M ]
res,Q0,1f |

q
w dx + cw(Q0)

(
−
∫

Q0

|f | dx

)q

.

The constant c depends only on n and the A∞-constant of w.

Proof. Since w ∈ A∞, the exists a constant c0, which only depends on the A∞-
constant of w such that ω(5Q) ≤ c0ω(Q) for any cube Q ⊂ Rn, see [31, V 1.6,
p. 196]. We shall show first the following redistributional estimate: For every ε > 0
there exists δ > 0 such that

w({Mres,Q0,1f > 5nα}) ≤ c0w({M ]
res,Q0,1f(x) > δα})

+ c0εw({Mres,Q0,1f > 2−n−1α})(7.3)

for all f ∈ L1(Q0) and all α ≥ 2n+1〈|f |〉Q0 . The constant δ only depends on ε, n,
and the A∞-constant of w. Using 7.1 of Lemma 7.1 and ω(5Q) ≤ c0ω(Q) it suffices
to show ∑

j

w(Qα
j ) ≤ w({M ]

res,Q0,1f(x) > δα}) + εw({Mres,Q0,1f > 2−n−1α})(7.4)

Fix Q ∈ {Qα2−n−1

j : j ∈ N}. Since w ∈ A∞, there exists an ε2 > 0 such that if E ⊂ Q
with |E| ≤ ε2|Q|, then w(E) ≤ εw(Q), see [31, V 1.7, p. 196]. Note that ε2 only
depends on ε and the A∞-constant of w but is independent of Q and E.

By 7.1 of Lemma 7.1 follows |〈f〉Q| ≤ α
2
and −

∫
Qα

j
|f | dx ≥ α for every j ∈ N.

This implies

−
∫

Qα
j

|f − 〈f〉Q| dx ≥ −
∫

Qα
j

|f | dx−
∣∣〈f〉Q

∣∣ ≥ α

2

for all j ∈ N. Multiplying by |Qα
j | and summing over all Qα

j which are contained
in Q we get

∑
Qα

j ⊂Q

|Qα
j | ≤

2

α

∫

Q

|f − 〈f〉Q| dx.

Now, we consider two cases:
Case −

∫
Q
|f − 〈f〉Q| dx ≤ α

2
ε2: Then

∑
Qα

j ⊂Q |Qα
j | ≤ ε2|Q|. By choice of ε2 follows∑

Qα
j ⊂Q w(Qα

j ) ≤ εw(Q), where we have used that the Qα
j , j ∈ N are disjoint.

Case −
∫

Q
|f − 〈f〉Q| dx > α

2
ε2: This means M ]

res,Q0,1f(x) > α
2
ε2 = δα for all

points x ∈ Q, where δ := 1
2
ε2. In particular, Q ⊂ {M ]

res,Q0,1f > δα} and
∑

Qα
j ⊂Q

w(Qα
j ) ≤ w(Q) = w(Q ∩ {M ]

res,Q0,1f > δα}).

Combining these results yields
∑

Qα
j ⊂Q

w(Qα
j ) ≤ w(Q ∩ {M ]

res,Q0,1f > δα}) + εw(Q).
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Appealing to property 7.1 in Lemma 7.1 and α ≥ 2n+1〈|f |〉Q0 we see that, after
summing the last estimate over the pairwise disjoint cubes Q ∈ {Qα2−n−1

j : j ∈ N},
all cubes from {Qα

j : j ∈ N} are counted exactly once. In particular, we obtain (7.4)
and therefore (7.3).

The rest of the proof is standard and is word by word the same as the one for
the unweighted case of Iwaniec [19, Lemma 4]. The idea is to integrate (7.3) over α
from 2n+1〈|f |〉Q0 to ∞ and use∫

Q0

|g(y)|qw(y) dy = q

∫ ∞

0

tq−1w({x ∈ Q0 : |g(x)| > t}) dt

for all g ∈ Lq
w(Q0). We omit the details. ¤

Now, Lemma 5.25 follows from Lemma 7.2 exactly as Corollary 5.22 from Lem-
ma 5.21.

Proof of Lemma 5.25. Since 〈f〉Q0 = 0, we have −
∫

Q0
|f | dy ≤ M ]

res,Q0,1f(x) for
all x ∈ Q0. So

w(Q0)

(
−
∫

Q0

|f | dx

)q

≤
∫

Q0

∣∣M ]
res,Q0,1f(x)

∣∣qw(x) dx

and the claim follows from Lemma 7.2 exactly as Corollary 5.22 from Lemma 5.21. ¤
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