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Abstract. The Euclidean Steiner minimal tree problem is known to be an NP- 
complete problem and current alogorithms cannot solve problems with more than 
30 points. Thus decomposition theorems can be very helpful in extending the 
boundary of workable problems. There have been only two known decomposition 
theorems in the literature. This paper provides a 50% increase in the reservoir of 
decomposition theorems. 

1. Introduction 

Let F denote  a given set o f  points on the Euclidean plane. A Steiner minimal 
tree (SMT) on F is the shortest network (clearly, it has to be a tree) interconnecting 
F. Garey et al. [3] proved that the construct ion o f  SMTs for general sets o f  points 
is an NP-comple te  problem. Therefore,  the ability to decompose  an SMT problem 
into several smaller problems is o f  utmost  importance and may very well determine 
whether  a given problem is workable. Unfortunately,  decomposi t ion theorems 
are hard to come by for  SMT problems. So far, there are only two decomposi t ion  
theorems in existence. 

Let T be a tree interconnect ing F and let X be a vertex o f  T. X is called a 
fixedpoint if X e F and a Steinerpoint otherwise. The first decomposi t ion  theorem 
was proved by Gilbert and Pollak [4] as what they called the double wedge 
property. Suppose that two lines which cross at 120 ° cut the plane into two 60 ° 
wedges and two 120 ° wedges. Let R, and R2 denote  the two closed 60 ° wedges 
and let X denote  the point  at which RI and R2 meet. Let F~ denote the set o f  
fixed points in R~, i = 1, 2. I f  G u F2 = F, then the SMT on F is the union of  the 
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Fig. 1. Cockayne's decomposition. 

SMT on F1 and the SMT on F2 plus a shortest edge to connect/:1 and F2 (this 
edge is not necessary if X ~ F).  

We now present the second decomposition theorem due to Cockayne [1]. 
Gilbert and Pollak showed that the SMT on F must lie within the convex hull 
of  E Let PI denote the convex polygon bounding the convex hull of F. Let 
(p, q, r) be triple of  fixed points satisfying: 

(i) p and q are on P~, r is either on or within P~, 
(ii) ~_ prq >- 120 °, 

(iii) there are no other fixed points within the triangle pqr. 

Let P2 denote the polygon (called a Steiner polygon) obtained by deleting the 
triangle pqr from PI. We can now substitute P2 for / '1  and proceed. When no 
more triples pqr can be found satisfying the conditions, we obtain a Steiner hull 
of  P which contains all the points within the last Steiner polygon. Cockayne 
showed that the SMT on F lies within the Steiner hull of  F. Furthermore, suppose 
that for some P~ the triple (p, q, r) we find is such that r is also on P ,  Let 
f t , f 2 , . . .  ,fro,f1 denote the ordered sequence of fixed nodes on Pi where f~ =p,  
f~+~ = q, fj = r. Without loss of  generality assume i+  1 <j.  Let F~ denote the set 
of fixed points bounded by the polygon f l ,  f 2 , . . .  , f ,  fj, f j+~,. . .  , fm,f l;  and let 
1::2 denote the set of  fixed points bounded by the Steiner polygon fj, f+ l ,  
f + 2 , - . .  ,f~-~, fi (see Fig. 1). Then the SMT on F is the union of the SMT on Ft 
and the SMT on F2. 

The decomposition we are going to propose can be considered as an exten- 
sion of  Cockayne's result from deleting a triangle to deleting a quadrilateral (see 
Fig. 2). 

In general, deleting an n-gon involves a complete understanding of  SMTs on 
sets of n fixed points. While the understanding is relatively uncomplicated and 
readily available for n = 3, the same is not true for n-> 4. Pollak [5] started the 
study of  SMTs on four points and only recently [2] has a more thorough 
understanding of this topic been available, providing the basis for this paper. 

Fig. 2. The proposed decomposition. 



A Decomposition Theorem on Euclidean Steiner Minimal Trees 369 

2. S o m e  P r e l i m i n a r y  R e s u l t s  

We first introduce some notation. The line segment between two points X and 
Y is denoted by [X, Y]. , X Y Z  is the angle extending from IX, Y] counterclock- 
wise to [ Y, Z] .  (X, Y) denotes the point Z such that X Y Z  is an equilateral 
triangle and 2LYXZ=60 °. d[X, Y] denotes the distance between X and Y. 
P ( X I , . . . ,  X, ,)  denotes the polygon whose vertices are X I , . . . ,  X,, in order. 
p ( X 1 , . . . ,  X,,)  denotes the path consisting of all sides of  P ( X t , . . . ,  X, ,)  except 
the side [X,,,  Xt]. p ( X 1 , . . . ,  X, ,)  is called a Steiner path if 2LX~X~+~Xi+2 = 120 ° 
for i =  1 . . . .  , m - 2 .  F =  P ( X 1 , . . . ,  Xm) denotes that F consists of  the vertices 
of  P ( X , , . . . ,  X,.).  

A Steiner tree on F is a tree interconnecting F such that every pair of  incident 
edges meet at an angle of  at least 120 ° and every Steiner point has three edges. 
A Steiner tree on n fixed points is full if  it contains n -  2 Steiner points. Let 
F = P(A,  B, C, D). The A B -  CD tree denotes the full Steiner tree on F such 
that A and B (hence C and D) are adjacent to the same Steiner point. Similarly 
we can define the AD - BC tree. Finally, T~, i e {A, B, C, D}, denotes a Steiner 
tree with a single Steiner point s adjacent to all other fixed points except i (i is 
adjacent to a fixed point). Whenever we use T~ in this paper,  it is always uniquely 
defined since the angle conditions on P(A, B, C, D) allow only one fixed point 
to be adjacent to i. 

The following three lemmas of [2] are crucially used in this paper: 

Lemma 1. Suppose that F = P(A, B, C, D) such that 4 A  >- 120 ° and ~ B  >- 120 °. 
Let the two diagonals [ A, C ] and [ B, D ] meet at O. I f  2L BOA > 4 A  + ~ B - 150 °, 
then p(D, A, B, C) is the SMT on F. 

Corollary. [C, D] is the longest side of P(A, B, C, D). 

Lemma 2. Suppose that F = P(A, B, C, D) such that KA+ 2LB >- 240 °, ~ A  < 120 °, 
and ~BOA > £(  DA ) BC - 30 °. Then the SMT on F is either TA or Tc. In particular, 
if T is a tree with topology AD - BC, then length of T > length of Tc. 

Lemma 3. S u p p o s e t h a t F = P ( A , B , C , D )  suchthat~A>-120°,~B>--120°,and 
6 B O A  > 4 A  + 4 B -  150 °. Let F' = P(A',  B', C', D') where A', D' are on [A, D] 
and B', C' are on [B, C] (see Fig. 3). Then the SMT on F' is not the A ' B ' -  C'D' 

I? C O.~'~D 

B A 
Fig. 3. SMT on F' is not the A ' B ' -  C'D' tree. 
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tree. In particular, if  ~_D'A'B'< 120 °, then ~.B'O'A'> ~ , (D 'A ' )B 'C ' -30  ° where 
O' is the intersection of [ A', C'] and [ B', D']. 

We now state and prove some prel iminary results. 

1.,emma 4. Let A, B ~ F and let C, D be two arbitrary points in the SMT T on F. 
Suppose that [C, D] is the longest side of P(A, B, C, D). Then no edge of T can 
contain both C and D. 

Proof. Suppose to the contrary that there exists an edge in T containing both 
C and D. Let p denote the path f rom A to D in T. I f  p contains C, then we can 
substitute [A, D]  for [C, D ]  to shorten the tree. Similarly, let q denote  the path 
from B to C in T. Then q cannot  contain D. Therefore A is connected to B 
through p, [C, D] ,  and q. But we can substitute [A, B] for [C, D ]  to shorten the 
tree, a contradict ion to the assumpt ion that T is the SMT. [] 

By using the fact that  the internal angles o f  an n-gon sum to (n - 2 )  • 180 °, we 
easily obtain:  

Lemma 5. Suppose that P( Y I , . .  . , Ym) is contained in P ( X I , .  . . , Xn) with Y~ = 
XI and Ym = X, .  Then 

n-- I  rn--I 

Y~ ,~-Xi- ~, Y ~ < - ( n - m ) .  180 °. 
i = 2  i = 2  

The inequality is strict if  either Y2 # X2 or Ym-~ ~ X,_~. 

Lemma 6. Suppose that ~_A >- 120 °, ~ B -  120 ° in P( A, B, C, D). Let ~_s be an 
angle such that its two sides (or their extensions) meet [ B, C] at C' and [A, D] 
at D', respectively (see Fig. 4). / f  ~.D'sC'<-120 °, then ~sD'A+~_A<180 °, 
~.BC's + ~ B  < 180 °. 

Proof. Consider  the pentagon ABC'sD': 

~,sD'A + ~.A < 540 ° - ~_ C'sD' - ~_B -< 180 °, 

~.BC's + ~.B < 540 ° - ~ C ' s D ' -  ~_A <- 180 °. [ ]  

¢ D 

B A 

Fig. 4. A steiner path cuts P(A, B, C, D). 
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C 0 

e(8') A A' 

Fig. 5. ~ _ B O A  < - ~ B ' O ' A ' .  

Corollary. ~_sD'A < 60 °, ~_BC's < 60 °. 

Lemma 7. Let P(A, B, C, D) be such that ~_A+~_B->180 °. Without loss of 
generality, assume that ~A+ ~_D >- 180 °. Then ~B>-~_C implies d[C, D] >- 
d[ A, B ]. Furthermore, d[ C, D] = d[ A, B] only if P( A, B, C, D) is a parallelogram. 

Proof. Construct [D, E] parallel to [A, B] and meeting [B, C] at E. Then 

d[C,D]>-d[D,E] since ~_B>-~C 

>-d[A,B] since ,~_A+~B->180 °. [] 

Lemma 8. Let ABCD and A'B'C'D' be two quadrilaterals such that ~A = ~A', 
~_B = ~_B', d[A, B] <- d[A', B'], d[A, D] >- d[A', D'], and d[B, C] >- d[B', C']. 
Let 0 (0')  be the intersection of the two diagonals [A, C] and [ B, D] ([A', C'] 
and [ B', D']). Then ~BOA <- ~B'O'A '. 

Proof. Superimpose A'B'C'D' on ABCD such that B' is on B and the two sides 
of ~B '  overlaps the sides of ~_B (see Fig. 5). 

Clearly, [B', D'] lies below [B, D]; hence ~A'B'D '< - ~ABD. Furthermore, 

~_CAB = 180°-~_A'AC >- ~C'A'B'.  

Therefore ~BOA <- ~B' O'A'. [] 

3. The Main Results 

Theorem. Let P(F) denote the Steiner polygon bounding the Steiner hull of the 
given set of points F. Let A, B, C, D be four points on P(F) satisfying; 

(i) P(A, B, C, D) is a convex quadrilateral, 
(ii) ~A-> 120 ° and ~_B-> 120 °, 

(iii) Let the two diagonals [A, C] and [B, D] meet at O. Then 

~.BOA >_~A + ~_B - 150 °. 
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C 0 

Fig. 6. The proposed decomposition. 

Then no part of the SMT on F can be inside of P(A, B, C, D), i.e., the SMT on 
F is the union of the SMT on F1, the SMT on F2 and the edge [A, B] where F~ 
(F2) is the set of fixed points lying inside the area bounded by P( F) and [A, D]- 
([B, C]) but disjoint to P(A, B, C, D) (see Fig. 6). 

Proof. Suppose to the contrary that the SMT T on F has a part Q lying inside 
P(A, B, C, D). Partition Q into connected components Q1, Q2 , . . .  such that Q~ 
and Qj are disconnected inside of P(A, B, C, D). Let Q' denote the component 
closest to [A, B]. Since T lies within P (F) ,  Q' cannot terminate on an internal 
point of [A, B]. We show that Q' cannot exist. 

Let L denote the upper boundary of Q', i.e., L is a Steiner path connecting a 
point C'  on [B, C] to a point D '  on [A, D]. Suppose that L has m Steiner points 
between C '  and D'. Since the polygon consisting of  L and [C' ,  D']  lies within 
P(A, B, C', D'), by Lemma 5 

2LA + £ B  - m. 120 ° < (2 - m) • 180 °. 

Therefore m = 0  or 1. Suppose m =0,  i.e., L is the edge [C',  D']. By the corollary 
of Lemma 1, [C' ,  D'] is the longest side of P(A, B, C', D'). By Lemma 4 [C' ,  D'] 
is not part of  the SMT, a contradiction to our assumption that L ~ T. 

Therefore we assume that m = 1. Let k be the number of Steiner points 
contained in Q'. We consider several cases depending on the value of  k. For 
convenience we will always assume that [A, B] is horizontal. 

(i) k = 1 (see Fig. 7). 

Fig. 7. The  case  k = 1. 

D' 
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Let s be the Steiner point on L and the third edge of  s meets [B, C'] at B'. 
We first prove that 

d[s, D'] > max{d[B, B'], d[A, B]}. 

Construct [B', A'] parallel to [s, D'] and meeting [A, D'] at A'. By Lemma 6 

~_B' sD' + ~sD'A' <- 180 °. 

Hence by Lemma 7 and the corollary of Lemma l, 

d[ s, D'] >- d[ B', A'] > max{d[B, B'], d[ A, B]}. 

Next we prove that 

d[s, B'] + dis, C'] + d[s, D'] > d[B', C'] + d[A, D']. 

Construct equilateral triangles B'C'(B'C') and BC'(BC'). Also construct 
[(BC'),  E]  parallel to [s, D'] and meeting [A, D'] at E, and construct [E, G] 
parallel to [(BC'), C'] and meeting [s, D'] or its extension at G. Finally, extend 
[C' ,  s] to meet [(BC'),  E]  at s'. Consider triangles B's(B'C') and Bs'(BC'). 
Since the three lines s's, BB', and (BC')(B'C') pass through the same point C', 
by the theorem of Desargues, the intersections of the lines s(B'C') and s'(BC'), 
sB' and s'b, and B'(B'C') and B(BC') are collinear. But the first pair of lines 
are parallel, hence Is, B'] is parallel to Is', B] (see Fig. 8). 

We first prove that d[s, G] <- d[s, D'], i.e., G is on [s, D']. It suffices to prove 
that 4D'E(BC') >- 2LGE(BC'), or 

~D'E(BC')+~E(BC')C'>_~_GE(BC')+~_E(BC')C'= 180 °. 

c' GAD' 

/ / 

(B'C' i ~- ~. 

(BC') 
Fig. 8. d[s,B']+d[s,C']+d[s,D']>d[B',C']+d[A,D']. 
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~. C's'B + ~. B( BC ') C '  = 120 ° + 60 ° = 180 °, 

the  four  po in ts  s ' ,  C ' ,  ( B C ' ) ,  and  B are cocircular .  Thus 

~B(BC')s '= ~BC'  s'. 

Consequen t ly ,  

,~_E(BC')C'+ ~D'E(BC')  = 60 ° -  ,~.BC's'+ 180 ° -  ~sD'A 

-- 240 ° -  (~BC's '+~sD'A)  

= 240 ° -  (540 ° -  ~ C ' s D ' -  z~B - ~_A) 

= 4 A  + ~ B - 6 0 o >  180 °. 

Therefore ,  

d[ s, B'] + d[ s, C'] + d[ s, D'] = d[ ( B' C'), D'] = d[ ( BC'), E ] + d[ G, D'] 

=dis', B]+ dis', C']+d[s', E]+d[G, D']. 

By L e m m a  1, p(E, A, B, C') is the S M T  for P(A, B, C', E). Since the tree consist-  
ing o f  the four  edges [s ' ,  B],  Is ' ,  C'], Is', El,  and  [A, B] is a S te iner  tree on 
P( A, B, C', E ), it is longer  than  p( A, B, C', E ). Hence  

d[s', B]+ d[s', C']+ d[s', E l >  d[ C', B]+ d[A, El. 

Fur the rmore ,  it is easi ly verif ied that  

d[B, B'] = d[(BC'), ( B ' C ' ) ]  = d[E, O]. 

Hence  

d[s, B ' ] +  dis, C']+ d[s, D ' ] >  d[ C', B ] +  d[A, E ] +  d[ G, D'] 

= d[C', B']+d[E, G]+d[A, El+dIG,  D'] 

> d ie ' ,  B']+d[A, E]+d[E, D'] 

= d[C', tr]+ d[A, D']. 
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We now show that if we replace the three edges [s, B'], [s, C'],  and [s, D'] by 
the two edges [B', C'] and [A, D'], which are shorter, we still have a tree 
interconnecting F. It suffices to prove that D'  is still connected to B' (hence to 
C'). Consider the path from A to s in T. This path cannot go through D' for 
otherwise we can replace Is, D'] by either [B, B'] or [A, B] to shorten the tree, 
a contradiction to the assumption that T is the SMT. Therefore the path must 
go through either B' or C', say C'. Hence D'  is connected to B' in the new tree 
through [D',  A], to the path from A to C', and [C' ,  B]. 

(ii) k = 2. By Lemma 3 this case cannot exist. 

For k>-3, let s~ denote the Steiner point on L and let s~ be adjacent to a 
Steiner point s:. Without loss of generality, we may assume that s2 is adjacent 
to a Steiner point s3 such that ~-s3s2s~ = 120 °. 

(iii) k = 3. Let the third edge of  s2 meet [B, C'] at B'. Let the edge of s3 parallel 
to [s~, D'] meet [A, D'] at E and let the third edge of s3 meet either [A, D'] or 
[B, B'] at G. We consider four subcases: 

Subcase 1. B' is not higher than G (see Fig. 9). Then G must be on [A, D']. 
Let ¢) be obtained from Q' by substituting [s2, G] for the three edges of s3. 

Then () interconnects P(G,  B', C', D'). now clearly ~.D'GB '>- 120 °. If ~GB'C '>- 
120 ° , then by Lemma 1,p(D',G,B' ,C')  is the SMT on P(G,B' ,C' ,D') .  If 
~GB'C'< 120 °, then by Lemmas 2 and 3, To, (with respect to P(G, B', C', D')) 
is shorter than Q. By angle consideration it is easily verified that D'  is adjacent 
to G in To,. Since t) is clearly shorter than Q', in any case we can replace Q' 
by a shorter tree which also interconnects the five points B', C', D', E, and G, a 
contradiction to the assumption Q ' c  T. 

Subcase 2. B' is higher than G but not higher than s3 (see Fig. 10). 

C ~ 

D' 

/° 
B A 

Fig. 9. B' Not higher than G. 
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C ! 

D' 

B A 

Fig. 10. B' Higher than G but not higher than s 3. 

Construct [B', A'] parallel to [A, B] and meeting [s3, G], [A, D'] at H and 
A', respectively. Let t~' be the part of Q' above [A', B']. Let t~ be obtained from 
t~' by substituting [H, A'] for [s3, E]. By Lemma 6 and its corollary, ~s3EA'+ 
~.EA'H = ~_s~D'A+~A < 180 °, ~-s3EA'+~Hs3E <60°+  120 °= 180 °. Further- 
more, ~EA'H = ~A >- 120°> ~s3EA'. By Lemma 7, d[H, A'] < d[s3, E]. Hence 

is shorter than (~'. But (~ is a tree connecting A', B', C', D', hence longer 
than p(D', A', B', C') which is the SMT on P(A', B', C', D') by Lemma 1. It 
follows p(A', B', C', D') is shorter than t~' but also interconnects the five points 
B', C', D', E, and H, a contradiction to the assumption that t~'c T. 

Subcase 3. B' is higher than s 3 and G is on [A, D'] (see Fig. 11). 
Construct [s3, I]  parallel to [A, B] and meeting [B, B'] a t / .  Construct Is3, H] 

D ! 

$I E 

B A 

Fig. !i. B' Higher than s 3and Gon [A,D']. 



A Decomposition Theorem on Euclidean Steiner Minimal Trees 377 

parallel to [A, D'] and meeting [st, D'] at H. In the trapezoid ABIs3 

~.s3AB + ~_ABI = ~ A  + ~_B - 4GAs3 

>- 240 ° -  ~EGs3 > 180 ° 

by Lemma 6. Therefore d[s3, I] >d[A ,  B]. Furthermore, 

and 

d[s3, H ] = d [ E ,  D ' ] < d [ A ,  D] 

d[I, C'] < d[B, C]. 

Let O' be the intersection of [s3, C'] and [/, H].  By Lemma 8, ~lO's3 >- ~_BOA >- 
~_A+~_B-150°=~.Hs3I+~_s3IC'-150 °. By Lemma 3, the SMT on 
P(s3, B', C', H) is not the s3B'- C'H tree, a contradiction to the assumption 
Q'eT. 

Subcase 4. b' is higher than S 3 and G is on [B, B'] (see Fig. 12). 
Construct [G, A'] parallel to [B, A] and meeting [A, D'] at A'. Let t~ be 

obtained from Q' by substituting [G, A'] for [s3, E]. We show that t~ is shorter 
than Q'. Consider P(A',  G, C', D'). By Lemma 6, 

~s3EA' + ~_EA'G = ~-st D 'E  + ~A < 180 °. 

C 

B A 

Fig. 12. B' Higher than s 3 and G on [B, B']. 
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Furthermore, 

~_s3GB' = 120 ° - ~_GB's2 = ~.s:B'C'-60 ° 

= 120 ° - ~.B'C's~ - 60 ° < 60 °. 

Hence 

~_EA'G+ ~A'Gs3 = ~A  + ~_B - ~ s 3 G B ' >  180 °. 

Finally we have 

~EA'  G = ~_A > ~s3EA. 

By Lemma 7, d[s3, E] > d[G, A']. Hence 0 is shorter than Q'. 
Let O' be the intersection of [A', C'] and [G, D'] .  By Lemma 8, 

GO'A' > ~BOA -> ~ A  + ~ B  - 150 ° = ~_D'A'G + ~A'  GC' - 150 °. 

By Lemma 1, p(D', A', G, C') is the SMT of P(D', A', G, C'). In particular, 
p(D', A', G, C') is shorter than (~, hence shorter than Q'. But p(D', A', G, C') 
also interconnects the five points D',  E, G, B', and C' ,  a contradiction to the fact 
that Q '~  T. 

(iv) k -> 4. Let e be the edge at ~3 parallel to [s~, D'] .  Then e must meet [A, D'] ,  
say at E, for e cannot contain a Steiner point s '  before it reaches E. The reason 
is that the Steiner path starting from s3 toward s '  and always turning counterclock- 
wise will run into the Steiner path p(D', s~, s2). Therefore either Sz is adjacent 
to three Steiner points or s2 and s3 are both adjacent to two Steiner points. In 
the latter case let s3 be adjacent to s2 and s4 and let the third edge of  s2 meet 
[B, C ' ]  at L Let the two other edges of  s4 (or their extensions) meet [A, D']  and 
[B, C'] at A' and B', respectively. We also let L4 (R4) denote the Steiner path 
starting from the left (right) edge of  s4, always turning clockwise (counterclock- 
wise) and ending at a point B" (A") on [B',  C']  ([A', D']) .  

Subcase 1. s~ and s3 are both adjacent to two Steiner points and B' is not higher 
than A' (see Fig. 13). 

At B' construct a line parallel to [sl,  s2]. Since, by Lemma 6, &IC's~ + 2£ C's~s2 < 
180 °, this line must meet either [I, s2] or [s2, s3] at, say, G. Let J denote either 
G or s2 depending on which point is to the right of  the other. Construct [B', H ]  
parallel to [A, B] and meeting [A, D' ]  at /4. Let (~' be the part of  Q' above 
[B',  HI .  Let (~ be obtained from (~' by substituting [B',  G] and [B',  H I  for [J, s3], 
[$3, $4], t4 ,  and R 4. It is easily verified that 

d(B', G) = d[J,  s31 + d[s3, $4] 

and 

d[ B', H] <- D[ B", A"] < length of L4+ length of  R4. 
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C I D I 

E 

$t 

B' H 
B A 

Fig. 13. B' Not higher than A'. 

Therefore t) is shorter than Q'. But O is a tree interconnecting {H, B', C', D'}. 
By Lemmas 1 and 8, p(H, B', C', D') is shorter than t), hence shorter than Q', 
a contradiction to the assumption that ()' e T. 

Subcase 2. s2 and s3 are both adjacent to two Steiner points and A' is not higher 
than B' (see Fig. 14). 

Construct [A', HI  parallel to [A, B] and meeting [B, C'] at H. Let Q' be the 
part of Q' above [A', H].  Let Q be obtained from Q' by substituting [s4, A'] and 
[A', H]  for [s3, E], L4, and R4. By Lemma 6, ~.s3EA'< 60 °. Hence ~EA's4> 60°> 
~s3EA'. Furthermore,  2~_s4s3E+2~_A's4s 3 = 240°> 180 °. By Lemma 7, dis3, E l >  
d[s4, A']. It is also easily verified that length of L4+length of R4> d[A', HI. 

D t 

C' 
E 

B H A ° 

B A 

Fig. 14. A' Not higher than B'. 
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Hence t~ is shorter than t~'. But Q is a tree interconnecting {A', B', C', D'}. By 
Lemmas 1 and 8, p(A', H, C', D') is shorter than Q, hence shorter than Q', a 
contradiction to the assumption Q'e T. 

Subcase 3. s2 is adjacent to three Steiner points. We first make the observation 
that the proofs for subcases 1 and 2 are still valid if there exists a Steiner point 
s5 on [s2, I]. It is obvious for subcase 2 since [s~, I] is not used in the proof at 
all. For subcase 1 note that s5 cannot be to the right of G otherwise the Steiner 
path starting from Is[, ss] and always turning counterclockwise will run into L4. 
Therefore the inequality 

d[ s2, G] <- d[ s2, ss] 

substitutes for the inequality 

d[s2, G] <- d[s2, Z] 

in the proof of subcase 1 and nothing else need be changed. 
Therefore we may assume that neither of the two Steiner points s3 and s4 

adjacent to s2 is adjacent to another Steiner point. In other words, Q' contains 
exactly four Steiner points. 

Let el (e2) denote the edge at s3 (s4) parallel to [sl, s2]. Then el (e2) meets 
either [A, D'] or [B, C']. Suppose that el and e2 meet the same side, say [B, C']. 
The proof is exactly the same as for subcase 4 of the case k = 3 since the left 
branch of s2 is kept intact in that proof. Therefore it suffices to consider the case 
that el meets [A, D'] and e2 meets [B, C']. Without loss of generality, assume 
that s3 is not higher than s4. Construct [s3, G] parallel to [A, B] and meeting 
[B, C'] at G We first consider the case that e2 stays above [s3, G] (see Fig. 15). 

C' ~ D '  

°\ 
B A 

Fig. 15. e2 above [s3, G]. 
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D t 

¢' 

B A 

Fig. 16, G not below B'. 

Construct [s3, H]  parallel to [A, D] and meeting [st, D'] at H. Let (~' be the 
part of Q' lying within P(s3, G, C', H). Let the two edges of s3 (s4) meet [A, D'] 
([B, C']) at A' and A" (B' and B") such that Is3, A'] ([s2, B']) is parallel to 
[s~, s2]. In the trapezoid ABGs3 

~_s3AB + ~.ABG = ~_A + ~B - ~_A'As3 

> 240 ° -  ~_A"A's3 >- 180 ° By Lemma 6. 

Hence d [ s 3 ,  G]>-d[A, B]. It is also clear that d[G, C']<-d[B, C'] and 

d[ s3, HI = d[ A", D'] < a[ A, D']. 

Let O' denote theintersection of Is3, C'] and [G, H]. By Lemma 8, 

~ G O ' s 3 ~  ~.BOA <- ~-A + 4B  - 150 °= ~ H S 3 G +  ~ s 3 G C ' -  150 °, 

Since P(s3GC'H) contains only three Steiner points, it was proved in subcase 
(iii) that T cannot contain t~'. 

Next we consider the case that e2 meets [s3, G] at I (see Fig. 16). 
Extend Is3, G] to meet [A, D'] at H. Let the third edge at s3 (s4) meet [A, D'] 

([B, C']) at J (K). Let (~' be the part of Q' above [H, G]. Clearly, d[s3, H ] <  
dis3, J] and, by Lemma 6, its corollary, and Lemma 7, d[l, G ] <  d[s4, K]. Let 
(~ be the tree obtained from (~' by substituting Is3, H I  and [/, G] for [s3, J]  
and [s4, K]. Then (~ is shorter than (~'. Furthermore, by Lemmas I and 8, 
p(D', H, G, C') is shorter than (~, hence shorter than Q', a contradiction to the 
fact Q ' e  T. [] 
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