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A Decomposition  Theorem  and  Its  Implications  to  the 
Design  and  Realization of Two-Dimensional  Filters 

Abstract-It is shown that an arbitrary rational 2-D transfer function 
can be expanded in first order terms, each one of which is a function 
of only  one of the two variables. This method leads naturally to recon- 
figurable fdters with great modularity and parallelism, which can re- 
alize any rational transfer function up to a given order. 

I.  INTRODUCTION 

T HE most serious problem in  the  generalization of  1-D 
(one-dimensional) digital filtering techniques to 2-D 

(two-dimensional)  is the fact  that  there  is no fundamental 
theorem of algebra for polynomials  in two independent 
variables.  Factorization of 1-D polynomials into  products 
of first order  terms plays a fundamental role in  the devel- 
opment of stability tests  and  stabilization, filter design al- 
gorithms and implementation schemes, such as parallel and 
cascade  structures.  Huang,  Schreiber,  and  Tretiak zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[1] 
called the  lack of the  corresponding  theorem “a funda- 
mental curse” of  2-D filtering. Bliss [2] mentioned that 
“a two variable polynomial is not in  general  factorable 
into  first  order  polynomials;  rather a two-variable poly- 
nomial can  be  factored  into irreducible factors, which are 
themselves two variable polynomials, but which cannot  be 
further  factored. ” 

During  the  last few years  considerable effort has  been 
directed by a number of authors  to  establish  algorithms 
and  conditions for factorization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3]-[  131. Chakrabarti et 
al. in [3] treated  the  cases  where  two variable polynomials 
can be expressed as a product or sum of special  types of 
two variable polynomials of lower order,  and in [4] pre- 
sented  an  algorithm  to  determine  the reducibility or  the 
irreducibility of any  arbitrary multivariable polynomial 
with  integer  coefficients.  In [5 ]  the  decomposability of 2- 
D transfcr  functions  into I-D components was considered. 
Morf et al. [6] proposed  an  algorithm for the  case of prim- 
itive factorization (i.e., in the  case  that  one  factor is a 
function of one variable only and  the  other is a function 
of both variables),  and Bose 171, [8] gave a criterion to 
determine  whether  any two multivariable polynomials are 
relatively prime  and  an algorithm for the  extraction of the 
greatest common factor. In [9] and [lo], feedback was 
used for the  separation of some  transfer  functions  into 
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terms which are functions of one of the  two variables. 
Treitel  and  Shanks in [11] applied  an  approximation  tech- 
nique  to  the  expansion of an  arbitrary  planar filter impulse 
response  into a converging sum of individually separable 
2-D  filters.  Ekstrom  and Woods [13] presented an alter- 
nate  technique,  the  spectral  factorization  approach, which 
allows the  factorization of 2-D transfer  functions into 
terms with specified regions of analyticity. Their  approach 
is based  on  decompositions of the complex cepstrum. 

While most earlier  contributions  were  either  special 
cases  or approximations to the  general decomposition 
problem,  in  this  paper we propose a method for the exact 
decomposition of a general 2-D real  rational  transfer  func- 
tion in first order  terms,  each  one of which  is a function 
of only one of the  two  variables. The motivation behind 
this  approach  is  to give a general  realization  method, 
which possesses a high  degree of modularity. 

Recent  development of VLSI techniques have resulted 
in enormous possibilities for the  realization  and imple- 
mentation of sophisticated  algorithms of high complexity. 
Since it is known that  the most advantageous  configura- 
tions are parallel and  cascade  forms, consisting of second 
order terms and real coefficients [14], we choose to com- 
bine complex first  order terms with  appropriate  conjugate 
terms, in order  to  achieve  second  order  terms with real 
coefficients. 

Present  tendencies for the  reduction of the cost of hard- 

ware, coupled with an increase of the complexity of im- 
plementation algorithms  and  applications,  indicate that 
considerations  leading  to  moderate savings of dynamic 
elements (registers,  adders,  multipliers,  etc.)  are not as 
meaningful  as they were  in  the  past.  Other  considerations, 
such as modularity,  parallelism,  regularity, flexibility, and 
generality are of paramount  importance  and to that end 
realizations exhibiting these  properties  become desirable. 

The proposed  method  can be seen  as a decomposition, 
a special  case of which,  in  the  case of 1-D polynomials, 
is simple factorization.  While  the  fundamental  theorem of 
algebra  expands a given polynomial of one variable into a 
product of first order  terms,  the proposed method makes 
use of array expansions to  provide  the additional degrees 
of freedom  required for the expansion of a polynomial of 
two variables.  Inasmuch as it is  general,  the method can 
be used for the  construction of general  adaptive  and re- 
configurable filters.  Such  filters  possess  modular form and 
are able to  realize  any rational transfer  function up to a 
given order, by varying  the values of a set of parameters. 
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11. A GENERAL DECOMPOSITION OF A 2-D TRANSFER 
FUNCTION 

In this section we shall establish a  theorem to express 
an  arbitrary 2-D transfer function by first order  terms of 
one variable only. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: The 2-D rational transfer function of the 
general  form 

p(z1, z 2 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 \'I 

c c pijz;zJ; j = o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = o  

can  be  expressed by terms of the  form 

(Zl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Zli), (z2 - z2;) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(4, n2I.j = 1, 2, - * ' , max @ I ,  m2). 
only, where zl i r  z2, are constants and i = 1, 2, - - , max 

Proof: In the following, one of the possible proofs will 
be given. 

The polynomial q(z l ,  z2) can  be  written in the  form 
a) Numerator. 

dz1, 22) = z TQz2 (2) 

where 

Q =  

The polynomial (2) can be  written equivalently as 

dz1, z2) = ZTRSZ2 (3) 

by writing the  matrix Q as a  product of two other matrices 
R,  S. The  matrix R might  be  chosen  arbitrarily as  a non- 
singular (nl + 1) X (n l  + 1) matrix.  In this case the 
matrix S is determined by 

s = R - ~ Q  (4) 

and  has  dimensions (nl + 1) X (ml + 1). 
We can readily see  that 

ZTR = [ro(zl), * 9 Ti(ZI), * * * > rfll(zl)l (5 )  

Sz2 = [so(z~), * * * > si(z2), * * * , s,I(z2)lT (6) 

where 

ri(zl) = roi + r l iz l  + - + riizj, + * * - rfl,izTl, 

i =  0 , 1 ,  - * *  9 nl 

t@-p-- 

-LJ P, (z, .z2) 

4 q(z,,z*)]+~Tp7* 

Fig. 1.  Transfer  function of H&,, z2)  = l/p(zl, z2).  

PI ( Z 1 J P )  

Fig. 2. The  feedback  representation of the  total  transfer  function. 

Si(Z2) = sjo + SilZ2 + * * + s -zJ  v 2  + * * * + Sirnlz!?', 

i = 0 ,  1, * . *  7 111 

(7) 

Making use of (5) and (6 ) ,  the polynomial (2) may be 
written  as 

~ ( z I ,  22) = [~o(zI ) ,  . * > rikl), * * * 3 rnl(zl)l 

[s0(~2) ,  * * + 3 si(z2)9 * * , ~ n I ( z 2 > [ ~  

fll 

= ri(zl) si(z2). (8) 

Obviously,  the  polynomials r i (z l ) ,  and si(z2) can  be ex- 
pressed as products of first order  terms. We therefore con- 
clude that q ( z l ,  z2)  can be expressed as a  sum of products 
of first order  terms, each  one of which is a function of 
only one of the two variables. 

i = O  

b) Denominator. 
We write  the  denominator of the  given  transfer function 

as follows 

P(Z1, z 2 )  = c + Pl(Z1, z2) (9) 

where  the polynomialp,(zl, z2) does not contain a constant 
term. If we choose the constant llc in the forward  branch 
and  the  polynomial pl(zl, z2) in the  feedback  branch, we 
obtain the configuration 

1 l c  
HD(z l  , z 2 )  = 1 (10) 

1 + ; P l ( Z l 9  z 2 )  

shown in Fig. 1. 
Finally using the same  technique  used for the  numera- 

tor, we  may write pl(zl, z2) in the form of an array (8). 
The  representation of the total transfer function is given 

in Fig. 2. Note  that  the  proof of Theorem 1 is just  one 
possible proof  and  does not necessarily lead to  the  most 
economical  and  advantageous realization of the filter. 

Lemma: Any  physical realization of an  arbitrary  2-D 
rational transfer function H(zl, z2),  given by (l), requires 
a  feedback configuration whose  path  transmittance in the 
feedback  branch  is  a  polynomial  in  both z l ,  z2. 

Prm$ Assume  that H(zl, z2) can  be realized by a  gen- 
eral  lattice of terms of order  one, in each  one of the two 
variables. Such  a  lattice  does not contain feedback in both 
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variables. Therefore, H(zl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz2) is of the  form 

I 

used in order  to  reduce  the  number of terms required for 
the  realization. To this end R is  used if ml  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> n1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS if - 

H(z1, z 2 )  = c Hj1, * * ,  Hij, * * , H i M  (11) 
ml < n l .  

obtained if the  auxiliary  matrix R in (3 )  is  chosen such 
where Hg are  factors,  each  one of which  is a numerator or that the number of terms in the sum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8) is minimized. To 
denominator term in one of the  two variables only. In  this this end, suppose now without loss of generality, that n, 
case,  the  denominator of the  resulting  transfer  function I ml .  Then rank = I n l  + and a more  economical 
(11) is separable, which contradicts our hypothesis. realization  can be obtained if a decomposition of the  form 

i =  I Furthermore, a more economical decomposition can  be 

Q.E.D. - 
Note  that  ordinary  factorization  does not  apply  in gen- 

eral  to a function of the  form (l), because it lacks  the 
necessary  degrees of freedom  required to represent  this 
function.  The  proposed  decomposition  provides  the nec- 
essary  degrees of freedom  to  guarantee  decomposition. 

The  realization  proposed exhibits a high  degree of par- 
allelism with parallel branches which are separable.  It  is 
shown  in  Section I11 that  each of its parallel branches  can 
operate  simultaneously on the input, resulting to a sub- 
stantial  increase in data  throughout. 

Theorem 1 can be easily extended to apply to half-plane 
filters of the form [13] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

nl ml 

In this case  the  transfer  function H ( z l ,  z2) can be ex- 
pressed by terms of the  form 

(zl - z,J, ( z 2  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ~ ~ ) ,  where I = 1, -1. 
1 

The proof is  similar to  that of the quarter-plane case. 
We note  that in special  cases, a 2-D  rational  transfer 

function  can be realized with forward  and  feedback 
branches  with  transmittance only in zl or z2. An illustra- 
tive example for this  latter  situation is the  case  where  the 
given transfer  function  can be  written  in  the  form 

The above  transfer  function  can  be realized by an array 
representing t(zl, zz), in cascade with a feedback loop 
having zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs(zl, z2) in  the  forward  branch  and ~ ( z , )  in the  feed- 
back  branch. However, since in the general  case a 2-D 
polynomial cannot be factored in  lower order l-D and/or 
2-D polynomials,  the  above  is not the  general  case. 

Clearly, the  decomposition  procedure  used in the proof 
of Theorem I is not unique. A generalization of this latter 
decomposition is given by the following expression 

q(z1, ~ 2 )  1 ZTRR-IQS-ISZ2 (14) 

where only one of the two matrices R,  S is taken into ac- 
count every time.  The auxiliary  matrices R and S can  be 

& I ,  z2) = [ZTR-'l[RQZ,l (15) 

is  considered,  where R is a nonsingular (nl + I )  X (nl  + 
1) matrix,  chosen to satisfy  the following relation 

RQ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[g] 
where Q is an r X (nl + 1) matrix  and 0 a null (n l  + 1 
- r) X (nl  + 1) matrix. Taking into  account (16), (15) 
can be written as a sum of r terms of the  form  (8). 

For 1-D polynomials,  the  order, i.e., the highest  degree 
of z determines  the available degrees of freedom. For 2-D 
polynomials we  have two  orders with respect  to z I ,  z2,  
which  however do not determine  the available degrees of 
freedom. To be more  specific, let the  numerator polynom- 
ial q(z l ,  z2) given in  (2).  Suppose  that  rank Q = r I min 
(nl + 1, ml  + 1) where Q is the  corresponding coefficient 
matrix.  Then  the  realization of this  polynomial,  based on 
the decomposition theorem,  needs only r parallel branches. 
Thus,  the number of the coefficients in  the  decomposed 
form  equals to t = r [ (n l  + 1) + (ml + l)], which  is 
greater than or equal  to  the  number of coefficients (nl + 
1) (ml + 1) in  the given form. 

At this point we  want to  clarify  the  fact  that  the  condi- 
tion rank Q = r < min (nl  + 1, ml + 1) is not a sufficient 
one for the  primitive  factorization of the polynomial q(zl, 
z2) as follows: 

dz1, z2) = ql(z1) q 2 ( z 2 )  q3(z1, 22) .  (17) 

Clearly, in  the  case of primitive  factorization we  have 

rank Q = rank Q3 = r I min (Al + 1, AI + 1)  (18) 

where 

I n l ,  rizl I m l ,  and (Al ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAI) < (nl ,  ml). 

Then  the polynomial q ( z l ,  z2) needs for its implementation 

r parallel branches with 

f = r[(R1 + 1) + (AI + l)] 

+ (nl - A,) + (ml - A,) 

coefficients,  since nl - A,, ml  - A I  are the  orders of the 
polynomials ql(zl) ,  q2(z2), respectively. It can be readily 
seen that t 2 2, where  the equality holds for r = 1, which 
is the  case of exact  factorization of the  2-D polynomial in 
l-D  terms. From the above results,  the  rank Q = r deter- 
mines  the  smallest  necessary  number of parallel branches 
for the  realization of a 2-D  polynomial. To this end,  the 
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term  “rank of decomposition” is proposed  here to char- 
acterize  the  number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr. 

In the following, some specific realizations based  on the 
decomposition  theorem will be concisely reviewed. The 
main difference among  them is  the specific choice of the 
auxiliary matrices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ,  S .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. The Jordan Form Decomposition [I51 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A special  form of Theorem  1 using the  Jordan  form is 
possible. This  approach is based  on  matrix diagonaliza- 
tion. In the general  case  where n I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# ml (i.e., Q is not a 
square  matrix), we consider the  augmented square matrix 
Q, defined by 

Q = [QIOI, n1 > m~ (20) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 is an nl X (nl - ml)  null matrix, or 

where 0 is  now an (ml - n l )  X ml null matrix. We may 
now write 

Q = HJH-’  (22) 

where H is the transforming  matrix consisti!g  of the ei- 
genvectors of Q, and J the Jordan  matrix of Q, consisting 
of the eigenvalues of Q. Thus, the Jordan  form  decompo- 
sition may  be viewed as  a special case of Theorem 1. In 
this case,  the  augmented coefficient square  matrix Q is 
written  as  a  product of two matrices R = HJ and S = 
H - ’ .  Then 

I 

q(z l ,  z2) = C ai(zl> bi(z2)7 1 = max (nl, m ~ .  (23) 
i=O 

Note  that  the  matrices R,  S are  determined  in  terms of the 
coefficient matrix Q and  cannot  be  arbitrarily defined. 
Furthermore the number of parallel branches is the max 
(n1 + 1, ml + 1). 

B. The Singular Value Decomposition (SVD) [ll], 1161 

In this case,  the coefficient matrix Q of the 2-D poly- 
nomial q ( z l ,  z2) is expressed as  a product of the form 

Q =  U[Al V 

where A is a diagonal matrix whose entries  are  the sin- 
gular values of Q, and U ,  and V are the row and the col- 
umn eigenvalue system of Q, respectively [ 161. Due to the 
orthonormal  nature of U and V ,  Q can  be  written as 

1/2 t 
(24) 

r 

Q = X ! ’ 2 ~ i ~ f ,  r = rank Q (25) 

where ui, and ui ,  and hi are  the  column vectors of U ,  V 
and diagonal terms of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, respectively. The SVD  tech- 
niques  have been  used in the past for the approximation of 
a filter in terms of a  number of separable filters [ l l ]  and 
for image  processing applications [ 161. The  matrix Q need zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i =  I 

not be  square  and  the  matrices R ,  S can be identified by 
A ]‘I2, V‘ or U ,  A I ’ ’ ~  v‘, respectively. 

C. The Lower- Upper Triangular, (LU) Decomposition 
71-[191 
This is also  a  special case of the general  decomposition 

scheme  where the matrix Q is written as 

r 

Q = LDU = diliui (26) 

where L,  1; and U ,  ui are lower and  upper  triangular  mat- 
rices, respectively, and di scalars. As  in the previous case, 
R and S can be identified by LD, U or L,  DU, respectively. 

D. Other Decompositions 

Furthermore,  the  matrix Q in (2) could  be  substituted 
by QQ-Q, where “ - ” denotes one of the different gen- 
eralized inverses. In this case, R and S can be identified 
by Q, Q-Q or QQ- and Q, respectively. 

However, it should  be  mentioned  here that desirable 
characteristics,  such  as roundoff noise reduction and re- 
duction of the computational  cost, can be obtained by using 
orthogonal auxiliary matrices (therefore  having known in- 
verses) with integer  elements  such as Walsh matrices [20]. 
Generally, it is preferable to use matrices of a  known sim- 
ple structure  with  integer  and  zero  elements in order to 
avoid internal multiplications. 

i =  I 

An important  characteristic of the realizations  based on 
the decomposition  theorem is the possibility to obtain a  mul- 
titude of them,  depending on the choice of the matrices R,  
S .  Clearly, for example, the realizations suggested by (14) 
are not unique. Since  each of these realizations is of the 
same  general  structure, we can  choose in advance R and 
S to achieve  a desired objective,  such as reduced  round- 
off noise, ease in the  VLSI  implementation, minimality, 
etc. 

111. IMPLICATIONS OF THE DECOMPOSITION  THEOREM 
AND REALIZABILITY 

In this section we consider the implications of the pre- 
vious theorem to the design and realization of 2-D  filters. 
Throughout this paper, the  z-transform of a  2-D  sequence 
x ( n ,  m) ,  is defined by 

m m 

X(z1, z2) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc c x(n,  m) z;zy 
n = - m  * = - m  

where z l ,  zz are delay elements [21]. 
The  concept of feedback in 2-D filters is applied in a 

way similar to that of  1-D filters [22],  [23]. 
In this section,  a corollary of Theorem 1 relevant  to the 

realization of 2-D filters is presented. 
Corollary I :  The 2-D filter described by a rational 

transfer function of the  form (1) can always  be realized as 
a  cascade of three blocks. A cascade block (C), an array 
block (A), and  a  feedback  block  (F)  are defined in Fig. 3, 

in a  manner  shown in Fig. 4. 



1566 IEEE  TRANSACTIONS  ON  ACOUSTICS,  SPEECH, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND SIGNAL  PROCESSING,  VOL.  ASSP-33, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, DECEMBER 1985 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FEEDBACK 

Fig. 3. Realization of general 2-D rational  transfer  function by the  decom- 
position  theorem. 

+ 

Fig. 4. (a).  Realization  of  the  cascade  block of Fig. 3. (b).  Realization of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Hk,(z,, z2). (c).  Realization of l/f&z1, z2). 
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Proof: We can  write  the given transfer function in the 

form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
nl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAml 

where 

K 

HA(z1, z2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- k =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArI H:(zl, 22) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L 9 (28) 
rI HfXZl, z 2 )  

H3(z1? z 2 )  = - 
HFiZl, z2)  

1 = 1  

HA(z l ,  z2) ,  HF(z I ,  z2) ,  are relatively prime  polynomials, 
Hs(z , ,  z2),  H k z l ,  z2) are irreducible polynomials and A is 
the constant gain. 

The  factors Hl(zl), H2(z2) can be realized by the cas- 
cade part [Fig.  4(a)],  since they are functions of one var- 
iable. Similarly, the  polynomial HA(z I ,  z2) and the rational 
function l /HF(z i ,  z2) can  be realized using (8), (10) as 
shown in Fig. 4(b) and  4(c), respectively. Q.E.D. 

The following comments are in order: 
1 )  (28) reveals that while  a  cascade of three  general 

blocks (C,  A, and F) is adequate  to represent ( l ) ,  it is also 
possible, and  often desirable, to represent (1) as a  cascade 
of more  array  and  feedback  terms, when HA (z l  , z2) and 
HF(z1, z2)  are reducible to lower order  polynomials. 

2) To avoid  complex multiplications, first order complex 
conjugate  terms  can  be  combined, resulting in second  or- 
der  terms with real coefficients. 

are given by the formulas: 
3) forms of ~ ~ ( z ~ ) ,   ~ ~ ( z ~ ) ,  HkA(zi, z2),  ~ k ( z ~ ,  z2), 

CI 

i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= O  
Hl(Z1) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 

c plz( 
i = O  

CI CT 

= c [Q16jz: + a:izl + aii] c 
i =  1 i =  1 

c pf"; 
i = O  

Fig. 5. Realization of C Y ~ :  + a , ~ ,  

U I  7 k  

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t CY*. 

where cT, c;, dT, dz, oz, T?, &, VT in Fig. 4  are the least 
integers equal or  greater than c1/2, c2/2,  d1/2, d2/2, ak/2, 
Tk/2, pJ2,  vJ2, respectively. 

Note that the following equations give the relation 
among  the  order nl ,  ml ,  n2, m2 of the  given filter and the 

orders of factors Hi(z l ) ,   H2(z2) ,   H; (z l ,  z2),  Hk(z l ,  z2) 

K K 

c1 + ak = 121, dl + 7 k  = ml 
k =  1 k = l  

L L 

c2 + ,ul = n2, d2 + v l  = q. (30) 

Clearly, one of the  factors Hl(zl), H2(z2) may be deleted 
(then cl = c2 = 0 or d l  = d2 = 0) or may be all zero or 
all pole functions (then c1 = 0 or dl = 0 and c2 = 0 or d2 
= 0, respectively). 

The symbols P k  and l l  in Figs.  4(b) and 4(c) denote  the 
number of parallel branches in the array and  feedback 
blocks, respectively, and  their values depend on the spe- 
cific decomposition of the coefficient matrices of H$(z, ,  
z2) and Hk(z l ,  z2). As it has  been previously explained 

I =  1 1 = 1  

rank Qk I P k  I min (uk + 1, Tk + 1) 

rank P1 I E l  5 min ( p l  + 1, v I  + 1 )  (3 1) 

where Q k ,  P1 are  the coefficient matrices of H:(zl,  z2) ,  
&(z l ,   z2) ,  respectively. 

4) One possible realization of the  second  order poly- 
nomial of the  term 

aoz? + a1zi + Q12 

is shown  in Fig. 5 and that one possible realization of the 
term 

1 

is shown in Fig. 6, i = 1 ,  2.  
A serious  restriction in the  implementation of the digital 

filters is realizability. Unrealizable delay-free loops must 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. Realization of I/(&: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABiz, + &). 

be avoided [24] and this can be accomplished  either by 
graph  transformations of the resulting filter or by impo- 
sition of constraints  on the decomposition. In  the sequel, 
a  theorem is presented describing a  necessary  and suffi- 
cient condition for realizability of filters obtained by the 
decomposition  theorem. 

Corollary 2: The  existence of nonzero constant term 
in the  denominator  polynomial of (1) is a  necessary  and 
sufficient condition for the existence of implementations 
as  in Fig. 2 without delay free-loops, which are functions 
of positive powers of z1 and z2. 

The  above corollary can  be easily verified by the follow- 
ing proof. 

Proofi Let  the  denominator  polynomial  be 

P k l ,  z2) = c + Pl(Z1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzz), c # 0. 

Then the polynomial pl(zl, z2) can be written in the form 
of (2), where  the  corresponding  matrix P I  i s  of the  form 

Consider the decomposition  given by (14), where  the  aux- 
iliary matrix R is taken  into  account.  Let this matrix R be 
a  nonsingular  matrix of the following form 

R =  [ 
For 

(33) 

roi # 0,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 0 

= 0 ,  i =  1 , 2 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 n1. 

We can easily show that the  polynomials r i (z l ) ,  i = 1, 2, 
* * , nl  and s0(z2), in the  counterpart of (8) forp(zl, z2) ,  
do not have a constant term.  Therefore,  the  counterpart of 
(8) forp(zl, z2) does not contain a constant term, and the 

realization will not contain delay-free loops. If  we use in 
the decomposition  given by (14), a  nonsingular  matrix S ,  
then the  elements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsio, i = 1, * - * , ml of the matrix S are 
chosen to be  zero  and the resulting realization does not 
contain delay-free loops. 

IV. THE RECONFIGURABLE FILTER 

Since  Theorem 1 gives a general decomposition for a 2- 
D rational transfer  function, it can be used for the con- 
struction of a  general reconfigurable filter, which can 
realize  all rational transfer functions up to a  given order. 
Corollary 2 is an  obvious  consequence of Theorem  1  and 
describes such  a filter. 

Corollary 3: Let the given  transfer function be of the 
form (1). Then setting 

c1 = n1, c2 = n2 

dl = ml, d2 = m2 

K K 

L L 

in the configuration of Fig. 4, all the possible transfer 
functions (1) up to  a given  order  can  be  realized,  with 
proper specification of the following parameters: 

G, 

cyoi, cyli, cy2;, i = 1, . . , CT 

aOi, cyli cyzi, i = 1, * 
I1 11 I1 * 

7 c; 

&, pii  &, i = 1, - * , dT 

/3:., p:J &, i = 1, 4 , d; 

I 1 1  

Yoij, YIij Yzij, i = 1, * - 
j =  1, * " , P k  

k = 1, , K 
so,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs,, a,,, i = 1, * - - 

j =  1, . . .  

r ; 2 

A; 7 i = 1, ' * *  , f ; l ,  I = 1 ,  * * .  , L. 

i =  1, 0 . .  , p k ,  k =  1, , K  

(35) 

Note that for convenience,  without loss of generality, the 
coefficients of the second  order terms z:, z: (i.e., cyoi, 
cyoi, poi, Poi, yo+ So,, cog, Coij) take only the values zero or ' 

one. 

1 

I1 I I1 
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The  proof is straightforward  and is omitted. 
Note  that by adjusting the  above parameters, any filter 

up to a  given  order  can be  realized. Corollary 2 is of in- 
terest  because it leads to a  system  with  a highly modular 
structure and parallelism, which can be used to satisfy dif- 
ferent requirements  [25]. 

Also  note  that  the first order  terms resulting from  Theo- 
rem 1 can  also  be  combined in other ways to provide  other 
desirable modular expansions. 

We finally propose the basic steps of an  algorithm for 
the implementation of 2-D  filters, as follows: 

1)  Given a 2-D rational function H(zl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz2),  use  the  prim- 
itive factorization  method  [6] which allows the extraction 
of l-D polynomials Hl(zl), H2(z2). 

2) Remove the common  factors of the  numerator  and 
denominator  left [7],  [8]. 

3) If the resulting numerator and denominator are not 
irreducible, expand  them in terms of  lower order  polyno- 
mials in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzl, z2 [7],  [SI. Now the  given  transfer function 
can be  written in the  form of (27)  and  (28). 

4) Realize the  cascade  terms Hl(zl), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH2(z2), by any of 
the well known l-D filter realization methods (cascade, 
array, canonic,  etc.) . 

5)  Consider  the  remaining function HA(z l ,  z2) /HF(z1,  
z2),  which does not contain 1-D polynomials in the nu- 
merator or denominator.  Realize  each irreducible factor 

H;(z l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZZ),  k = 1, - - * , K of HA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(21, z2), by the array 
block of the  form  given  in Fig. 4(b) and  each irreducible 
factor I / H ~ ( Z ~ ,  z2) ,  I = 1, - . , L of l/HF(zl, z d ,  by the 
cascade  block of the  form  given in Fig. 4(c).  Examples 
follow : 

Example I :  

Consider  the  low-pass 2-D digital filter obtained by 

Its  magnitude  response is specified by 
Maria  and Fahmy [26]: 

= 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(wf + w:)'" I 0.08 

= 0.5 0.08 < (w: + wi)li2 < 0.12 

= 0 (w: + w y 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 0.12. 

Its  transfer  function designed by a  computer-aided  design 

technique  [26]  was 

Fig. 7. (a).  Contour  plot of magnitude  response of low-pass  filter H2(zl, 
z ~ ) .  (b). Perspective plot of magnitude  response of low-pass  filter H2(zl, 

ZZ). 

-1.62151 0.99994 1 r 1 7 
-1.62151 2.63704 -1.621299 

0.99994 - 1.62 129 1.00203 
Hl(z1, 22) = (0.00895) 

- 1.78813 0.82930 

3.20640 -1.492.11 

0.82930  -1.49271  0.69823 

Its magnitude  response is shown  in Fig. 7(a) and  (b). 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

After  carrying  out  the  steps of the proposed algorithm, 
with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R =  

for the  numerator  and 

R =  

[: : '3 
- l  1 : '1 

2 1 1  

- 1  -1  1 

for the  denominator, we arrive  at the realization specified 
in Table I in terms of the  parameters of Fig. 4(a),  (b), and 

A filter with the  same specifications was designed by 
using the technique of [27].  This  technique makes use of 
symmetries  in  the  magnitude  response  and results in a 
simpler optimization and a filter with a separable denom- 
inator. The resulting transfer function was 

(c>. 

-t- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 

Fig. 8. (a). Contour plot of magnitude  response of low-pass  filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH , ( z l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
zz). (b). Perspective plot of magnitude  response of low-pass  filter H , ( z , ,  
ZZ). 

The  magnitude  response for the second filter is  shown  in 

Fig. 8(a)  and (b). Using 

R =  [I  I] 
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Fig. 9. (a).  Contour plot of magnitude  response of transformed  filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH&, , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z2).  (b). Perspective plot of magnitude  response of transformed  filter 

H~(zI> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA22). 

for the numerator,  the realization given in Table I was ob- can be considered as special cases of the filter described 
tained.  The  denominator was already in cascade  form. in Section IV, where c = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe = (T = p = d = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf = 7 = v = 

Using  the  spectral  transformation  technique of [28] on 2  and  some parameters of the  general configuration are 
Hl(zl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz2) ,  the filter becomes set equal to  zero  or  one in each  case. 

[ 
0.171824  -0.0513838  0.173302 

[ l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 z:] 0.326567  -0.0960307 0.329836 

0.171908  -0.0509964  0.1737713 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[:I 
0.0232600 -0.0327672 0.0144259 

0.0207049 -0.0302811 0.0138389 

0.0107713  -0.0163187 0.00797696 1 El zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH&1, ~ 2 )  = (0.00895) 

whose  magnitude  response is shown in Fig. 9(a) and  (b). 
Carrying  out  the  steps of the  algorithm,  with  the  same 

R for the numerator  and the denominator, as in the  case 
of Hl(zl, z2), we arrive  at  the realization given  in Table I. 

We finally consider the  low-pass filter given in [29], with 
a separable transfer  function 

H4(21> Z2) = H(zl) H(22) 

where 

1 + 1.5912 + 0 . 9 5 9 1 ~ ~  

1 - 0.3161 + 0 . 2 7 7 8 8 ~ ~  
H(z) = 0.2813 

z 2  + 1.65882 + 1.0426 
= 0.9677 

z 2  - 1.13342 + 3.5868' 

The  magnitude  response of H4(~1, z2) is shown in Fig. 
10(a) and 10(b) and its realization in Table I. 

Clearly, the configurations of the  previous four filters 

v. STABILITY  CONSIDERATIONS OF DECOMPOSED  FILTERS 

Since  the  decomposition  theorem  deals  with the  general 
realization of 2-D filters, IIR filters that were  checked for 
stability, by any of the well known stability theorems [30]- 
[36] will result in stable realizations. 

The various known stability conditions expressed  either 
on  the  transfer  function  or  the impulse  response, contain 
the  parameters (coefficients) of the filter, so that B I B 0  
stability is satisfied. Other equivalent conditions can  be 
obtained by applying  known stability conditions to mod- 
ular realizations. These  constrains,  expressed over the new 
parameters of the filter, are generally quite involved. 

However, the  existence of a  large choice of modular re- 
alizations  indicates  that it may be worthwhile to search for 
those realizations, which result in stability conditions that 
can be expressed in a simple  way in  terms of the  param- 
eters involved. Similar  approaches  can  be  used  in  the 
search for appropriate stabilization techniques. 
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(b) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10. (a).  Contour plot of magnitude  response of low-pass  separable fil- 
ter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH4(z , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz2). (b).  Perspective plot of magnitude  response of low-pass 
separable  filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH4(z , ,  z2). 

In the  remainder of this section we outline  the  approach 
proposed. 

Consider  the well  known condition for stability of a 
causal 2-D filter, expressed  in terms of the unit pulse re- 
sponse  [21], [30] 

Note that the unit pulse  response h(n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm) is related to the 
transfer function of the filter bv the relationshiu 

Usually, stability depends only  on the denominator of 
the transfer function (1) (excluding the case where  non- 
essential singularities of second  kind exist [36]).  Here, we 
only examine filters having  a constant numerator. 

Consider now a fixed matrix  R  and  use (3) to write the 
unit pulse response h(n, m) as follows 

= Z-'[[l + ZTRSZ2]-'] (37) 

where Z-'  denotes  the 2-D inverse z transform and S = 
R-' * P I ,  where PI is the  matrix of the polynomial pI  (z l ,  

(37) substituted in (36) results in a stability condition 
expressed in terms of the  parameters of the decomposi- 
tion, which depend on the choice of R and the region of 
convergence of H ( z l ,  z2) .  Different choices of R will result 
in different stability conditions. The evaluation of (36), 
(37)  does not lead in general to an  easy stability test. They 
are  the conditions which  have to  be satisfied in order to 
ensure stability. 

In the particular case of image processing, where both 
variables of the  unit pulse response h(n, m) are space var- 
iables, causality constraints  do not exist. In this case, it 
is possible to guarantee stability by selecting the order of 
recursion of the component filters of the modular reali- 
zation. In practical applications which deal with finite ex- 
tent  images,  adequate  scaling  should  be applied to guar- 
antee no  overflow of the  output. 

22).  

Example 2 

Consider  the filter with the transfer function of the form 

wherep,(zl, z2) = azl + bz2 + czl z2. The  corresponding 
matrix PI is 

p1 = [: "1. 

Here, we have three  independent  nonzero  parameters, a ,  
b, and c. We shall consider the realization using the Jordan 
form. To this end let X I ,  X be the eigenvalues of P ,  . Then 
it can  be  found easily that 

r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

and 

r 1 
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Fig. 11. Realization of the  numerator of the  filter of Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. 

Then pl(z, ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz2)  can be  written as 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZTP, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz, 
where - _. 

The polynomial pl(zl, z2) is written in the form of (3), 
with  the  matrix R ,  in the  form of (33), in order to obtain 
a realizable implementation. In particular, by choosing 

we obtain the  decomposed  form of Fig. 12. 
The relationships between a,  b, c and the eigenvalues 

can  be easily determined by equating  the  decomposed 
structure  to  the original one.  Thus, we obtain 

ab = - X I X 2  

c = X, + X2. 

In the proposed realization we  must also have three inde- 
pendent parameters. To this  end we consider as the third 
parameter  the  element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXllb = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx of the  matrix H ,  in ad- 
dition to  the two eigenvalues' (Fig. 12). 

It was shown in [37], [38] that the  necessary  and suffi- 
cient conditions for the filter H(z,, z2) to be stable in the 
+ + direction,  i.e., for 1 + azl + bz2 + cz, z2 # 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV ( z , ,  
z2)  E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU - {(zl, z2):  (zl( 5 1, (z21 I l } ,  are 

-2  

a + b - c < l  

a - b + c < l  

- ~ + b + ~ < l  

- ~ - b - c < l .  

Fig. 12. Realization of the  denominator of thc  filter of Example 2. 

Since  there is equivalence  between  the two expressions 
of the polynomial p , ( z , ,  z2),  we can express the  above sta- 
bility conditions in terms of the new independent  param- 
eters X ,, X2, x. After some algebraic manipulations we 
obtain 

X2x2 + (X,  + X2 + l ) x  - X, > 0 

X2x2 - (X, + x 2  - l ) x  + hl > 0 

X2x2 + (X, + X 2  - l ) x  + X1 < 0 
x > 0 (40a) 

x2x2 - (X, + X2 + l ) x  - X,  < 0 

and 

X2x2 + (X, + x 2  + 1) x - X I  < 0 

X2x2 - (X, + X 2  + 1) x - X, > 0 

Considering  the following filter given in 1371 

1 
H ( z l '  ") = 1 + 0.52' 0.0122 + 0.4z1z2' 

Checking  both sets of parameters, we conclude that the 
filter is stable. In  the  case  that  the filter was unstable, we 
could consider other  orders of recursion, which corre- 
spond to  other stability conditions. 

VI. CONCLUSIONS AND POSSIBLE EXTENSIONS 

Since  it is possible to expand  any rational function of a 
given order in two variables, in terms of first order  func- 
tions of one variable, great  modularity  can  be  achieved in 
2-D filter realizations.  The  degrees of freedom  allowed by 
the choice of the matrices can  be utilized for optimum fil- 
ter implementation.  This  means  that  the coefficients in the 
decomposed form, which are influenced by the choice of 
the  auxiliary  matrices,  can  be  properly  determined  to  op- 
timize  some  performance  index.  Thus,  optimal filters can 
be designed, in  the  sense of this  performance index. 

The  general  structure  described in the corollaries can 
be utilized in conjunction  with  computer-aided design 
techniques, for the optimum choice of the filter parame- 
ters.  The generalitv of this  method leads to adaDtive and 

'Since h, is already  a  parameter  in  the new representation, we could 
consider  that b remains  the  third  parameter. ~~~. 0 -  ~~ - -  ~~2 
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