
A DECOMPOSITION THEOREM FOR MAXIMUM WEIGHT
BIPARTITE MATCHINGS∗

MING-YANG KAO† , TAK-WAH LAM‡ , WING-KIN SUNG‡ , AND HING-FUNG TING‡

SIAM J. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 31, No. 1, pp. 18–26

Abstract. Let G be a bipartite graph with positive integer weights on the edges and without
isolated nodes. Let n, N , and W be the node count, the largest edge weight, and the total weight of
G. Let k(x, y) be log x/ log(x2/y). We present a new decomposition theorem for maximum weight
bipartite matchings and use it to design an O(

√
nW/k(n,W/N))-time algorithm for computing a

maximum weight matching of G. This algorithm bridges a long-standing gap between the best
known time complexity of computing a maximum weight matching and that of computing a maximum
cardinality matching. Given G and a maximum weight matching of G, we can further compute the
weight of a maximum weight matching of G− {u} for all nodes u in O(W) time.

Key words. all-cavity matchings, maximum weight matchings, minimum weight covers, graph
algorithms, unfolded graphs

AMS subject classifications. 05C05, 05C70, 05C85, 68Q25

PII. S0097539799361208

1. Introduction. Let G = (X,Y,E) be a bipartite graph with positive inte-
ger weights on the edges. A matching of G is a subset of node-disjoint edges of G.
Let mwm(G) (respectively, mm(G)) denote the maximum weight (respectively, car-
dinality) of any matching of G. A maximum weight matching is one whose weight is
mwm(G). Let N be the largest weight of any edge. Let W be the total weight of G.
Let n and m be the numbers of nodes and edges of G; to avoid triviality, we maintain
m = Ω(n) throughout the paper.

The problem of finding a maximum weight matching of a given G has a rich his-
tory. The first known polynomial-time algorithm is the O(n3)-time Hungarian method
[15]. Fredman and Tarjan [5] used Fibonacci heaps to improve the time to O(n(m +
n log n)). Gabow [6] introduced scaling to solve the problem in O(n3/4m logN) time
by taking advantage of the integrality of edge weights. Gabow and Tarjan [7] im-
proved the scaling method to further reduce the time to O(

√
nm log(nN)). For the

case where the edges all have weight 1, i.e., N = 1 (and W = m), Hopcroft and Karp
[11] gave an O(

√
nW)-time algorithm, and Feder and Motwani [4] improved the time

complexity to O(
√
nW/k(n,m)), where k(x, y) = log x/ log(x2/y). It has remained

open whether the gap between the running times of the Gabow–Tarjan algorithm and
the latter two algorithms can be closed for the case where W = o(m log(nN)).

We resolve this open problem in the affirmative by giving an O(
√
nW/k(n,W/N))-

time algorithm for general W . Note that W/N = m when all the edges have the same
weight. The algorithm does not use scaling but instead employs a novel decomposition
theorem for weighted bipartite matchings (Theorem 2.2). We also use the theorem to

∗Received by the editors September 15, 1999; accepted for publication (in revised form) November
8, 2000; published electronically May 31, 2001. A preliminary version appeared in the Proceedings of
the 7th Annual European Symposium on Algorithms, Lecture Notes in Comput. Sci. 1643, Springer,
Prague, Czech Republic, 1999, pp. 439–449.

http://www.siam.org/journals/sicomp/31-1/36120.html
†Department of Computer Science, Yale University, New Haven, CT 06520 (kao-ming-yang@

cs.yale.edu). This author’s research was supported in part by NSF grant 9531028.
‡Department of Computer Science and Information Systems, University of Hong Kong, Hong

Kong (twlam@csis.hku.hk, wksung@csis.hku.hk, hfting@csis.hku.hk). The research of these authors
was supported in part by Hong Kong RGC grant HKU-7027/98E.

18

A DECOMPOSITION THEOREM FOR BIPARTITE MATCHINGS 19

Fig. 1. Consider h = 1. G is decomposed into Gh and G∆
h ; Ch is a minimum weight cover of Gh.

solve the all-cavity maximum weight matching problem which, given G and a maxi-
mum weight matching of G, asks for mwm(G−{u}) for all nodes u in G. This problem
has applications to tree comparisons [2, 14]. The case where N = 1 has been studied
by Chung [2]. Recently, Kao, Lam, Sung, and Ting [12] gave an O(

√
nm logN)-time

algorithm for general N . This paper presents a new algorithm that runs in O(W)
time.

Section 2 presents the decomposition theorem and uses it to compute the weight
of a maximum weight matching. Section 3 gives an algorithm to construct a maximum
weight matching. Section 4 solves the all-cavity matching problem.

2. The decomposition theorem. In section 2.1, we state the decomposition
theorem and use the theorem to design an algorithm to compute the weight mwm(G)
in O(

√
nW/k(n,W/N)) time. In section 2.2, we prove the decomposition theorem.

In section 3, we further construct a maximum weight matching itself within the same
time bound.

2.1. An algorithm for computing mwm(G). Let V (G) be the node set of
G, i.e., X ∪ Y . Let w(u, v) denote the weight of an edge uv ∈ G; if u is not adjacent
to v, let w(u, v) = 0. A cover of G is a function C : X ∪ Y → {0, 1, 2, . . .} such
that C(x) + C(y) ≥ w(x, y) for all x ∈ X and y ∈ Y . Let w(C) =

∑

z∈X∪Y C(z) be
the weight of C. C is a minimum weight cover if w(C) is the smallest possible. Let
mwc(G) denote the weight of a minimum weight cover of G. A minimum weight cover
is a dual of a maximum weight matching as stated in the next fact.

Fact 2.1 (see [1]). Let C be a cover and M be a matching of G. The following
statements are equivalent.

1. C is a minimum weight cover and M is a maximum weight matching of G.
2.

∑

uv∈M w(u, v) =
∑

u∈X∪Y C(u).
3. Every node in {u | C(u) > 0} is matched by some edge in M , and C(u) +

C(v) = w(u, v) for all uv ∈ M .
For an integer h ∈ [1, N], we divide G into two lighter bipartite graphs Gh and

G∆
h as follows:

• Gh is formed by the edges uv of G with w(u, v) ∈ [N − h + 1, N]. Each edge
uv in Gh has weight w(u, v) − (N − h). For example, G1 is formed by the
heaviest edges of G, and the weight of each edge is exactly one.

• Let Ch be a minimum weight cover of Gh. G∆
h is formed by the edges uv of G

with w(u, v)−Ch(u)−Ch(v) > 0. The weight of uv is w(u, v)−Ch(u)−Ch(v).
An example is depicted in Figure 1. Note that the total weight of Gh and G∆

h is at
most W .

The next theorem is the decomposition theorem.

20 M.-Y. KAO, T.-W. LAM, W.-K. SUNG, AND H.-F. TING

Theorem 2.2. mwm(G) = mwm(Gh) + mwm(G∆
h); in particular, mwm(G) =

mm(G1) + mwm(G∆
1).

Proof. See section 2.2.
Theorem 2.2 suggests the following recursive algorithm to compute mwm(G).
Procedure Compute-MWM(G).
1. Construct G1 from G.
2. Compute mm(G1) and find a minimum weight cover C1 of G1.
3. Construct G∆

1 from G and C1.
4. If G∆

1 is empty, then return mm(G1); otherwise, return mm(G1)+Compute-
MWM(G∆

1).
Theorem 2.3. Compute-MWM(G) finds mwm(G) in O(

√
nW/k(n,W/N)) time.

Proof. The correctness of Compute-MWM follows from Theorem 2.2. Below, we
analyze the running time. We initialize a maximum heap [3] in O(m) time to store
the edges of G according to their weights. Let T (n,W,N) be the running time of
Compute-MWM excluding this initialization. Let L be the set of the heaviest edges
in G. Then Step 1 takes O(|L| logm) time. In Step 2, we can compute mm(G1) in
O(

√
n|L|/k(n, |L|)) time [4]. From this matching, C1 can be found in O(|L|) time

[1]. Let L1 be the set of the edges of G adjacent to some node u with C1(u) > 0;
i.e., L1 consists of the edges of G whose weights are reduced in G∆

1 . Let !1 = |L1|.
Step 3 updates every edge of L1 in the heap in O(!1 logm) time. As L ⊆ L1, Steps 1
to 3 altogether use O(

√
n!1/k(n, !1)) time. Since the total weight of G∆

1 is at most
W − !1, Step 4 uses at most T (n,W − !1, N ′) time, where N ′ < N is the maximum
edge weight of G∆

1 . In summary, for some positive integer !1 ≤ W ,

T (n,W,N) = O(
√
n!1/k(n, !1)) + T (n,W − !1, N

′),

where T (n, 0, N ′) = 0. By recursion, for some positive integers !1, !2, . . . , !p with
p ≤ N and

∑

1≤i≤p !i = W ,

T (n,W,N) = O

(

√
n

(

!1
k(n, !1)

+
!2

k(n, !2)
+ · · · + !p

k(n, !p)

)

)

= O

√
n

log n

∑

1≤i≤p

!i

 log n2 −
∑

1≤i≤p

!i log !i

 .

Since x log x is convex, by Jensen’s inequality [10],

∑

1≤i≤p

!i log !i ≥

∑

1≤i≤p

!i

 log

∑

1≤i≤p !i

p
≥ W log

W

N
.

Therefore,

T (n,W,N) = O

(√
n

log n

(

W log n2 −W log
W

N

)

)

= O

(√
nW

log n/ log(n2/W
N

)

)

= O
(√

nW/k(n,W/N)
)

.

A DECOMPOSITION THEOREM FOR BIPARTITE MATCHINGS 21

2.2. Proof of Theorem 2.2. This section proves the statement that mwm(G) =
mwm(Gh)+mwm(G∆

h), where G∆
h is defined according to an arbitrary minimum weight

cover Ch of Gh. By Fact 2.1, it suffices to prove mwc(G) = w(Ch) + mwc(G∆
h).

To show the direction mwc(G) ≤ w(Ch) + mwc(G∆
h), note that any cover D of

G∆
h augmented with Ch gives a cover C of G, where C(u) = Ch(u) + D(u) for each

node u of G. Then C(u) + C(v) ≥ w(u, v) for all edges uv of G. Thus, mwc(G) ≤
w(Ch) + mwc(G∆

h).
To show the direction w(Ch) + mwc(G∆

h) ≤ mwc(C), let C be a minimum weight
cover of G. A node u of G is called bad if C(u) < Ch(u). Lemma 2.4 below shows
that G must have a minimum weight cover C allowing no bad node. Then we can
construct a cover D of G∆

h as follows. For each node u of G, define D(u) = C(u) −
Ch(u), which must be at least 0. D is a cover of G∆

h because for any edge uv of
G∆

h , D(u) + D(v) = C(u) + C(v) − Ch(u) − Ch(v) ≥ w(u, v) − Ch(u) − Ch(v). Note
that w(D) = w(C) − w(Ch). Thus, mwc(G∆

h) ≤ w(C) − w(Ch), or equivalently,
mwc(G∆

h) + w(Ch) ≤ mwc(G).
The next lemma concludes the proof of Theorem 2.2.
Lemma 2.4. There exists a minimum weight cover of G such that no node of G

is bad.
Proof. Suppose, for the sake of contradiction, that every minimum weight cover

allows some bad node. Then we can obtain a contradiction by constructing another
minimum weight cover with no bad node.

Let C be a minimum weight cover of G with u as a bad node, i.e., C(u) <
Ch(u). Recall that Ch is a minimum weight cover of Gh. Consider a maximum weight
matching M of Gh. By Fact 2.1, since Ch(u) > C(u) ≥ 0, u is matched by an edge in
M , say, to a node v, and Ch(u)+Ch(v) = w(u, v)− (N −h). We call v the mate of u.
Note that v cannot be a bad node; otherwise, C(u)+C(v) < w(u, v)−(N−h) ≤ w(u, v)
and a contradiction occurs.

Since C is a cover of G, C(u) + C(v) ≥ w(u, v). Thus, C(v) ≥ w(u, v) − C(u) ≥
N − h + Ch(u) + Ch(v) − C(u). Define another cover C ′ of G as follows. For each
bad node defined by C, let v be the mate of u, define C ′(u) = Ch(u) and C ′(v) =
C(v)− (Ch(u)−C(v)). Note that u is not a bad node with respect to C ′, and neither
is v since C ′(v) ≥ N −h+Ch(v) ≥ Ch(v). For all other nodes x, C ′(x) is the same as
C(x). Therefore, if C ′ is a cover of G, C ′ allows no bad node. Also, w(C ′) = w(C).

It remains to prove that C ′ is a cover of G. By the definition of C ′, C ′(v) < C(v)
if and only if v is the mate of a bad node with respect to C. Suppose C ′ is not a
cover of G. Then there exists an edge vt such that C ′(v) + C ′(t) ≤ w(v, t) and v is
the mate of a bad node. Recall that the latter implies that C ′(v) ≥ N − h + Ch(v).
In other words,

C ′(t) < w(v, t) − C ′(v) ≤ w(v, t) − (N − h) − Ch(v).

We can derive a contradiction as follows.
Case 1: w(v, t) ≤ N − h. Then C ′(t) < −Ch(v) ≤ 0, which contradicts that

C ′(t) ≥ Ch(t) ≥ 0.
Case 2: w(v, t) > N − h. Then Gh contains the edge vt and Ch(v) + Ch(t) ≥

w(v, t)− (N −h). Thus, C ′(t) < w(v, t)− (N −h)−Ch(v) ≤ Ch(t), which contradicts
the fact that C ′ allows no bad node.

In conclusion, C ′ is a cover of G. Together with the fact that w(C) = w(C ′), we
obtain the desired contradiction that C ′ is a minimum weight cover of G with no bad
node. Lemma 2.4 follows.

22 M.-Y. KAO, T.-W. LAM, W.-K. SUNG, AND H.-F. TING

3. Construct a maximum weight matching. The algorithm in section 2.1
only computes the value of mwm(G). To report the edges involved, we show below how
to first construct a minimum weight cover of G in O(

√
nW/k(n,W/N)) time and then

use this cover to construct a maximum weight matching in O(
√
nm/k(n,m)) time.

Thus, the time required to construct a maximum weight matching is O(
√
nW/k(n,W/N)).

Lemma 3.1. Assume that h,Gh, Ch, and G∆
h are defined as in section 2. Let C∆

h
be any minimum weight cover of G∆

h . If D is a function on V (G) such that for every
u ∈ V (G), D(u) = Ch(u) + C∆

h (u), then D is a minimum weight cover of G.
Proof. Consider any edge uv of G. If uv is not in G∆

h , then w(u, v) ≤ Ch(u) +
Ch(v) ≤ D(u) + D(v). Assume that uv is in G∆

h . Note that its weight in G∆
h is

w(u, v)−Ch(u)−Ch(v). Since C∆
h is a cover, C∆

h (u)+C∆
h (v) ≥ w(u, v)−Ch(u)−Ch(v).

Thus, D(u) +D(v) = Ch(u) +C∆
h (u) +Ch(v) +C∆

h (v) ≥ w(u, v). It follows that D is
a cover of G. To show that D is a minimum weight one, we observe that

∑

u∈V (G) D(u) =
∑

u∈V (G) Ch(u) + C∆
h (u)

=
∑

u∈V (G) Ch(u) +
∑

u∈V (G) C
∆
h (u)

= mwm(Gh) + mwm(G∆
h) by Fact 2.1

= mwm(G) by Theorem 2.2.

By Fact 2.1, D is minimum.
By Lemma 3.1, a minimum weight cover of G can be computed using a recursive

procedure similar to Compute-MWM as follows.
Procedure Compute-Min-Cover(G).
1. Construct G1 from G.
2. Find a minimum weight cover C1 of G1.
3. Construct G∆

1 from G and C1.
4. If G∆

1 is empty, then return C1; otherwise, let C∆
1 = Compute-Min-Cover(G∆

1)
and return D, where for all nodes u in G, D(u) = C1(u) + C∆

1 (u).
Theorem 3.2. Compute-Min-Cover(G) correctly computes a minimum weight

cover of G in O(
√
nW/k(n,W/N)) time.

Proof. The correctness of Compute-Min-Cover(G) follows from Lemma 3.1. For
the time complexity, the analysis is similar to that of Theorem 2.3.

Now, we show how to recover a maximum weight matching of G from a minimum
weight cover D of G.

Procedure Recover-Max-Matching(G,D).
1. Let H be the subgraph of G that contains all edges uv with w(u, v) = D(u)+

D(v).
2. Make two copies of H. Call them Ha and Hb. For each node u of H, let ua

and ub denote the corresponding nodes in Ha and Hb, respectively.
3. Union Ha and Hb to form Hab, and add to Hab the set of edges {uaub | u ∈

V (H), D(u) = 0}.
4. Find a maximum cardinality matching K of Hab and return the matching

Ka = {uv | uava ∈ K}.
Theorem 3.3. Recover-Max-Matching(G,D) correctly computes a maximum

weight matching of G in O(
√
nm/k(n,m)) time.

Proof. The running time of Recover-Max-Matching(G,D) is dominated by the
construction of K. Since Hab has at most 2n nodes and at most 3m edges, K can be
constructed in O(

√
nm/k(n,m)) time using the Feder–Motwani algorithm [4].

It remains to show that Ka is a maximum weight matching of G. First, we argue
that Hab has a perfect matching. Let M be a maximum weight matching of G. By

A DECOMPOSITION THEOREM FOR BIPARTITE MATCHINGS 23

w1

w2

w3

x1

x2

x3

z1

z2

y1

y2

y3

w1

w2

w3

x1

x2

x3

z1

z2

y1

y2

y3

(a) φ(G) (b) φ(G)|Ch

Fig. 2. (a) The unfolded graph φ(G) of the bipartite graph given in Figure 1(a). (b) With
respect to the cover Ch defined in Figure 1(c), the node y1 in φ(G) is the only node satisfying the
condition that 1 ≤ Ch(y). Thus, φ(G)|Ch comprises only the edges incident to y1.

Fact 2.1, D(u) + D(v) = w(u, v) for every edge uv ∈ M . Therefore, M is also a
matching of H. Let U be the set of nodes in H unmatched by M . By Fact 2.1,
D(u) = 0 for all u ∈ U . Let Q be {uaub | u ∈ U}. Let Ma = {uava | uv ∈ M} and
M b = {ubvb | uv ∈ M}. Note that Q ∪Ma ∪M b forms a matching in Hab and every
node in Hab is matched by either Q, Ma, or M b. Thus, Hab has a perfect matching.

Since K is a maximum cardinality matching of Hab, K must be a perfect match-
ing. For every node u with D(u) > 0, ua must be matched by K. Since there is
no edge between ua and any xb in Hab, there exists some va with uava ∈ K. Thus,
every node u with D(u) > 0 must be matched by some edge in Ka. Therefore,
∑

uv∈Ka w(u, v) =
∑

u∈X∪Y,D(u)>0 D(u) =
∑

u∈X∪Y D(u) = mwm(G), and Ka is a
maximum weight matching of G.

4. All-cavity maximum weight matchings. In section 4.1, we introduce the
notion of an unfolded graph. In section 4.2, we use this notion to design an algorithm
which, given a weighted bipartite graph G and a maximum weight matching of G,
computes mwm(G− {u}) for all nodes u in G using O(W) time.

4.1. Unfolded graphs. The unfolded graph φ(G) of G is defined as follows.
• For each node u of G, φ(G) has α copies of u, denoted as u1, u2, . . . , uα, where

α is the weight of the heaviest edge incident to u.
• For each edge uv of G, φ(G) has the edges u1vβ , u2vβ−1, . . . , uβv1, where

β = w(u, v).
See Figure 2(a) for an example. Let M be a matching of G. Consider M as a weighted
bipartite graph; then, by definition, φ(M) =

⋃

uv∈M{u1vβ , . . . , uβv1 | β = w(u, v)} is
a matching of φ(G). The number of edges in φ(M) is equal to the total weight of the
edges in M , i.e., |φ(M)| =

∑

uv∈M w(u, v). The next lemma relates G and φ(G).
Lemma 4.1. Assume that M is a maximum weight matching of G.
1. mwm(G) = mm(φ(G)).
2. The set φ(M) is a maximum cardinality matching of φ(G).

24 M.-Y. KAO, T.-W. LAM, W.-K. SUNG, AND H.-F. TING

Proof. Statement 4.1 follows from Statement 4.1. Statement 4.1 is proved as
follows. Since M is a maximum weight matching of G, mwm(G) =

∑

uv∈M w(u, v) =
|φ(M)| ≤ mm(φ(G)). By Fact 2.1, mwm(G) ≥ mm(φ(G)) if and only if mwc(G) ≥
mwc(φ(G)). We prove the latter as follows. Given a minimum weight cover C of G,
we can obtain a cover C ′ of φ(G) as follows. For any node u of G, C ′(ui) = 1 if
C(u) > 0 and i ≤ C(u); otherwise, C ′(ui) = 0. Note that w(C ′) = w(C) = mwc(G).
Therefore, mwc(G) ≥ mwc(φ(G)) and mwm(G) ≥ mm(φ(G)).

4.2. An algorithm for all-cavity maximum weight matchings. Let M be
a given maximum weight matching of G.

By Lemma 4.1(2), φ(M) is a maximum cardinality matching of φ(G). In light of
this maximality, we say that a path in φ(G) is alternating for φ(M) if (1) its edges
alternate between being in φ(M) and being not in φ(M) and (2) in the case the
first (respectively, last) node is matched by φ(M), the path contains the matched
edge of u as the first (respectively, last) edge. The length of an alternating path is
its number of edges. An alternating path may have zero length; in this case, the
path contains exactly one unmatched node. An alternating path P can modify φ(M)
to another matching, i.e., (φ(M) ∪ P) − (φ(M) ∩ P). If P is of even length, the
resulting matching has the same size as φ(M). If P is of odd length, P modifies M
to a strictly smaller or bigger matching; yet the latter is impossible because φ(M) is
maximum. Intuitively, we would like to maximize the size of the resultant matching
and even-length alternating paths are preferred.

Our new algorithm for computing mwm(G − {u}) is based on the observation
that mwm(G − {u}) can be determined by detecting the smallest i such that ui has
an even-length alternating path for φ(M). Details are as follows.

Definition. For each ui in φ(G), let ρ(ui) = 0 if there is an even-length alternating
path for φ(M) starting from ui; otherwise, let ρ(ui) = 1.

The following lemma states a monotone property of ρ(ui) over different i’s.
Lemma 4.2. Consider any node u in G. Let u1, u2, . . . , uβ be its corresponding

nodes in φ(G). If ρ(ui) = 0, then ρ(uj) = 0 for all j ∈ [i,β]. Furthermore, there exist
β− i+ 1 node-disjoint even-length alternating paths Pi, Pi+1, . . . , Pβ for φ(M), where
each Pj starts from uj.

Proof. As ρ(ui) = 0, let Pi = ua0
0 , vb00 , ua1

1 , vb11 , . . . , u
ap−1

p−1 , v
bp−1

p−1 , u
ap
p be a shortest

even-length alternating path for φ(M), where ua0
0 = ui.

Based on Pi, we can construct an even-length alternating path Pi+1 for φ(M)
starting from ui+1 as follows. If ui+1 is not matched by φ(M), Pi+1 is simply
a path of zero length. From now on, we assume that ui+1 is matched by φ(M).
As P is of even length, u

ap
p is not matched by φ(M). Then, by the definition of

φ(M), u
ap+1
p is also not matched by φ(M). Let h be the smallest integer in [1, p]

such that uah+1
h is not matched by φ(M). Notice that, for all ! <h , ua!+1

is

matched to vb!−1
; furthermore, φ(G) contains an edge between vb!−1

and u
a!+1+1
#+1 .

Thus, Pi+1 = ui+1, vb0−1
0 , ua1+1

1 , vb1−1
1 , . . . , uah+1

h is an even-length alternating path
for φ(M). Similarly, for j = i + 2, . . . ,β, we can use Pi to define an even-length
alternating path Pj for φ(M) starting from uj . By construction, Pi, Pi+1, . . . , Pβ are
node-disjoint.

The next lemma is the basis of our cavity matching algorithm. It shows that
given mwm(G) (i.e., the weight of M), we can compute mwm(G − {u}) from the
values ρ(ui), and all the ρ(ui)’s can be found in O(W) time.

A DECOMPOSITION THEOREM FOR BIPARTITE MATCHINGS 25

Lemma 4.3.
1.

∑

1≤i≤β ρ(ui) = mwm(G) − mwm(G− {u}).
2. For all ui ∈ φ(G), ρ(ui) can be computed in O(W) time in total.

Proof. The two statements are proved as follows.
Statement 1. Let k be the largest integer such that ρ(uk) = 1. By Lemma 4.2,

ρ(ui) = 1 for all 1 ≤ i ≤ k, and 0 otherwise. Note that if ρ(ui) = 1, ui must be
matched by φ(M). Thus,

∑

1≤i≤β ρ(ui) = k. Below, we prove the following two
equalities:

(1) mm(φ(G) − {u1, . . . , uk}) = mm(φ(G)) − k.
(2) mm(φ(G) − {u1, . . . , uβ}) = mm(φ(G) − {u1, . . . , uk}).

Then, by Lemma 4.1, mwm(G) = mm(φ(G)) and mwm(G − {u}) = mm(φ(G) −
{u1, . . . , uβ}). Thus, mwm(G) − mwm(G− {u}) = k and Statement 1 follows.

To show equality (1), let H be the set of edges of φ(M) incident to ui with 1 ≤ i ≤
k. Let M ′ = φ(M) −H. Then, |M ′| = |φ(M)|− k. We claim that M ′ is a maximum
cardinality matching of φ(G) − {u1, . . . , uk}. Hence, mwm(φ(G) − {u1, . . . , uk}) =
|φ(M)| − k, and equality (1) follows. We prove the claim by contradiction. Suppose
M ′ is not a maximum cardinality matching of φ(G)−{u1, . . . , uk}. Then, there exists
an alternating path P that can modify M ′ to a larger matching of φ(G)−{u1, . . . , uk}
[8, 9]; in particular, the length of P must be odd and both of its endpoints are not
matched by M ′. P must start from some node vj with uivj ∈ φ(M) and i < k;
otherwise, P is alternating for φ(M) in G and φ(M) cannot be a maximum cardinality
matching of φ(G). Let Q be a path formed by joining uivj with P . Q is an even-
length alternating path for φ(M) starting from ui in φ(G). This contradicts the fact
that there is no even-length alternating path for φ(M) starting from ui for i < k.

To show equality (2), we first note that mm(φ(G) − {u1, . . . , uβ}) ≤ mm(φ(G) −
{u1, . . . , uk}). It remains to prove the other direction. By Lemma 4.2, we can find
β − k node-disjoint even-length alternating paths Pk+1, . . . , Pβ for φ(M), which start
from uk+1, . . . , uβ . Pj starts at uj . Let M ′′ = (φ(M) ∪ (Pj+1 ∪ · · · ∪ Pβ)) − (φ(M) ∩
(Pj+1 ∪ · · · ∪ Pβ)). Note that |M ′′| = |φ(M)| and there are no edges in M ′′ incident
to any of uk+1, . . . , uβ . M ′′ is a matching of φ(G) − {uk+1, . . . , uβ} and M ′′ − H
of φ(G) − {u1, . . . , uβ}. |M ′′ − H| ≥| M ′′| − k = |φ(M)| − k. Since mm(φ(G) −
{u1, . . . , uk}) = |φ(M)|−k by equality (1), it follows that mm(φ(G)−{u1, . . . , uβ}) ≥
|M ′′ −H| ≥ mm(φ(G) − {u1, . . . , uk}). Therefore, equality (2) holds.

Statement 2. We want to determine whether ρ(ui) = 0 for all nodes ui ∈ φ(G) in
O(W) time. By definition, ρ(ui) = 0 if and only if there is an even-length alternating
path for φ(M) starting from ui. Let us partition the nodes of φ(G) into two parts:
φ(X) = {ui ∈ φ(G) | u ∈ X} and φ(Y) = {ui ∈ φ(G) | u ∈ Y }. Below, we give the
details of computing ρ(ui) for all ui ∈ φ(X). The case where ui ∈ φ(Y) is symmetric.

Let D be a directed graph over the node set φ(X). D contains an edge uivj if
there exists a node wk ∈ φ(Y) such that uiwk ∈ φ(G) − φ(M) and wkvj ∈ φ(M).
Consider any node vj of D that is unmatched by φ(M). A directed path in D from vj

to a node ui corresponds to a path in φ(G), which is indeed an even-length alternating
path for φ(M) starting from ui. Therefore, for any ui ∈ φ(X), ρ(ui) = 0 if and only
if ui is reachable from some node in D that is unmatched by φ(M). We can identify
all such ui by using a depth-first search on D starting with all the nodes unmatched
by M . The time required is O(|D|). As |D| ≤| φ(G)| = W , the lemma follows.

The following procedure computes mwm(G − {u}) for all nodes u of G. Let M
be a maximum weight matching of G.

26 M.-Y. KAO, T.-W. LAM, W.-K. SUNG, AND H.-F. TING

Procedure Compute-All-Cavity(G,M).
1. Construct φ(G) and φ(M).
2. For every j ∈ [0, n/2], determine Aj from φ(M).
3. For every node ui of φ(G), if ui ∈

⋃

j Aj then ρ(ui) = 0; otherwise ρ(ui) = 1.

4. For every node u of G, compute mwm(G− {u}) = mwm(G)−
∑

1≤i≤β ρ(ui),

where u1, u2, . . ., uβ are the nodes corresponding to u in φ(G).
Theorem 4.4. Compute-All-Cavity(G,M) correctly computes mwm(G − {u})

for all u of G in O(W) time.
Proof. The proof follows from Lemma 4.3

Acknowledgments. The authors wish to thank the anonymous referee for ex-
tremely helpful comments, which significantly improved the presentation of the paper.
In particular, Theorem 2.2 was originally proved using unfolded graphs (see the con-
ference version of this paper [13]); the new proof is based on a suggestion by the
referee.

REFERENCES

[1] J. Bondy and U. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
[2] M. J. Chung, O(n2.5) time algorithms for the subgraph homeomorphism problem on trees, J.

Algorithms, 8 (1987), pp. 106–112.
[3] T. H. Cormen, C. L. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,

Cambridge, MA, 1990.
[4] T. Feder and R. Motwani, Clique partitions, graph compression and speeding-up algorithms,

J. Comput. System Sci., 51 (1995), pp. 261–272.
[5] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network

optimization algorithms, J. ACM, 34 (1987), pp. 596–615.
[6] H. N. Gabow, Scaling algorithms for network problems, J. Comput. System Sci., 31 (1985),

pp. 148–168.
[7] H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for network problems, SIAM J.

Comput., 18 (1989), pp. 1013–1036.
[8] Z. Galil, Efficient algorithms for finding maximum matching in graphs, ACM Computing

Surveys, 18 (1986), pp. 23–38.
[9] A. M. H. Gerards, Matching, in Handbooks in Operations Reserach and Management Science

7: Network Models, M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, eds.,
North-Holland, Amsterdam, 1995, pp. 135–224.

[10] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press,
Cambridge, UK, 1988. Reprint of the 1952 edition.

[11] J. E. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum matchings in bipartite
graphs, SIAM J. Comput., 2 (1973), pp. 225–231.

[12] M. Y. Kao, T. W. Lam, W. K. Sung, and H. F. Ting, All-cavity maximum matchings, in
Proceedings of the 8th Annual International Symposium on Algorithms and Computation,
Lecture Notes Comput. Sci. 1350, H. Imai and H. W. Leong, eds., Springer-Verlag, New
York, NY, 1997, pp. 364–373.

[13] M. Y. Kao, T. W. Lam, W. K. Sung, and H. F. Ting, A decomposition theorem for maximum
weight bipartite matchings with applications to evolutionary trees, in Proceedings of the
7th Annual European Symposium on Algorithms, Lecture Notes in Comput. Sci. 1643,
J. Nešetřil, ed., Springer-Verlag, New York, NY, 1999, pp. 438–449.

[14] M. Y. Kao, T. W. Lam, W. K. Sung, and H. F. Ting, Cavity matchings, label compressions,
and unrooted evolutionary trees, SIAM J. Comput. 30 (2000), pp. 602–624.

[15] H. W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Logist. Quarterly,
2 (1955), pp. 83–97.

