
668 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 3, MARCH 2021

A Decoupled Learning Strategy for Massive Access

Optimization in Cellular IoT Networks

Nan Jiang, Member, IEEE, Yansha Deng , Member, IEEE, Arumugam Nallanathan , Fellow, IEEE,

and Jinhong Yuan , Fellow, IEEE

Abstract— Cellular-based networks are expected to offer con-
nectivity for massive Internet of Things (mIoT) systems. However,
their Random Access CHannel (RACH) procedure suffers from
unreliability, due to the collision from the simultaneous massive
access. Despite that this collision problem has been treated
in existing RACH schemes, these schemes usually organize
IoT devices’ transmission and re-transmission along with fixed
parameters, thus can hardly adapt to time-varying traffic pat-
terns. Without adaptation, the RACH procedure easily suffers
from high access delay, high energy consumption, or even
access unavailability. With the goal of improving the RACH
procedure, this paper targets to optimize the RACH procedure
in real-time by maximizing a long-term hybrid multi-objective
function, which consists of the number of access success devices,
the average energy consumption, and the average access delay.
To do so, we first optimize the long-term objective in the
number of access success devices by using Deep Reinforce-
ment Learning (DRL) algorithms for different RACH schemes,
including Access Class Barring (ACB), Back-Off (BO), and
Distributed Queuing (DQ). The converging capability and effi-
ciency of different DRL algorithms including Policy Gradient
(PG), Actor-Critic (AC), Deep Q-Network (DQN), and Deep
Deterministic Policy Gradient (DDPG) are compared. Inspired by
the results from this comparison, a decoupled learning strategy
is developed to jointly and dynamically adapt the access control
factors of those three access schemes. This decoupled strategy
integrates predicted traffic into the learning process to improve
training efficiency, where a Recurrent Neural Network (RNN)
model is first employed to predict the real-time traffic values
of the network environment, and then multiple DRL agents are

Manuscript received January 30, 2020; revised June 7, 2020; accepted
July 17, 2020. Date of publication August 24, 2020; date of current
version February 17, 2021. This work was supported in part by the
U.K. Engineering and Physical Sciences Research Council (EPSRC) under
Grant EP/R006466/1, in part by the Australian Research Council Discovery
Projects under Grant DP190101363, and in part by the Linkage Project
under Grant LP170101196. This article was presented at the 2020 IEEE
International Conference on Communication. (Corresponding author:

Yansha Deng.)

Nan Jiang was with the School of Electronic Engineering and Com-
puter Science, Queen Mary University of London, London E1 4NS,
U.K. He is now with Telecommunications Research Laboratory, Toshiba
Research Europe Ltd., Bristol BS1 4ND, U.K. (e-mail: nan.jiang@
toshiba-bril.com).

Yansha Deng is with the Department of Engineering, King’s College
London, London WC2R 2LS, U.K. (e-mail: yansha.deng@kcl.ac.uk).

Arumugam Nallanathan is with the School of Electronic Engineering and
Computer Science, Queen Mary University of London, London E1 4NS, U.K.
(e-mail: a.nallanathan@qmul.ac.uk).

Jinhong Yuan is with the School of Electrical Engineering and Telecom-
munications, University of New South Wales, Sydney, NSW 2052, Australia
(e-mail: j.yuan@unsw.edu.au).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2020.3018806

employed to cooperatively configure parameters of each RACH
scheme. Our results demonstrate that the decoupled strategy
remarkably accelerate the training speedy.

Index Terms— RACH, overload control, energy-delay tradeoff,
traffic prediction, deep reinforcement learning.

I. INTRODUCTION

C
ELLULAR-BASED radio access technologies are

required to support massive Internet of Things (mIoT)

ecosystem, due to its high reliability, security, and scal-

ability. In most state-of-the-art IoT systems, including

enhanced Machine-Type Communication (eMTC), Narrow-

Band (NB)-IoT, and 5G New Radio (NR), Random Access

CHannel (RACH) procedures have been adopted to estab-

lish synchronization between IoT devices and Base Stations

(BSs). In these systems, time is organized into frames (a.k.a

transmission time interval), where each frame consisting of

multiple preambles (a.k.a. RACH channels) for IoT devices

to request access. In each frame, IoT devices are activated

by the requests from their upper layer applications that is

unknown to the BS, in other words, these devices try to

connect to the associated BS in an uncoordinated manner

by selecting preambles at random. Due to this uncoordi-

nation, collisions occur when IoT devices select the same

preamble at the same frame, which inevitably increases the

access delay and the energy consumption, or even leads to

service unavailability. To solve this problem, several access

control schemes have been proposed in traditional access

control works, including Access Class Baring (ACB) [2]–[4],

Back-Off (BO) [5], Distributed Queuing (DQ) [6], and etc..

These schemes aim to improve the access success probability

of RACH by intelligently organizing preamble transmission

and re-transmission of IoT devices, but, its efficiency strongly

depends on the incoming traffic of the IoT devices, which is

generally intractable and dynamic over time.

With the goal of improving the access success, majority

of efforts in previous works [2]–[9] have been devoted to

formulate a mathematical model to describe the regularities of

the practical communication environment as well as the traffic

access pattern, so as to explicitly optimize the access control

factor of each RACH scheme. Classical dynamic ACB opti-

mizations have been studied in [2]–[4], [8], [9], where the ACB

factor was configured based on the approximated future back-

log estimation conducted by the methods of drift analysis [2],

Method of Moments (MoM) [3], and Maximum-Likelihood

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1001-7036
https://orcid.org/0000-0001-8337-5884
https://orcid.org/0000-0002-5794-493X

JIANG et al.: DECOUPLED LEARNING STRATEGY FOR MASSIVE ACCESS OPTIMIZATION IN CELLULAR IoT NETWORKS 669

Estimation (MLE) [4], respectively. In [8], a Bayesian traffic

estimator is proposed by using the joint probability distribution

function of the number of successful and collided access

requests within the same frame, and its computational com-

plexity is reduced by simplifying its recursion progress. In [9],

a combination of the extended access barring and the access

class barring is proposed to solve severe congestion that occurs

when massive devices access simultaneously.

In [5], a class-dependent BO scheme has been proposed

to guarantee the acceptable access delay of IoT devices with

different priorities. In [6], a DQ scheme based on tree-splitting

algorithm has been proposed to perfectly solve collisions, but

how to select the tree-splitting factor for access optimization

has not been discussed due to its analytical intractability. More

recently, to fulfill critical IoT applications, the network is

expected to provide not only reliable wireless access, but also

the low access delay and energy consumption. In [10]–[12],

the energy-delay tradeoff in the RACH optimization has

been studied from the perspectives of optimized extended

ACB [10], power saving mode [11], and repetition values [12],

respectively. However, due to its mathematical complexity, all

these works balance the energy-delay tradeoff using queuing

frameworks based on a static analytical model by ignoring the

dynamic of the network system.

To deal with more complex communication environment

and practical formulations, Machine Learning (ML), specif-

ically Reinforcement Learning (RL), emerges as a promis-

ing tool to optimize RACH, due to that it solely relies on

the self-learning of the environment interaction, without the

need to derive explicit optimization solutions based on a

complex mathematical model. Recent work [7] optimized the

ACB scheme based on a tabular Q-learning algorithm, but

this tabular method can not be used to solve other access

optimization problems, due to its inefficiency in handling

large state and action space. The most relevant work is

our prior work [13], [14], where we developed a cooperative

DQN algorithm for uplink resource configuration, including

repetition value and RACH opportunities, to optimize the

number of served IoT devices in NB-IoT networks. However,

these learning-based RACH optimizations only focused on

maximizing the number of access success devices at the BS

side, whereas ignored the delay and energy consideration at

the user side. Knowing the importance of the energy-delay

tradeoff for critical IoTs [10]–[12], there is a need for an

dynamically optimized RACH satisfying the access, energy,

and delay requirements simultaneously in order to support

massive access with delay and energy consideration in indus-

trial IoT scenario.

To solve this problem, in this paper, we aim to develop

a novel learning strategy to efficiently optimize the hybrid

performance metric, taking into account the number of success

accesses, the energy consumption of IoT devices, and the

access delay of IoT devices for three main access control

schemes. Our main contributions can be summarized as

follows:
• To effectively optimize the existing RACH schemes,

we first propose four DRL algorithms, including Pol-

icy Gradient (PG), Actor-Critic (AC), Deep Q-Network

(DQN), and Deep Deterministic Policy Gradients

(DDPG), where the PG, AC, and DQN target to optimize

the BO and the DQ schemes with discrete action space,

and the DDPG aims at optimizing the ACB scheme with

continuous action space. All the DRL algorithms leverage

the Recurrent Nerual Network (RNN) model, specifically,

the Gated Recurrent Unite (GRU) architecture, to approx-

imate their value function/policy. RACH schemes can

be fairly compared, as they are efficiently optimized by

using the similar DRL agents. Our results show that

our proposed DRL-based RACH schemes significantly

outperform conventional heuristic schemes in terms of the

number of success accesses. The results also demonstrate

that the DRL-based ACB scheme always outperforms the

DRL-based BO, and DQ schemes in terms of the number

of success accesses, but consumes much more energy in

transceiving control signaling.

• In order to efficiently train DRL agents, we innovatively

integrate domain knowledge from the communication,

that is “the historical and present traffic statistics in

the network are directly correlated with the future per-

formance”, into learning agents. To do so, we propose

a novel decoupled learning strategy, where an RNN

predictor is first employed to predict traffic statistics,

and then several DRL agents are employed in parallel

to configure RACH parameters by using those predicted

traffic statistics as a belief state. The proposed learning

strategy is able to be updated in an online manner, thus it

can be pre-trained in the simulation environment during

implementation, and then be fine-tuned in a practical

environment. The proposed decoupled learning strategy

can achieve better performance than the conventional

DRL methods, and uses much less training time.

• We present a novel method to balance the energy-delay

tradeoff in an online manner, where each RACH scheme

is jointly optimized in terms of a hybrid Key Performance

Indicators (KPIs) objective, including the number of

access success, the energy consumption, and the access

delay. The importance of each KPI can be adapted by

configuring their weights, so as to fulfil different perfor-

mance requirements of the network. To handle numerous

action space conducted by multiple RACH schemes,

we leverage the cooperative multi-agent DRL, where

each DRL agent independently handles a single scheme,

and shares their historical action selections to enable

cooperation. The proposed hybrid scheme outperforms

other single schemes in most combinations of KPIs.

• Finally, our proposed decoupled learning strategy is

applied to optimize the number of served IoT devices

in a practical case, namely, multi-group NB-IoT network.

The simulation environment takes into account the RACH

as well as the uplink channel resource scheduling based

on the 3GPP reports [15], [16]. The result shown that

our proposed decoupled learning strategy speeds up the

training about 10 times than the conventional schemes in

this case.

The rest of the paper is organized as follows. Section II

formulates the problem and illustrates the system model.

670 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 3, MARCH 2021

Section III provides preliminary and DRL-based single RACH

scheme optimization. Section IV presents the hybrid scheme

optimization and the decoupled learning strategy. Finally,

Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a cellular-based mIoT network system con-

sisting of an arbitrary number of IoT devices and a single

BS, where they are in-synchronized, thus are unaware of the

status of each other. For each IoT device, there is an random

process for the generation of uplink data packets, which is

unknown to the BS. We consider the time is divided into

frames, and the packets inter-arrival processes are independent

and identically distributed over the time frames, which are

Markovian as defined in [15], [17].

A. Problem Formulation

We model the grant-based RACH procedure, where every

IoT device has only two possible states,1 either inactive or

active, while an IoT device with uplink data packets to be

transmitted is in the latter case. Once active, an IoT device

executes the RACH procedure in order to establish the syn-

chronization with the BS. Without loss of generality, we focus

on the RACH, and assume that a packet would always be

completely transmitted if the IoT device succeeds in access.

This assumption simplifies the study of RACH, which was

specified in 3GPP report [17], and was considered in most

prior works [2]–[4], [14], [18]–[20].

Briefly speaking, RACH is based on a framed-ALOHA

principle, where an IoT device is allowed to transmit a

randomly selected preamble during the first step of its pro-

cedure (details to be discussed in Sec. II-B). During this

transmission, the RACH can fail if a collision occurs among

two or more IoT devices selecting the same preamble. Once

collided, IoT devices requires to retransmit in the following

frames, which increases the backlog of the whole network.

When massive collisions occur simultaneously, the network

can be overloaded, which results in growing access latency

and energy consumption. To tackle this challenge, one can

allocate the transmission and re-transmission of these IoT

devices using access control schemes to spread the traffic

loads.

In this paper, we focus on the most common access control

schemes, which are ACB, BO, and DQ schemes. A BS can

adapt the intensity of these schemes in an online manner,

each with a set of control factors, including fACB, fBO,

and {fTD, fTB}, respectively. Briefly speaking, increasing any

control factor increases the intensity of this scheme. Given

an arbitrary traffic scenario, a proper choice of the control

factors can postpone transmissions into suitable future frames

1The grant-based RACH procedure separates random access and
grant-based data transmission, where packets in an IoT device will be
completely transmitted if it access succeeds (assuming there are enough uplink
channel resource). The grant-free access integrates access preamble and data
into one sequence, where multiple sequences might be accumulated in the
queue of an IoT device waiting for transmission. The proposed model in
this paper can also support the study of grant-free access, with the minor
modification by considering multiple packets queuing.

to release the network overload, while overusing these schemes

can increase the waste of channel resources, the access delay,

and the energy consumption. To enable efficient control, a BS

may encompass mixtures of these schemes [21], as each is

with different capability in overload control as well as different

energy consumption during execution. We roughly summarize

that the overload control capabilities of these schemes follows

ACB>DQ>BO, while, in opposite, their energy consumptions

follow BO>DQ>ACB. The key challenge is to optimally

choose control factors of the BO, the DQ, and the ACB

schemes so as to balance their utilization that provides suffi-

cient overload control as well as consumes as little as energy

consumption.

In this work, we aim to tackle the problem of optimizing the

access control factors defined as At = {f t
ACB, f t

BO, f t
TD, f t

TB}
in an online manner for every frames. At the beginning of

each frame t, the decision is made by the BS according to

the transmission receptions U t′ for all prior frames t′ =
1, . . . , t − 1, which consists of the following variables: the

number of the access success devices V t′

s , the number of the

collided preambles V t′

c , the number of idle preambles V t′

i ,

the average energy consumption of each success device V t′

e ,

and the average access delay of each success device V t′

d .

Without loss of generality, we assume that each device j

would report their energy consumption Ej and access delay

Dj to the BS if their access succeeded. The access delay

Dj of device j is normalized by counting the number of

frames that this device was used for RACH, while the energy

consumption Ej summarizes the energy that the device j was

used for receiving system information and executing RACH

(to be detailed in Sec. II-B.3). Note that the observation in

each frame t includes all histories of such measurements and

past actions, which is denoted as Ht = {O1, O2, . . . , Ot−1},

each with Ot−1 = {U t−1, At−1}.

At each frame t, the BS aims at maximizing a long-term

objective Rt (reward) related to the average access successes

V t
s , the average energy consumption V t

e , and the average

access delay V t
d . The optimization relies on the selection of

parameters in At according to the current historical observa-

tion Ot with respect to the stochastic policy π. This optimiza-

tion problem can be formulated as:

(P1) : max
π(At|Ot)

∞
∑

k=t

γk−tRk, (1)

where γ ∈ [0, 1) is the discount factor for the performance

accrued in future frames, and the objective function Rt is

formulated as

Rt = xsR
t
s + xdR

t
d + xeR

t
e. (2)

In (2), xs, xd and xe are the weights of the success accesses

reward component Rt
s, the access delay reward component Rt

d,

and the energy consumption reward component Rt
e, respec-

tively. Note that these three sub rewards are obtained by

normalizing the observation of the average success accesses

V t
s , the average access delay reward V t

d of each succeeded

device, and the average energy consumption V t
e of each

succeeded device, respectively. The using of weighted rewards

JIANG et al.: DECOUPLED LEARNING STRATEGY FOR MASSIVE ACCESS OPTIMIZATION IN CELLULAR IoT NETWORKS 671

TABLE I

NOTATION TABLE

are inspired by the study of multi-criteria RL [22], [23], which

targets to solve the problem that typically without available

trade-offs among different objectives a priori. The derivation

of these three sub rewards will be detailed in Sec. IV-A.

It it noted that the energy-delay optimization for access

control has never been studied in an online manner. This is

due to that, before synchronization, the access delay or the

energy consumption of an IoT device is hardly known from the

perspective of a BS. To solve it, the BS can collect the reports

from those access success IoT devices. But, these reports are

generally outdated, due to that they can only be gathered after

the delay occurs (i.e., the access success IoT devices may

already suffered a long delay or large energy consumption).

As the dynamics of the system is Markovian over the frames,

using these outdated information to maximize the future per-

formance can be extremely intractable. Thus, the optimization

task given in (1) becomes a generally intractable Partially

Observable Markov Decision Process (POMDP).

Formally, this POMDP corresponds to a tuple

(S,P ,A,O,Q,R). In details, S is a set of actual

environment’s states with variables of transmission receptions

{Vs, Vc, Vi, Ve, Vd} and traffic statistics; P is a set of

transaction probabilities between any two successive

states; A is a set of actions, including all combinations

of RACH control factors {fACB, fBO, fTD, fTB}; O is a

set of observations only with variables of transmission

receptions {Vs, Vc, Vi, Ve, Vd}; Q is a set of observation

probabilities describe the relationships between actions and

observations; and R is a set of rewards given in Eq. (2)

related to success accesses, energy consumption, and access

delay. The partial observation refers to the fact that a

BS cannot fully observe actual states in S, while it can

only access variables of transmission receptions without

traffic statistics. The transition between any two successive

states relies on the random collision process as well as

the traffic generation process. Since neither processes can

be observed, even if one knew the exact traffic statistics,

calculating the set of transaction probabilities P and the set

of observation probabilities Q would be generally intractable.

In the following, approximate solutions will be discussed in

Sections III and IV.

B. System Model

In our system model, we consider all frames have the

same length, and each frame contains F available preambles.

At the beginning of each frame, every IoT device can be acti-

vated according to a packets inter-arrival process. If activated,

the IoT device receives the broadcast information from the

BS, including the factors {f t
ACB, f t

BO, f t
TD, f t

TB}. According to

the received information, the IoT device will determine how

it executes RACH in the following frames. In the following,

we describe the three main parts of system model: inter-arrival

traffics, RACH procedure, and RACH schemes.

1) Inter-Arrival Traffics: Considering a bursty traffic sce-

nario, where massive IoT devices are recovered due to an

emergency event, e.g., earthquake alarm and fire alarms,

and try to establish synchronization with the BS. Every IoT

device would be activated at any time τ , according to a time

limited Beta probability density function p(τ) given as [17,

Section 6.1.1]

p(τ) =
τα−1(T − τ)β−1

T α+β−2Beta(α, β)
, (3)

where T is the total time of the bursty traffic, and Beta(α, β)
is the Beta function with the constant parameters α and β [24].

Considering that the newly activated devices at frame t only

come from those who received an packet within the interval

between with the last RACH period (τ t−1, τ t), the packet

inter-arrival rate measured in each RACH period at each IoT

device is hence described by

µt =

∫ τ t

τ t−1

p(τ)dτ. (4)

2) Random Access Schemes: Once activated at frame t,

each IoT device synchronizes to the broadcast timing and

receives the broadcast from the BS. The received sys-

tem information are used to determine their RACH frame

672 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 3, MARCH 2021

Fig. 1. An example of the 3-ary (ft
TB = 3) DQ scheme with depth ft

TD = 3.

according to the mechanism of the RACH schemes, which

includes the information of the RACH access control factors

{f t
ACB, f t

TD, f t
TB, f t

BO}. These factors are updated at each frame

in order to adaptively alleviate the collisions during RACH.

Each IoT device should schedule its RACH transmission inter-

vals according to each RACH scheme based on these factors.

According to a prior definition, a BS may solely deploy any

single access control scheme or jointly deploy mixtures of

these schemes based on its capability and requirements in

overload control. Every solely executed RACH scheme as well

as their mixtures are detailed in the following:

• ACB scheme: The ACB factor f t
ACB is a probability value

representing the possibility of an IoT device to execute

RACH in the current frame t. At the beginning of a frame,

each activated IoT device randomly generate a number

q between 0 and 1, and attempts to RACH only when

q ≤ f t
ACB, otherwise, the IoT device wait in this frame,

and repeats the ACB check in the next frame.

• DQ scheme: One IoT device executes DQ scheme when

it fails in an initial RACH attempt. After that, it will exe-

cute re-transmission according to a f t
TB-ary splitting-tree

algorithm with finite f t
TD attempts. The degree f t

TB refers

to the number of branches that emanates from a tree node,

while the depth f t
TD refers to the number of branches

between a tree node and the root node. Thoroughly, each

branch of the tree contains the same number of the pream-

bles, where the total preambles are sequentially indexed

{1, 2, · · · , F}, and equally divided into f t
TB branches. For

instance, assuming a 2-ary tree with F = 54 preambles,

the first preamble group contains preambles with indexes

from 1 to 28, and the second preamble group contains

the others. The IoT devices uniformly distributed among

these preamble groups, due to the preamble random

selection process. Based on the preamble group IDentifi-

cation (ID), the collided IoT devices will be allocated

to retransmit preamble in a specific future frame. For

IoT device j, its retransmission frame is obtained by

calculating a logical Collision Resolution Queue (CRQ)

i, which includes two parameters: 1) the total length

of the CRQ (f t
TB)i (number of nodes in depth i), and

2) the position of this IoT device µi
j in this CRQ. The

IoT device j can only transmit preamble at frame µi
j

during the CRQ i. Denoting the prior preamble group

IDs of jth IoT device as {k1
j , k2

j , · · · , ki−1
j }, the position

is calculated as

µi
j = ki−1

j +
i−2
∑

k=1

(f t
TB)i−1−k(kk

j − 1), (5)

where ki−1
j denotes the position index within a branch in

depth i, and
∑i−2

k=1(f
t
TB)i−1−k(kk

j − 1) denotes the num-

ber of unavailable frames before this branch in depth i.

Once the ith CRQ finished, each collided IoT device

would calculate their retransmission frame in the next

CRQ i + 1 based on (5), until reaching the maximum

depth f t
TD. For better understanding, an example of 3-ary

splitting-tree is given in Fig. 1, where an IoT device

first selects the 3rd preamble group (k1
j = 3) in the 1st

CRQ for transmission, and then selects the 1st preamble

group (k2
j = 1) in 3rd position (i.e., µ2

j = 3, frame

4) of the 2nd CRQ for transmission. If unsuccessful,

it reattempts RACH in the 7th position (i.e., µ3
j = 7,

frame 11) of the 3rd CRQ, where it transmits a preamble

randomly selected from the 2nd preamble group. If the

last transmission in a tree still fails, one IoT device

initializes a new tree for further retransmissions.

• BO scheme: One IoT device switches to a BO mode

when it fails in an RACH attempt. To do so, this IoT

device postpones its following retransmission attempts

for a period, whose length is uniformly selected from

[2fBO−1, 2fBO] frames.2 After BO, the IoT device would

listen to broadcasting, and re-attempt RACH according

to the newly received system information.

• Hybrid scheme: For the case of the hybrid scheme, one

IoT device organizes its transmission and retransmissions

of RACH requests according to a joint principle including

ACB, BO, and DQ schemes. In the beginning, the IoT

23GPP also supports back-off period within [0, 2fBO] as shown in [16],
while its performance would be worse than the proposed one if the RL-based
optimization was used.

JIANG et al.: DECOUPLED LEARNING STRATEGY FOR MASSIVE ACCESS OPTIMIZATION IN CELLULAR IoT NETWORKS 673

device executes an initialized RACH attempt once it

passes an ACB check. Then, if this RACH attempt

fails, the IoT device executes retransmissions according

to the principle of spitting-tree during the following

f t
TD attempts. After these re-attempts, the unsuccessful

IoT device would switch to a BO mode. Finally, after

BO, the IoT device would listen to broadcasting, and

re-start RACH from the beginning according to the newly

received system information.

For the ACB scheme, the BS is required to broadcast system

information to all active devices in each frame. It can lead to

relatively higher energy consumption, due to that if an IoT

device’s access request was denied, the energy it consumed

to receive system information in this frame would be wasted.

Conversely, the other two schemes can save more receiving

energy, due to the direct allocation of re-transmissions frames

for each IoT device. However, the ACB scheme will accurately

control the traffic volume in each frame, thus is more capable

in achieving a lower average access delay, whereas the DQ

and BO schemes may allocate re-transmissions into a future

frame that is heavily overloaded, and potentially lead to

more collisions and higher access delay. Through tackling the

problem in (1), the access delay and energy consumption can

be balanced without much sacrifice in the throughput.

3) RACH Procedure: Each IoT device determines their

RACH frame according to the received system information

and the mechanism of the RACH schemes. During their

RACH frame, one should execute a four-step RACH procedure

immediately. From the perspective of an IoT device, the RACH

procedure includes: 1) the IoT device transmits a randomly

selected preamble (Message 1, a.k.a., Msg 1) from a pool

with F available preambles; 2) the IoT device waits to receive

a Random Access Response (RAR) message (Msg 2) within

an RAR window; 3) if Msg 2 was successfully received,

the IoT device would send the Radio Resouce Control (RRC)

connection request (Msg 3) to the associated BS; 4) finally,

the IoT device receives RRC connection confirmed message

(Msg 4) from the BS.

The RACH procedure may fail due to the collision, which

occurs when two or more IoT devices selecting the same

preamble in step 1. This collision comes from the fact that the

BS cannot decode the Msg 3 of RACH, due to the overlapped

transmissions from collided devices using the same channel

at the same time [21]. To focus our study on the RACH

schemes, we assume that all preambles can be transmitted

without errors conducted by the effects of the physical radio

channel, and the BS cannot decode any collided signals by

using capture effect, as in prior works [2]–[4], [17]. Based

on the RACH model in 3GPP [17], we assume the four-step

RACH procedure, either in success or in collision, can finish

within one frame (similar to [2]–[4], [11], [25]). Thus, if a

preamble is collided, the related IoT devices can immediately

re-attempt RACH in the next frame.

To investigate the performance of RACH, we consider three

KPIs, including the average throughput Vs, the average access

delay D, and the average energy consumption E. The average

access delay D is averaging the total access delay over the

number of success devices, where the delay is defined as the

number of frames of the IoT device consumed from a newly

packet arrival to the RACH success or fail (i.e., exceeds γmax

RACH attempts). The average energy consumption E is aver-

aging the total energy consumption over the number of success

devices calculated based on the system-level access model

described in [15, Sec. 7]. In details, the energy consumption

of the jth IoT device to successfully access to the network is

Ej = Ej
sy + E

j
RACH, (6)

where E
j
sy and E

j
RACH are the energy consumption of the

jth IoT device in receiving broadcast signal and executing

RACH, respectively. According to [15], E
j
sy and E

j
RACH can

be obtained by calculating the product between their related

average power consumption and working time. Therefore,

Eq. (6) can be converted to

Ej = nj
syTsyPsy + n

j
RACH

(

TMsg1PMsg1 + TMsg2PMsg2

+ TMsg3PMsg3 + TMsg4PMsg4

)

, (7)

where n
j
sy and n

j
RACH are the numbers of frames that the IoT

device j needed to receive broadcast signal and to execute

RACH, respectively. In (7), Tsy, TMsg1, TMsg2, TMsg3, and

TMsg4 are constants, which are the consumed time in receiv-

ing broadcast signal, and in executing each step of RACH,

respectively. Likewise, Psy, PMsg1, PMsg2, PMsg3, and PMsg4

are also constants representing the average power consumption

per time unit for receiving broadcast signal, and for executing

each step of RACH, respectively. The effects of physical

radio channels have already been considered in these constant

factors [15].

III. SINGLE SCHEME OPTIMIZATION VIA

REINFORCEMENT LEARNING

In order to evaluate the capability of RL algorithms, in this

section, we design several RL algorithms to solve problem

(1) with each RACH scheme, to be compared with the

existing conventional heuristic methods. These RL algorithms

are capable in optimizing either a sole or a joint objective,

by adapting the weight of each reward component. In the

following, we first introduce the preliminary, including the

perfect control strategy of the ACB scheme and the state-

of-the-arts MLE-based ACB scheme. We then provide four

state-of-the-arts RL algorithms, which are PG Reinforce and

AC based on on-policy principle, and DQN and DDPG based

on off-policy principle.

A. Preliminary

Since the long-term hybrid target defined in Eq. (1) is

complex, tackling this problem in an exact manner would be

intractable. Classically, most prior works [2]–[9] simply opti-

mizing the number of access success devices, without taking

into account the energy consumption and the access delay.

Only optimizing the success access, problem (1) transfers to

max
π(At|Ot)

∞
∑

k=t

γk−tVs
k, (8)

674 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 3, MARCH 2021

or the even simpler one optimizing only the current frame

max
π(At|Ot)

Vs
t. (9)

The former one (8) has been considered in RL-based ACB

scheme optimization as [7], while the latter simplified one

(9) has been considered in most RACH optimization using

conventional heuristic methods as [2]–[6], [8].

Previous classical works [2]–[4], [7]–[9] have devoted

majority efforts to study ACB scheme, due to its advantages in

high scalability and reliability. Note that there exist no conven-

tional method that can optimize the number of access success

devices, the average energy consumption, and the average

access delay simultaneously. In the following, we introduce

the conventional heuristic methods to optimize ACB scheme.

Generally, the process of optimization is divided into two

sub-tasks, which are traffic prediction and ACB factor con-

figuration. The traffic statistic N̂ t is estimated based on the

last observation U t−1 = {V t−1
s , V t−1

c , V t−1
i } obtained using

MoM [3], [26], [27], MLE [4], drift analysis [2], or Bayesian

method [8]. Then, according to the estimated backlog N̂ t,

the optimized ACB factor f t
ACB for the next frame t can be

calculated by using f t
ACB = min(1, F

N̂t
) (proof can be found in

[3, Sec. IV.A]), where F is the number of available preambles.

Next, we first review the current state-of-the-art conventional

traffic estimator of [4], which is based on MLE, and then

describe the ideal ACB control scheme with known traffic,

namely, Genie-aided ACB.

1) Maximum Likelihood Estimator (MLE): In [4], the traffic

prediction problem is cast as a Bayesian probability inference

problem, which calculates the probability for each possible

traffic statistics at every frame t based on the last observation

U t−1 = {V t−1
s , V t−1

c , V t−1
i }. Due to the intractability of the

given problem, an ideal assumption3 that the current traffic

load at frame t− 1 (occurred) equals to the traffic load at the

frame t (requires to be predicted) is made. However, even

with this ideal assumption, the optimal Bayes estimator is

still intractable [4]. To solve it, [4] presented the maximum

likelihood of the Bayes estimator with respect to each traffic

load value n under each possible observation u, which is given

as

N̂ t
ML = N̂ t−1

ML = arg max
n∈{0,1,...,Nmax}

P{U t−1|N t−1 = n}, (10)

where Nmax is an upper bound on the traffic load statistics

to enable implementation. Note that each probability value in

P{U t−1|N t−1 = n} produces the likelihood of a value n with

an observation u.

To solve problem (10), it is assumed that, at each frame t,

each activated IoT device sequentially and independently

chooses their preamble one after another, rather than choos-

ing simultaneously in practice. This assumption does not

change the uniformly selection principle of the random

access, while the sequential selection process formulates

a Markov chain to facilitate the calculation of likelihood

P{U t−1|N t−1 = n}. Under this assumption, the vector of

3Note that this assumption is necessary to enable tractability of traffic predic-
tion in most existing conventional heuristic traffic prediction methods [2]–[4].

likelihoods P{Ot|N t = n} for every n can be obtained by

calculating the steady-state probability vector of the formu-

lated Markov chain. In the run-time, the traffic statistics can

be obtained by selecting the one with the maximal likelihood

P{U t−1|N t−1 = n} under the specific observation U t−1. The

details on the numerical procedure of MLE traffic prediction

can be found in [4].

2) Genie-Aided ACB: We consider an ideal upper bound

that the actual number of RACH requesting IoT devices N t

is available at the BS, namely, Genie-Aided ACB scheme.

The BS optimizes the ACB factor f t
ACB according to the real

backlog N t.

B. Reinforcement Learning

DRL is one of the most capable methods to optimally

solve complex POMDP problems, due to the reliance on

the deep neural networks as one of the most impressive

non-linear approximation functions [28]. The related DRL

algorithms have been widely used in the dynamic optimization

for wireless communication systems, e.g., [13], [14]. However,

despite that these algorithms are generally model-free, a direct

application of these general DRL approaches can not facilitate

the optimal solution in all sorts of dynamic optimization

problems wireless systems. For instance, a discrete-action

DRL algorithm (e.g., DQN [29]) may not be the best option

to optimize the ACB scheme, due to its requirements in

non-discrete control of the ACB factor (f t
ACB). Therefore,

we compare the state-of-the-arts DRL approaches to evaluate

their capability in optimizing the number of access success

devices of each RACH scheme.

We now introduce the general framework of DRL-based

approaches to tackle problem (1). To optimize the number

of success devices for a RACH scheme, we consider a DRL

agent deployed at the BS, which learns to choose appropriate

actions progressively by exploring the environment. One DRL

agent is responsible for an output variable At (action), which

represents the selected network parameter at the frame t. For

instance, considering the ACB scheme, the output action is

the ACB factor f t
ACB for the frame t. The selection of variable

At depends on the value Q(St, At) or directly the policy π

according to the observed state St. By using a delayed reward

Rt = V t+1
s , the DRL agent updates its policy π of action At,

in an online manner, to progressively find the optimal solution

of the RACH scheme for every state St.

Unlike the conventional methods presented in Sec. III-A,

which only considers the single last observation Ot−1, the state

variable St of one DRL agent at frame t consists of informa-

tion in previous To frames St = [Ot−To , Ot−To+1, . . . , Ot−1].
Including this historical information is due to that they can

be useful to capture time-correlated features of the traffic

generation mechanism and the RACH schemes. For instance,

assuming the history length To is long enough, one BS may

recognize the wake-up duration of the periodical activated IoT

devices.

To recognize patterns in temporal data, we employ an RNN,

specifically a GRU network, to approximate the value function

Q(St, At; θ) or the policy π(St|At; θ) of each DRL algorithm,

JIANG et al.: DECOUPLED LEARNING STRATEGY FOR MASSIVE ACCESS OPTIMIZATION IN CELLULAR IoT NETWORKS 675

where θ represents the weights matrix of the GRU RNN.

A many-to-one stateless4 implementation of GRU RNN is

adopted, where the historical observations in Ot is sequentially

fed into the network, and only the RNN with the last input

Ot−1 is connected to the output layer for the further RACH

parameter generation at frame t (to be detailed in follows).

During the implementation, note that the memory of GRU

RNN needs to be re-initialized at each frame, and the historical

length To should generally be chosen according to the expected

memory for time-correlation recognition.

The input of each DRL agent is the variables in state St; the

intermediate layers are the introduced GRU RNN; while the

output layer depends on different DRL algorithms. According

to the unique training principle of each DRL algorithm,

a loss function L(θt) can be calculated to update the value

function approximator Q(St, At; θ) (value-based algorithm) or

the policy approximator π(At|St; θ) (policy-based algorithm).

As the GRU RNN is used as the intermediate layers, we adopt

standard Stochastic Gradient Descent (SGD) implemented via

BackPropagation Through Time (BPTT) [31] for updating as

θ
t+1 = θ

t − λ∇L(θt), (11)

where λ is the learning rate, and the loss function L(θt)
for each DRL algorithms will be detailed as follows. Here,

we consider four DRL algorithms, including PG, AC, DQN,

and DDPG. The former two are basic on-policy algorithms,

while the latter two are state-of-the-arts off-policy algorithms.

The learning principle of these four algorithms are described

as follows.

1) PG Reinforce: In this algorithm, the DRL agent learns a

parameterized policy π to select actions without consulting

a value function. The output layer consists of a Softmax

non-linearity with |A| number of probability factors, where

|A| represents the size of action space. The probability P{at =
At|St, θt

PG} of each possible action a is selected under the

state St, which is parameterized by the weights θ
t
PG at frame

t. Recall that θ
t
PG consists of both the GRU RNN parameters

and the weights of the softmax layer. To train the policy

π(At|St; θPG) (following (7)), the gradient of the loss function

L(θt
PG) is given as

∇L(θt
PG) = ESi,Ai,Gi

[

γiGi∇θlnπ(Ai|Si; θPG)
]

, (12)

where the expectation is taken with respect to a minibatch for

i ∈ {t−Mr, . . . , t+1} with size Mr, Gt =
∑∞

k=0 γkRt+k+1

is the return at frame t, and γ is the discount rate. The imple-

mentation of PG Reinforce algorithm for RACH optimization

is shown in Algorithm 1.

2) AC: In this algorithm, a parameterized policy

π(At|St; θAC) is learned to select actions called actor,

and a state-value function v(St; wAC) is learned to evaluate

the action called critic. The actor follows the setting of PG

Reinforce, where the output layer includes |A| number of

Softmax units to generate policy probabilities. The critic is a

state-value function with the output of one linear unit. The

4Different from the stateless implementation, the stateful RNN does not
need to re-initialize the memory at each training step, while its training
progress is more resource-hungry and less stable [30].

Algorithm 1 On-Policy PG Reinforce/AC Algorithms

input : Action space |A|, Operation Iteration I .

1 Algorithm hyperparameters: learning rate λ ∈ (0, 1], discount
rate γ ∈ [0, 1) ;

2 Initialization of the parameterized policy π(s|a;θ) and its
state-value function v(s; w) if needed;

3 for Iteration ← 1 to I do

4 Initialization of S0 by executing a random action;
5 for t ← 0 to T − 1 do

6 Select action At according to the current policy

π(a|St; θ);
7 The BS broadcasts the selected action At, and

backlogged IoT devices execute RACH;
8 The BS observes St+1, and calculates the related

Rt = V t
s ;

9 Restore the tuple St, At, Rt;
10 end
11 Obtain the trajectory of an episode

S0, A0, R0, S1, · · · , ST−1, AT−1, RT ;
12 Calculate return Gt for every frame t;
13 PG: Calculate the loss

∇LPG(θt
PG) using Eq. (12);

AC: Calculate the critic loss
∇LAC(wt

AC) and actor loss
∇LAC(θt

AC) using Eq. (13)
and Eq. (14), respectively;

14 Update the policy parameters θ and state-value function w

(AC algorithm).
15 end

gradient of the loss function for training the critic L(wt
AC) is

given as

∇L(wt
AC)=ESi,Gi

[

γt(Gi−v(Si; wAC))∇wAC
v(Si; wAC)

]

,

(13)

and the gradient of the loss function for training the actor

L(θt) is given as

∇L(θt
AC) = ESi,Ai,Gi

[

γi(Gi

− v(Si; wAC))∇θAC
lnπ(Ai|Si; θAC)

]

. (14)

The implementation of AC algorithm for RACH optimization

is shown in Algorithm 1.

3) DQN: In this algorithm, the DQN agent learns a

state-action value function approximator Q(St, At; θDQN) to

select the action, where the output layer is composed of linear

units. The weights matrix θDQN is updated in a fully online

manner, which occurs along each frame, so as to avoid the

complexities of eligibility traces. Applying a double DQN

training principle [32], the gradient of loss function L(θt
DQN)

used to train the value function approximator Q(St, At; θDQN)
is given as

∇L(θt
DQN) = ESi,Ai,Ri+1,Si+1

[(

Ri+1

+ γ max
a∈A

Q(Si+1, a; θ̄t
DQN)

−Q(Si, Ai; θt
DQN)

)

∇θDQN
Q(Si, Ai; θt

DQN)
]

,

(15)

where θ̄
t
DQN is a so-called target value function. Note that

θ̄
t
DQN is initialized using the same network structure as the

676 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 3, MARCH 2021

primary DQN θDQN, which is only used to estimate the future

value of the Q-function. The parameter of the target network

θ̄
t
DQN is partially copied from the primary value θDQN at each

frame (implementation details are shown in Algorithm 2). The

hybrid use of the primary DQN and its target network forms

the so-called double DQN. Note that, different from the PG

and the AC algorithms given in Sec. III-B.1 and Sec. III-B.2,

the expectation here is taken with respect to a random mini-

batch. This minibatch is uniformly picked in random from

a finite replay memory with size M . The implementation of

DQN algorithm for RACH optimization will be detailed in

Algorithm 2.

4) DDPG: This algorithm adapts the ideas of DQN to the

continuous action selection. Rather than discrete action control

in the BO and the DQ schemes, the DDPG can be applied

for continuous action control in ACB access scheme. Similar

to AC algorithm, DDPG leverage an actor π(St; θDDPG) to

learn action selection, while the critic uses a state-action value

function v(St, At; wDDPG) to evaluate the action. The input of

critic includes both the current state St as well as the current

action At (obtained by the actor π(St; θDDPG)), and the output

is a linear unit. In terms of the action selection, the actor

deterministically maps a state to a specific action according to

the current policy π(St; θDDPG). To do so, the output of actor

uses a Sigmoid non-linearity unit, which generates continuous

numbers within (0, 1). The Sigmoid output perfectly matches

the range of the ACB factor (0, 1], thus it can be directly used

as the ACB factor at each frame t. During the training, critic

L(wt
DDPG) is updated by minimizing the loss using

∇L(wt
DDPG)

= ESi,Ai,Ri+1,Si+1

[

(

Ri+1

+ γv(Si+1, π̄(Si; θ̄DDPG); w̄t
DDPG)

− v(Si, Ai; wt
DDPG)

)

∇wDDPG
v(Si, Ai; wt

DDPG)
]

, (16)

where w̄DDPG and θ̄DDPG are the weights of the target critic and

actor, respectively. Similar to DQN, these two target networks

are updated by partially copying from the primary two. To train

the actor L(θt), the gradient of the loss function is given as

∇L(θt
DDPG) = ESi,Ai,Ri+1,Si+1

[

∇av(Si, a; wt
DDPG)|a=π(Si)

∇θDDPG
π(Si; θDDPG)

]

. (17)

In (16) and (17), the expectation is also taken using a random

minibatch. The implementation of DDPG algorithm for RACH

optimization is shown in Algorithm 2.

C. Numerical Results and Evaluation

In this subsection, we evaluate the number of access success

devices of the ACB, BO, and DQ schemes using our pro-

posed four DRL algorithms above via numerical experiments.

We adopt the standard network parameters following 3GPP

technical report for MTC systems [15], [17], where the number

of preambles F = 54, retransmission constraint γmax =
10, and each frame contains 640 milliseconds (ms). Unless

otherwise stated, we mostly assume the presence of devices

N = 400 generating a packet at random according to the

Algorithm 2 Off-Policy DQN/DDPG Algorithms

input : Action space A, Operation Iteration I .

1 Algorithm hyperparameters: learning rate λ ∈ (0, 1], discount
rate γ ∈ [0, 1) ;

2 Initialization of the action-state value function Q(s, a; θDQN)
for DQN, or the parameterized actor π(s; θDDPG) and critic
v(s, a;wDDPG) for DDPG;

3 for Iteration ← 1 to I do

4 Initialization of S0 by executing a random action;
5 for t ← 0 to T − 1 do

6 DQN: if pt
ǫ < ǫ then select a

random action At from A;

else Select At =
argmax

a∈A

Q(St, a;θDQN);

DDPG: Select At =
π(St; θDDPG) + N t;

7 BS broadcasts action At, and backlogged IoT devices
execute RACH;

8 BS observes St+1 and calculates Rt = V t+1
s ;

9 Storing transition (St, At, Rt, St+1) in replay memory
M ;

10 Sampling random minibatch of transitions

(Sj , Aj , Rj , Sj+1) from replay memory M ;
11 DQN: Calculate the loss of

Q-function ∇L(θt
DQN)

using Eq. (15);
DDPG: Calculate the loss
of critic ∇LDDPG(wt

DDPG) and
actor ∇LDDPG(θt

DDPG) using
Eq. (16) and Eq. (17), respec-
tively;

12 Perform a gradient descent for each primary network;
13 Update the target networks using:

w̄
t ← σw

t + (1 − σ)w̄t, and θ̄
t ← σθ

t + (1 − σ)θ̄t.
14 end
15 end

time limited Beta profile with parameters (α, β) = (3, 4) with

period T = 20. An example of the resulting average number

of activated devices of this Beta profile is shown as orange

dashed line in Fig. 2. For different DRL algorithms, we use the

same hyperparameters for the training as well as the testing

for fair comparison. Each DRL agent is with three layers,

where the first two layers are each with 128 GRU units, and

the last layer is with 128 Rectifier Linear Units (ReLUs). The

other hyperparameters can be found in Table II. The action of

ACB f t
ACB is a factor selected from (0, 1], where the discrete

model selects factor with the minimum pace of 0.05, and the

continuous one can select any value without any limitation.

The BO and DQ schemes can only be controlled in a discrete

manner, where the action of BO f t
BO is an integer selected

from [0, 8], and the DQ scheme can use any tree smaller than

{f t
TD, f t

TB} = {3, 6}.

We first illustrate the operation of the proposed traffic

and ACB scheme under the time limited Beta traffic profile

with period T = 20 in Fig. 2(a) and period T = 10
in Fig. 2(b). Fig. 2 plots the average number of IoT devices

under new arrival packets in each frame, and the average

number of the access success devices Vs per frame for the

baseline scheme, the fixed-factor ACB scheme, as well as the

DDPG-based ACB scheme, respectively. The baseline refers

JIANG et al.: DECOUPLED LEARNING STRATEGY FOR MASSIVE ACCESS OPTIMIZATION IN CELLULAR IoT NETWORKS 677

TABLE II

RL HYPERPARAMETERS

Fig. 2. The average number of successfully accessed IoT devices Vs per
frame over 1000 epochs, where (a) uses the time limited Beta traffic profile
with period T = 20, and (b) uses the similar traffic profile with period
T = 10. The dashed line represents the average number of IoT devices with
new arrival packets per frame.

to transmissions without any access control, the fixed ACB

scheme uses the fixed factor f t
ACB = 0.5, and the DDPG-based

ACB scheme relies on the DDPG algorithm to adaptively

assign the ACB factor in each frame as given in Sec. III-B.2.

We first observe that, with the smaller traffic arrival period,

the new arrival packets in Fig. 2(b) is much more intense

than that in Fig. 2(a). In Fig. 2(a), it is observed that the

access performance of the baseline scheme (i.e., without ACB

control) reduces dramatically after the new arrival traffic hits

the peak. This is due to that the number of access requests

during this period has been accumulated to the maximum,

which increases collisions. In contrary, the access performance

of fixed-factor ACB schemes remain at around 20 during

that period, but is worse than that of the baseline scheme

Fig. 3. Average number of successfully accessed IoT devices per frame as
a function of the frames in the online training phase.

when the traffic is small. This is because the access baring

mechanism reduces collisions during the peak traffic period,

but also decreases the preamble utilization during the non-peak

traffic period. Different from Fig. 2(a), the access performance

in Fig. 2(b) always follow ACB-DDPG>ACB-fix>Baseline,

due to its much heavier incoming traffic. It can be seen that,

in both figures, the DDPG-based ACB scheme performs the

best at both peak and non-peak periods, which is due to the

capability of ACB-DDPG in assigning ACB factor in an online

manner to adaptively control the number of access devices in

an acceptable level.

Fig. 3 compares the evolution of the average number of the

access success devices per episodes for each RL algorithm

in the training phase under the ACB scheme, where each

result is averaged over 100 training trails. The training curves

are also compared with lower and upper bounds using the

MLE-based ACB scheme and the ideal genie-aided ACB

scheme, respectively. It can be seen that, after convergence,

the proposed DDPG and DQN methods are quite close to the

ideal upper bound, and slightly outperform the conventional

MLE-based ACB scheme. This is due to the fact that DDPG

and DQN methods are more capable in accurately capturing

the time correlation among historical transmission receptions

and the configuration than MLE. MLE is not capable of

capturing historical trends in the traffic, since it simplifies

the prediction problem by assuming that a forthcoming traffic

statistic is equal to a present one [27]. The improvement

of DDPG and DQN methods (around 2.5%) is relatively

minor, due to that the optimization of the ACB scheme is

mathematically tractable using MLE. In fact, the ACB factor

would be optimally selected, if the actual backlog was given

(according to Sec. II-B). Despite that the improvement of

ACB scheme is relatively minor, we argue that the use of

RL algorithms in RACH optimization is still worthwhile. The

678 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 3, MARCH 2021

reason is that the optimization of the other RACH schemes

are mathematically intractable, such as the presented BO and

DQ schemes.

In Fig. 3, it is seen that the off-policy algorithms (DDPG

and DQN) outperform the other on-policy algorithms (PG and

AC) in terms of both the adaptation speed and the performance

after convergence. This is mainly due to the experience replay

mechanism, which efficiently utilizes the training samples,

and also due to the randomly sampling, which smooths the

training distribution over the previous behaviors. We further

observes that, despite the similar learning principle and neural

network architecture used, the DDPG slightly outperforms

the DQN. This is due to the continuous control mechanism

of DDPG, which provides the infinite action space of the

ACB configuration, whereas the DQN is only limited to

the configured 20 action space. Motivated by this, we use

DDPG for ACB configuration and DQN for any other discrete

factors configurations, including BO and DQ in the rest of

figures.

Furthermore, in practice, one important reason to use

off-policy RL algorithms in RACH optimization is that their

training and updating processes can be deployed in a cloud

or the edge by gathering samples from multiple BSs, which

would greatly save computational resource. However, it is

emphasized that, despite that off-policy RL algorithms were

used, the feedfrowarding process of these algorithms is still

computation-hungry. In detail, by running simulations with

Python on a personal computer with an Intel Core i5-9600K

processor, the processing time of executing ACB for one frame

with the MLE predictor is about 0.043 ms, while that with

the DDPG algorithm is about 0.899 ms. This extra execution

delay of employing learning-based algorithms in the network

needs to be considered during implementation, despite that

this delay can be reduced when employed in a BS with higher

computational capability. Fortunately, even with the limited

computational resources, the execution time of learning agents

is much fewer than 5 ms, which is the minimal period of

RACH opportunities in most cellular networks, including LTE,

NB-IoT, eMTC, 5G NR.

Fig. 4 plots the average number of the access success

devices per frame per episode using the fixed-factor RACH

schemes and RL-based RACH schemes versus various num-

bers of devices N . The “ACB-fix”, “BO-fix”, and “DQ-fix”

are the ACB, BO, and DQ schemes based on the fixed factors

of f t
ACB = 0.5, f t

BO = 2 (back-off from [2, 4] frames),

and {f t
TD, f t

TB} = {2, 2}, respectively. It is observed that all

schemes achieve similar performance when the number of

devices N is smaller than 400, but the RL-based schemes

substantially outperform the conventional fixed-factor (non-

dynamic) access control schemes in heavy traffic region,

where the number of devices N is bigger than 400. This

showcases the capability of RL algorithms to better optimize

each RACH scheme, as they can well manage access load in

the presence of heavy traffic. It is also interesting to note that

“ACB-RL” generally outperforms the “BO-RL” and “DQ-RL”

in any number of devices. This is because the ACB schemes

can control the access request probability of each device in

each frame, whereas the “BO-RL” and “DQ-RL” may allocate

Fig. 4. The average number of successfully accessed IoT devices Vs during
1000 testing episodes.

re-transmissions into a future frame that is heavily overloaded,

which may lead to more collisions.

IV. HYBRID SCHEME OPTIMIZATION AND

DECOUPLED LEARNING STRATEGY

In this section, we aims at solving problem (1) and

jointly optimizes three RACH schemes defined by factors

At = {f t
ACB, f t

BO, f t
TD, f t

TB}. This hybrid scheme integrates

the features of the ACB, the BO, and the DQ schemes,

where they may be jointly executed according to control of

the DRL agents. Different from the single scheme scenario

in Sec. III, this joint execution increases adjustable system

factors, which results in an exponential increment of the action

space. As evaluated in our previous work [14], optimizing a

system with such numerous action space by a single RL agent

is not feasible, due to the convergence difficulty. To solve

problem (1), in this section, we propose a decoupled learning

strategy to efficiently train multiple parallel RL agents that

each handles one access control factor. In the following,

we first introduce the basic multi-agent cooperative RL for

multi-factors optimization. After that, we propose the decou-

pled learning strategy in detail.

A. Multi-Agent Cooperative Deep Reinforcement Learning

In this subsection, we introduce a basic multi-agent coop-

erative DRL method to tackle problem (1). As evaluated,

a direct application of DQN or DDPG given in Sec. III is

not feasible to solve this problem, due to the enormous size

of the action At. To solve this problem, the action space

At = {f t
ACB, f t

BO, f t
TD, f t

TB} can be broken down into three

separate sub-actions, each controls one scheme, including

At
ACB, At

BO, and At
DQ. As illustrated in Fig. 5 (a), we consider

three independent RL agents to handle each of these actions,

where the first, At
ACB, is handled by a DDPG agent, and

the other two are handled by two DQN agents. Each agent

parameterizes their own value function Q(St, At) or policy π

by using a function θ, which is represented by the multiple

layers GRU RNN structure given in III-B.

In each frame, the state variable St = [Ot−To , Ot−To+1,

. . . , Ot−1] is fed into each agent to generate sub-actions,

where each observation O not only includes the historical

transmission receptions U , but also the historical action selec-

tion of every agent A = {AACB, ABO, ADQ}. The share of

JIANG et al.: DECOUPLED LEARNING STRATEGY FOR MASSIVE ACCESS OPTIMIZATION IN CELLULAR IoT NETWORKS 679

Fig. 5. Proposed learning structure of (a) conventional multi-agent cooperative DRL, and (b) decoupled multi-agent cooperative DRL.

historical action selection among each agent aims to benefit

their cooperation. By doing so, each agent can understand how

the total reward is influenced by each sub-action, so as to

predict the future action selection of each other. After each

frame, DRL agents are trained in parallel, where their para-

meters θ and/or w are updated using the approaches given in

Eq. (12)-(17) of Sec. III-B. Note that this cooperative training

approach has been proposed in our previous works [13], [14],

and is akin to theproportional approach proposed in [23],

which has been evaluated as a close replacement of the overall

function by a factorization.

The training of each DRL agent shares a common reward

signal, which guarantees that all of them aims at the same

objective as given in Eq. (1). The reward is obtained by

using the weighted sum of the success accesses reward Rt
s,

the access delay reward Rt
d, and the energy consumption

reward Rt
e as given in Eq. (2). The success accesses reward

Rt
s is derived by directly normalizing the observed average

success accesses V t
s . On contrary, the access delay reward Rt

d

and the energy consumption reward Rt
e are inversely to the

average access delay V t
d of each succeeded device and the

average energy consumption V t
e , which are derived by using

a revised hyperbolic tangent activation function (a.k.a., tanh

function) as

Rt = 1 −
e

V
t

c − e−
V

t

c

e
V t

c + e−
V t

c

, (18)

where c is a constant factor, and V t represents to V t
e or V t

d .

In (18), the use of the revised tanh function targets to not

only generating the sub rewards Rt
d and Rt

e that is inversely

proportional to observations V t
d and V t

e , but also limiting the

sub rewards in the range of (0, 1] to improve the convergence

capability of neural networks. Note that the constant factor c

is used to flexibly determines the density of reward, where its

selection impacts on both the convergence capability and the

training efficiency of neural networks.

B. Decoupled Learning Strategy for Hybrid

Scheme Optimization

Applying conventional DRL methods to optimize massive

access control faces two challenges: i) the DRL agent is

expected to be updated in an online manner, but the conver-

gence is really slow due to the complexity of neural network

as well as the tradeoff between exploration and exploitation;

and ii) the access performance of the converged DRL agents

680 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 3, MARCH 2021

degrades by various hidden information, including, but not

limited to, the traffic arrival pattern and random collision

occurrence. Aiming at tackling these two challenges, in this

subsection, we propose a decoupled learning strategy to train

multiple parallel DRL agents as shown in Fig. 5(b). Different

from conventional DRL, problem (1) was decoupled into two

sub-tasks, including traffic prediction and parameter configu-

ration. These two sub-tasks are successively solved, where we

first predict the traffic by using an online supervised learning

method [27], and we then input the predicted traffic statistic

into DRL agents to configure actions. Details will be discussed

in following two parts.

1) Online Supervised Learning for Traffic Prediction: This

learning-based predictor adopts a modern RNN model with

parameters θRNN to predict the traffic statistic at each frame.

The use of RNN is due to its capability in capturing time

correlation of traffic statistics over consecutive frames, which

can help to learn the time-varying traffic trend for better pre-

diction accuracy. As shown in Fig. 5(b), historical observations

Ot−1
t−To

are sequentially inputted into the RNN predictor in a

stateless manner, and only the RNN with the last input Ot−1

is connected to the output layer. The output layer consists

of a Softmax non-linearity with (Nmax + 1) values, which

represent the predicted probability P{N̂ t = n|Ot−1
t−To

, θRNN}
of each possible value n for the forthcoming backlog N t.

Recall that Nmax is the upper bound on the backlog statistics

to ease implementation. In order to enable online updating,

we also implement the label estimation method proposed

in [27]. Briefly speaking, with respect to a produced backlog

N̂ t at any frame t, the weights of the RNN are adapted with

a delay of one frame at frame t + 1 by using an estimated

label Ñ t. This label Ñ t can be obtained at the next frame

t + 1 by using the MLE estimator described in Sec. II-A,

or MoM estimator described in [3], [27]. At each frame t+1,

the parameters θRNN of the RNN predictor are updated using

SGD via BPTT as

θ
t+1
RNN = θ

t
RNN − λ∇L(θt

RNN), (19)

where ∇L(θt
RNN) is the gradient of the loss function L(θt

RNN)
to train the RNN predictor. This is obtained by averaging the

cross-entropy loss as

Lt(θRNN)=−

t
∑

t′=t−Tb+1

log
(

P{N̂ t′ =Ñ t′ |Ot′

t′−To
, θRNN}

)

,

(20)

where the sum is taken with respect to randomly selected

mini-batch with size Tb.

2) DRL-Based Parameter Configuration: As seen in Fig. 5

(b), the newly predicted traffic value is input into the DRL

agents along with the historical traffic values, where this

vector of backlog values is treated as the approximate belief

state of the DRL agents. Recall that the historical length

To is manually selected according to the expected mem-

ory for time-correlation recognition. To do so, the belief

state variable of each agent can be written as St
blf =

[At−To , N̂ t−To+1, At−To+1, N̂ t−To+2, . . . , At−1, N̂ t]. Similar

as the training of multi-agent DRL given in Sec. IV-A,

Algorithm 3 Decoupled Learning Strategy for

Multi-Agent DRL Training

input : Action space AACB, ABO, ADQ, and operation
iteration I .

1 Algorithm hyperparameters: learning rate λRNN ∈ (0, 1] for
traffic predictor, and learning rate λDRL ∈ (0, 1], as well as
discount rate γ ∈ [0, 1) for DRL agents; Initialization of the
RNN parameters θRNN for traffic predictor, the action-state
value function Q(s, a; θBO) for the BO scheme, the action-state
value function Q(s, a; θDQ) for the DQ scheme, and the
parameterized actor π(s;θDDPG) as well as critic v(s, a; wACB)
for the ACB scheme; for Iteration ← 1 to I do

2 Initialization of O0 by executing a random action;
3 for t ← 0 to T − 1 do

4 Predict backlog value N̂ t using θ
t
RNN according to the

historical observations [Ot−To+1, · · · , Ot−2, Ot−1];
5 Merge the predicted value N̂ t in the belief state vector

St
blf;

6 ACB: Select At
ACB = π(St; θACB) + N t;

7 BO: if pt
ǫ < ǫ then select a random action At

BO from
ABO;

8 else Select At
BO = argmax

a∈ABO

Q(St, a; θBO);

9 DQ: if pt
ǫ < ǫ then select a random action At

DQ from
ADQ;

10 else Select At
DQ = argmax

a∈ADQ

Q(St, a; θDQ);

11 BS broadcasts action At = {At
ACB, At

BO, At
DQ}, and

backlogged IoT devices execute RACH;

12 BS observes St+1, and estimate backlog value Ñ t as

well as calculates Rt = V t+1
s ;

13 Storing transition (St, Ñ t) in the replay memory of
RNN traffic predictor;

14 Storing each transition (St, At
ACB, Rt, St+1),

(St, At
BO, Rt, St+1), and (St, At

DQ, Rt, St+1) in each
DRL replay memory MACB, MBO, and MDQ,
respectively;

15 Sampling random minibatch of transitions from each
replay memory;

16 Calculate the loss of RNN Lt(θRNN) using Eq. (20),
the loss of Q-function for the BO and the DQ schemes
∇L(θt

DQN) using Eq. (15), and the loss of critic

∇L(wt
ACB) and actor ∇L(θt

ACB) for the ACB scheme
using Eq. (16) and Eq. (17), respectively;

17 Perform a gradient descent for the RNN predictor and
each primary DRL network;

18 Update the target DRL networks using:

w̄
t ← σw

t + (1 − σ)w̄t, and θ̄
t ← σθ

t + (1 − σ)θ̄t.
19 end
20 end

every DRL agent shares their historical action selection

A = {AACB, ABO, ADQ} to enable cooperation. Different from

Sec. IV-A, not only the DRL agents are trained, but also the

RNN-based traffic predictor is updated after each frame. In the

following, the implementation of decoupled learning strategy

for multi-agent DRL training is shown in Algorithm 3.

In the training process, the evolution of RNN traffic pre-

dictor and the DRL agents are mutual correlated, thus they

need to be trained in parallel. This parallel adaptation can be

implemented in either simulation or practice, while the former

case enables a pre-training to ease practical implementation,

and the latter case allows all agents to adapt to the realistic

JIANG et al.: DECOUPLED LEARNING STRATEGY FOR MASSIVE ACCESS OPTIMIZATION IN CELLULAR IoT NETWORKS 681

TABLE III

RL HYPERPARAMETERS

Fig. 6. The (a) average success accesses, (b) average energy consumption, and (c) average access delay per IoT device per episode.

traffics. Specifically, the weights of DRL agents are able to

be initialized by first training in offline experiments based on

available traffic models, which would considerably reduce the

time and computational resource needed for their convergence

of training in practice. However, this assumed traffic models

may mismatch with the practical traffic statistics, thus the

adaptation in practice is still necessary. This pre-training can

be treated as a case of meta-learning. An numerical example

will be given in the next subsection.

C. Numerical Results and Evaluation

In this subsection, numerical experiments are conducted

to evaluate the performance of the hybrid ACB, BO, and

DQ schemes in terms of the access success devices number,

the access delay, and the energy consumption. Particularly,

the following figures represent results of these three KPI

taking into account all IoT devices whatever success or fail

in access, rather than that in the proposed algorithms, where

only the access success IoT devices can be observed in the

BS. The calculation of access delay and energy consumption

is based on the functions given in Eq. (6) and Eq. (7), and the

related parameters are listed in Table III provided by 3GPP for

cellular mIoT systems [15]. We adopt the similar traffic profile,

network parameters, and hyperparameters setting of neural

networks as Sec. III-C. Importantly, hybrid scheme integrates

the features of the ACB, the BO, and the DQ schemes, where

they may be jointly executed according to control of the DRL

agents.

We start by considering the reward weights are defined

by xs : xd : xe = 1 : µ : 1 − µ, where µ ∈ [0, 1].
By selecting different value of µ, the DRL agents are able to

optimize the system with different priorities between energy

and delay. In the following, we plot the average number of

access success devices, the average energy consumption, and

the average access delay per IoT device per episode of each

Fig. 7. Average reward per frame as a function of each epoch in the online
adaptation phase.

scheme versus the priority value µ in Fig. 6 (a), Fig. 6 (b), and

Fig. 6 (c), respectively. In Fig. 6 (a), “ACB-Success”, “BO-

Success”, “DQ-Success”, and “Hybrid-Success” with dashed

lines represent these four schemes trained by using the reward

only considering the number of access success devices (reward

weights xs : xd : xe = 1 : 0 : 0). We observe that

the average number of access success devices of the ACB

scheme is always longer than that of the other schemes, due

to that the ACB scheme can directly determine the access

request probability of each IoT device in each frame. Except

from the ACB scheme, the performance of the other schemes

increase with the increase of µ, due to that the access delay is

inversely proportional to the number of access success devices.

It can be seen that, with the increase of the delay weight

(µ), the average energy consumption of the BO, DQ, and

hybrid schemes increases in Fig. 6 (b), whereas the average

access delay of these schemes decreases in Fig. 6 (c). This

shows that the energy-delay trade-off of the network system

can be flexibly balanced by selecting different weights in

682 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 3, MARCH 2021

the proposed hybrid reward. When µ is smaller than 0.3,

we observe that the proposed hybrid scheme sacrifices the

delay property, and consumes the minimum energy. We further

observe that, with the increase of µ, the average access delay

of the proposed hybrid scheme gradually closes to that of

the optimal ACB scheme, and it always outperforms the

BO and DQ schemes. This demonstrates the capability of

the proposed hybrid scheme to flexibly adapt to different

performance requirements of the network.

Fig. 7 plots the evolution (averaged over 100 train-

ing trails) of the average reward per frame as a function

in the online phase for the proposed decoupled strategy,

genie-aided decoupled strategy, as well as the conventional

RL methods with function approximators using GRU RNN

and fully-connected Artificial Neural Network (ANN). The

proposed decoupled strategy is conducted according to Algo-

rithm 3, while genie-aided decoupled strategy uses the same

algorithm, except that the training is based on the criterion

Eq. (20) with the ideal label N t in lieu of the estimated label

Ñ t. The conventional RL methods are based on the method

given in Sec. III-B and Sec. IV-A, and specifically, the one

without RNN uses fully-connected neural network with two

hidden layers, each with 128 ReLU units. For fairly consid-

ering both energy consumption and access delay, the reward

weights are defined by xs : xd : xe = 2 : 1 : 1 (µ = 0.5). The

approximated converging point of each scheme is highlighted

by circles. We observe that the conventional RL without RNN

has the worst performance, due to that its fully-connected

neural network cannot capture the time correlation conducted

by time-varied traffics and devices’ queuing processes. This

showcases the necessity of using RNN in RACH procedure

optimization.

We then observe that our proposed decoupled strategy can

quickly adapt to the network conditions, where its training

speed is substantially faster than that of RL with RNN, and its

obtained average reward is also higher than that of RL with

RNN. Note that the performance of training efficiency may

vary for different simulation parameters. This is due to the fact

that the proposed decoupled strategy knows that the historical

and present traffic statistics are directly correlated with the

future performance, while the conventional RL methods need

to learn this inherent correlation by experiencing an explo-

ration learning process. Apparently, these extra explorations

can consume increased training time. It is also seen that both

these performance of the decoupled strategy is very close to

that of the ideal genie-aided one. This demonstrates that the

proposed decoupled strategy is capable to optimize the RACH

schemes with better performance and faster converging speed.

We finally illustrates the average energy consumption and

the average access delay per IoT device per episode of each

scheme versus the presence of devices N in Fig. 8 (a) and

Fig. 8 (b), respectively. All schemes are implemented by using

the decoupled learning strategy proposed in Sec. IV-B. Note

that the results of each point are obtained by evaluating a

scheme with its learning agents that are trained after 105

episodes. In particular, the DRL agents for each scheme used

in Fig. 8 (a) and Fig. 8 (b) are optimized by using the reward

weights with xs : xd : xe = 1 : 0 : 1 and xs : xd : xe = 1 :

Fig. 8. Performance of decoupled learning strategy in terms of (a) average
energy consumption, and (b) Average access delay per IoT device per episode.

1 : 0 in Eq. (2), respectively. More specifically, the learning

agents in Fig. 8 (a) aim at saving the energy of IoT device

while optimizing the number of access success IoT devices

with the reward of energy consumption as xe = 1, while the

learning agents in Fig. 8 (b) aim at reducing the access delay

while optimizing the number of access success IoT devices

with the reward of access delay as xd = 1. In both Fig. 8

(a) and Fig. 8 (b), it can be seen that increasing the number of

IoT devices N increases both the average energy consumption

and the average access delay of all schemes, due to that the

increase of traffic statistics leads to more collisions.

In Fig. 8 (a), the performance of the ACB scheme is notably

worse than the other schemes, due to that IoT devices tends

to waste more energy when they repeatedly listen to the ACB

factor to ask access permissions. In Fig. 8 (b), the ACB scheme

slightly outperforms the BO and the DQ schemes, when the

number of devices N is bigger than 450. This is due to

that the ACB scheme can accurately set the access request

probability of each device at every frame, while the BO and the

DQ scheme can only schedule re-transmissions into relatively

long future frames. Due to this feature, the ACB scheme is

more capable in accurately alleviating the overloaded traffic

to reduce access delay, but it also sacrifices the energy con-

sumption as shown in Fig. 8 (a). It is also observed that the

JIANG et al.: DECOUPLED LEARNING STRATEGY FOR MASSIVE ACCESS OPTIMIZATION IN CELLULAR IoT NETWORKS 683

hybrid scheme always outperforms the other single schemes

in terms of energy saving in Fig. 8 (a), while it is close to, but

is no better than, the ACB scheme in terms of delay reduction

in Fig. 8 (b). The former phenomenon is due to that the hybrid

scheme is capable of adjusting to the complex energy saving

requirement by optimally balancing all three schemes, while

the latter phenomenon is due to that the hybrid scheme is

learned to optimize the performance by mostly relying on the

ACB control, which is the best method to reduce access delay.

D. A Case Study of NarrowBand IoT Networks

To show the effectiveness of our proposed decoupled strat-

egy, we now consider a more practical NarrowBand (NB)-IoT

scenario according to the system model provided in our prior

work [13], [14], in which an NB-IoT network composed of

an evolved Node B (eNB) and N = 30000 static IoT devices

with time-limited Beta traffic profile. The eNB supports three

Coverage Enhancement (CE) groups to provide access for IoT

devices with different location. Each IoT device determines

their CE identity according to the their distance to the associ-

ated eNB. After that, each IoT device executes RACH as well

as uplink data transmission according to the received system

information that relates to their CE identity. More simulation

details can be found in our prior work [13], [14], and the 3GPP

reports [15], [16].

Different from the results in Sec. IV-C independently focus-

ing on RACH procedure, this model considers an IoT device

that is successfully served only when it succeeds in both

RACH and uplink data transmission. In each frame, the eNB

allocates the radio resources to accommodate the RACH

procedure for each CE group with the remaining resources

used for uplink data transmission. Considering the target of

maximizing the number of served IoT devices, the challenge

is to optimally balance the allocations of channel resources

between the RACH procedure and data transmission, as well

as among each CE group. Similar as [14], we assume the eNB

can flexibly select the parameters of the number of RACH

periods nt
Rach,i, the number of available preambles f t

Prea,i, and

the repetition value nt
Repe,i in each group i at each frame t.

Extended from [14], we further consider that the eNB can

flexibly select the ACB and the BO factors to alleviate traffic

overload. The DQ scheme is not standardized in NB-IoT

networks [16], so as it is not used in this case.

Fig. 9 compares the number of successfully served IoT

devices per frame during one epoch. The result of each

curve is averaged over 1000 testing epochs. The average

number of newly generated packets conducted by the time

limited Beta profile is shown as dashed line. We compare the

performance in terms of the average number of successfully

served IoT devices among the following five schemes: 1)

“Decoupled Strategy” proposed in Sec. IV-B; 2) “hybrid

RL scheme” given in IV-A; 3) “RL NB-IoT + constant

RACH”, which uses hybrid RL scheme to configure NB-IoT

factors {nt
Rach,i, f

t
Prea,i, n

t
Repe,i} as well as sets constant BO

and ACB factors {f t
ACB, f t

BO} = {0.5, 2} for each CE group;

4) “Constant NB-IoT + RL RACH”, which sets NB-IoT

factors {[nt
Rach,1, n

t
Rach,2, n

t
Rach,3], [f t

Prea,1, f
t
Prea,2, f

t
Prea,3],

Fig. 9. The average number of successfully served IoT devices per frame
during one bursty traffic duration. The dashed line represents the average
number of generated packets per frame.

[nt
Repe,1, n

t
Repe,2, n

t
Repe,3]} = {[4, 2, 1], [48, 36, 24], [2, 16, 32]}

as well as configures BO and ACB factors by using

hybrid RL scheme; and 5) “Constant” scheme sets

constant parameters during whole epoch including NB-IoT

factors {[nt
Rach,1, n

t
Rach,2, n

t
Rach,3], [f

t
Prea,1, f

t
Prea,2, f

t
Prea,3],

[nt
Repe,1, n

t
Repe,2, n

t
Repe,3]} = {[4, 2, 1],[48, 36, 24], [2, 16, 32]}

as well as BO and ACB factors {f t
ACB, f t

BO} = {0.5, 2} for

each CE group.

In Fig. 9, we observe that the number of served IoT devices

of all schemes are close in the light traffic regions at the

beginning and end of the epoch, however, in the period of

heavy traffic in the middle of the epoch, that number of served

IoT devices follows the order “Decoupled Strategy”≈“hybrid

RL scheme”>“Constant NB-IoT + RL RACH”≈“RL NB-IoT

+ constant RACH”>“Constant”. This showcases that the

more dynamically configured system factors are, the better

performance can be achieved. This is due to that the constant

factors cannot fit all the traffic statistics, while RL algorithms

can always find a global optimal combination of the sys-

tem parameters to adapt to any online traffic statistics. It is

also observed that “Decoupled Strategy” slightly outperforms

‘hybrid RL scheme”, which demonstrates the capability of the

proposed decoupled strategy can better manage the channel

resources, and achieve better system performance in the pres-

ence of heavy traffic. Fig. 10 plots the evolution (averaged

over 20 training trails) of the average number of served IoT

devices per epoch as a function during the online training for

“Decoupled Strategy” and “hybrid RL scheme”. We observe

that our proposed decoupled strategy can quickly adapt to the

network conditions, which is about 10 times faster than the

conventional hybrid RL scheme.

V. CONCLUSION

In this paper, we developed a decoupled learning strategy

to maximize a multi-objective function that is composed of

the number of access success devices, the average energy

consumption, and the average access delay. The proposed algo-

rithm jointly optimized multiple RACH schemes, including the

ACB, BO, and DQ schemes. Our proposed strategy decoupled

the traffic prediction and the parameter configuration. The

former predictor uses a GRU RNN model to predict the

real-time traffic values of the network system, which captures

684 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 3, MARCH 2021

Fig. 10. The average number of successfully served IoT devices per epoch
during training.

temporal correlations due to communication mechanisms and

irregular traffic generation. The latter controller configures sys-

tem parameters of each RACH scheme by using multiple DRL

agents, where DQN is used to handle discrete action selection

for the BO as well as the DQ schemes, and DDPG is used

to handle continuous action selection for the ACB scheme.

Numerical results shed light on that the RACH schemes

can be effectively optimized in a joint manner by using the

cooperative training to adapt to any performance requirement,

where it outperforms each single RACH scheme.

More importantly, by using the proposed decoupled learn-

ing strategy, the training speed of the cooperative model

considerably outperforms conventional strategies. This result

gives clear evidence that integrating predicted traffic into a

learning process would benefit both its training convergence

and training efficiency. The proposed method can be applied

for optimizing any RACH schemes in the 5G NR network, and

can be extended to solve the similar dynamic optimization

problems, e.g. quality of service mapping. As most of the

current schemes on RACH procedure only relies on the central

control in the BS, a promising future direction is to develop

the learning algorithm that performs the RACH control in a

cooperative manner between IoT devices and BS.

REFERENCES

[1] N. Jiang, Y. Deng, and A. Nallanathan, “Deep reinforcement learning for
discrete and continuous massive access control optimization,” in Proc.

IEEE Int. Conf. Commun. (ICC), Jun. 2020, pp. 1–7.
[2] H. Wu, C. Zhu, R. J. La, X. Liu, and Y. Zhang, “Fast adaptive S-ALOHA

scheme for event-driven machine-to-machine communications,” in Proc.

IEEE Veh. Technol. Conf. (VTC Fall), Sep. 2012, pp. 1–5.
[3] S. Duan, V. Shah-Mansouri, Z. Wang, and V. W. S. Wong, “D-ACB:

Adaptive congestion control algorithm for bursty M2M traffic in LTE
networks,” IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 9847–9861,
Dec. 2016.

[4] H. He, P. Ren, Q. Du, L. Sun, and Y. Wang, “Traffic-aware overload
control scheme in 5G ultra-dense M2M networks,” Trans. Emerg.

Telecommun. Technol., vol. 28, no. 9, p. e3146, Sep. 2017.

[5] X. Jian, Y. Jia, X. Zeng, and J. Yang, “A novel class-dependent back-
off scheme for machine type communication in LTE systems,” in Proc.

22nd Wireless Opt. Commun. Conf., May 2013, pp. 135–140.

[6] F. Vazquez-Gallego, C. Kalalas, L. Alonso, and J. Alonso-Zarate, “Con-
tention tree-based access for wireless machine-to-machine networks with
energy harvesting,” IEEE Trans. Green Commun. Netw., vol. 1, no. 2,
pp. 223–234, Jun. 2017.

[7] L. Tello-Oquendo, D. Pacheco-Paramo, V. Pla, and J. Martinez-Bauset,
“Reinforcement learning-based ACB in LTE–A networks for handling
massive M2M and H2H communications,” in Proc. IEEE Int. Conf.

Commun. (ICC), May 2018, pp. 1–7.
[8] L. Tello-Oquendo, V. Pla, I. Leyva-Mayorga, J. Martinez-Bauset,

V. Casares-Giner, and L. Guijarro, “Efficient random access channel
evaluation and load estimation in LTE–A with massive MTC,” IEEE

Trans. Veh. Technol., vol. 68, no. 2, pp. 1998–2002, Feb. 2019.
[9] J.-R. Vidal, L. Tello-Oquendo, V. Pla, and L. Guijarro, “Performance

study and enhancement of access barring for massive machine-type
communications,” IEEE Access, vol. 7, pp. 63745–63759, 2019.

[10] H. Bello, X. Jian, Y. Wei, and M. Chen, “Energy-delay evaluation and
optimization for NB-IoT PSM with periodic uplink reporting,” IEEE

Access, vol. 7, pp. 3074–3081, 2019.
[11] A. Azari, C. Stefanovic, P. Popovski, and C. Cavdar, “On the latency-

energy performance of NB-IoT systems in providing wide-area IoT con-
nectivity,” IEEE Trans. Green Commun. Netw., vol. 4, no. 1, pp. 57–68,
Mar. 2020.

[12] P. K. Wali and D. Das, “Optimization of barring factor enabled extended
access barring for energy efficiency in LTE-advanced base station,” IEEE

Trans. Green Commun. Netw., vol. 2, no. 3, pp. 830–843, Sep. 2018.
[13] N. Jiang, Y. Deng, O. Simeone, and A. Nallanathan, “Cooperative

deep reinforcement learning for multiple-group NB-IoT networks opti-
mization,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.

(ICASSP), May 2019, pp. 8424–8428.
[14] N. Jiang, Y. Deng, A. Nallanathan, and J. A. Chambers, “Reinforcement

learning for real-time optimization in NB-IoT networks,” IEEE J. Sel.

Areas Commun., vol. 37, no. 6, pp. 1424–1440, Jun. 2019.
[15] Cellular System Support for Ultra-Low Complexity and Low Through-

put Internet of Things (CIoT), 3GPP, document TR 45.820 V13.1.0,
Nov. 2015.

[16] Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access

Control Protocol Specification, 3GPP, document TS 36.321 v.14.2.1,
2017.

[17] Study on RAN Improvements for Machine-Type Communications, 3GPP
document TR 37.868 V11.0.0, Sep. 2011.

[18] N. Jiang, Y. Deng, X. Kang, and A. Nallanathan, “Random access
analysis for massive IoT networks under a new spatio-temporal model:
A stochastic geometry approach,” IEEE Trans. Commun., vol. 66, no. 11,
pp. 5788–5803, Nov. 2018.

[19] N. Jiang, Y. Deng, M. Condoluci, W. Guo, A. Nallanathan, and
M. Dohler, “RACH preamble repetition in NB-IoT network,” IEEE

Commun. Lett., vol. 22, no. 6, pp. 1244–1247, Jun. 2018.
[20] N. Jiang, Y. Deng, A. Nallanathan, X. Kang, and T. Q. S. Quek,

“Analyzing random access collisions in massive IoT networks,” IEEE

Trans. Wireless Commun., vol. 17, no. 10, pp. 6853–6870, Oct. 2018.
[21] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for

Mobile Broadband. New York, NY, USA: Academic, 2013.
[22] Z. Gábor, Z. Kalmár, and C. Szepesvári, “Multi-criteria reinforcement

learning,” in Proc. Int. Conf. Mach. Learn., vol. 98, 1998, pp. 197–205.
[23] P. Sunehag et al., “Value-decomposition networks for cooperative multi-

agent learning based on team reward,” in Proc. Int. Conf. Auton. Agents

MultiAgent Syst. (AAMAS), Jul. 2018, pp. 2085–2087.
[24] A. K. Gupta and S. Nadarajah, Handbook Beta Distribution and its

Applications. New York, NY, USA: CRC Press, 2004.
[25] G.-Y. Lin, S.-R. Chang, and H.-Y. Wei, “Estimation and adaptation for

bursty LTE random access,” IEEE Trans. Veh. Technol., vol. 65, no. 4,
pp. 2560–2577, Apr. 2016.

[26] F. Schoute, “Dynamic frame length ALOHA,” IEEE Trans. Commun.,
vol. 31, no. 4, pp. 565–568, Apr. 1983.

[27] N. Jiang, Y. Deng, O. Simeone, and A. Nallanathan, “Online supervised
learning for traffic load prediction in framed-ALOHA networks,” IEEE

Commun. Lett., vol. 23, no. 10, pp. 1778–1782, Oct. 2019.
[28] R. Sutton and A. Barto. (2017). Reinforcement Learning: An Introduc-

tion (Draft). [Online]. Available: http://www.incompleteideas.net/book/
bookdraft2017nov5.pdf

[29] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, p. 529, Feb. 2015.

[30] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural net-
work regularization,” 2014, arXiv:1409.2329. [Online]. Available:
http://arxiv.org/abs/1409.2329

[31] P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.

[32] T. P. Lillicrap et al., “Continuous control with deep reinforce-
ment learning,” in Proc. Int. Conf. Learn. Represent., 2016,
pp. 1–14.

JIANG et al.: DECOUPLED LEARNING STRATEGY FOR MASSIVE ACCESS OPTIMIZATION IN CELLULAR IoT NETWORKS 685

Nan Jiang (Member, IEEE) received the Ph.D.
degree in electronic engineering from the Queen
Mary University of London, U.K., in 2020. He was
a Visiting Researcher with King’s College London,
U.K., in 2016 and 2018. He is currently a Research
Engineer with Telecommunications Research Labo-
ratory, Toshiba Research Europe Ltd., Bristol, U.K.
His research interests include the Internet of Things,
machine learning, time-sensitive networks, and 5G
wireless networks. He received the IEEE ComSoc
Student Travel Grant in the IEEE ICC’18 and

ICC’20. He has also served as a TPC Member for the IEEE VTC’19 AND
VTC’20.

Yansha Deng (Member, IEEE) received the Ph.D.
degree in electrical engineering from the Queen
Mary University of London, U.K., in 2015. From
2015 to 2017, she was a Post-Doctoral Research
Fellow with Kings College London, U.K., where
she is currently a Lecturer (Assistant Professor)
with the Department of Engineering. Her research
interests include molecular communication, machine
learning, and 5G wireless networks. She was a
recipient of the Best Paper Awards from ICC 2016
and GLOBECOM 2017, as the first author. She is

currently an Associate Editor of the IEEE TRANSACTIONS ON COMMU-
NICATIONS and the IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL

AND MULTI-SCALE COMMUNICATIONS and a Senior Editor of the IEEE
COMMUNICATION LETTERS. She also received the Exemplary Reviewers of
the IEEE TRANSACTIONS ON COMMUNICATIONS in 2016 and 2017, and the
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS in 2018. She has
also served as a TPC Member for many IEEE conferences, such as the IEEE
GLOBECOM and ICC.

Arumugam Nallanathan (Fellow, IEEE) has been a
Professor of wireless communications and the Head
of Communication Systems Research (CSR) group,
School of Electronic Engineering and Computer
Science, Queen Mary University of London, since
September 2017. He was with the Department of
Informatics, King’s College London, from December
2007 to August 2017, where he was a Professor in
wireless communications from April 2013 to August
2017 and a Visiting Professor in September 2017. He
was an Assistant Professor with the Department of

Electrical and Computer Engineering, National University of Singapore, from
August 2000 to December 2007. He published nearly 500 technical articles

in scientific journals and international conferences. His research interests
include artificial intelligence for wireless systems, beyond 5G wireless net-
works, the Internet of Things (IoT), and molecular communications.

Mr. Nallanathan has been selected as a Web of Science Highly Cited
Researcher in 2016 and an AI 2000 Internet of Things Most Influential Scholar
in 2020. He was a co-recipient of the Best Paper Awards presented at the IEEE
International Conference on Communications 2016 (ICC’2016), the IEEE
Global Communications Conference 2017 (GLOBECOM’2017), and the IEEE
Vehicular Technology Conference 2018 (VTC’2018). He is a Distinguished
Lecturer of the IEEE. He also received the IEEE Communications Society
SPCE Outstanding Service Award 2012 and the IEEE Communications
Society RCC Outstanding Service Award 2014. He served as the Chair for
the Signal Processing and Communication Electronics Technical Committee
of the IEEE Communications Society and the Technical Program Chair and a
member of Technical Program Committees in numerous IEEE conferences. He
is the Editor-at-Large of the IEEE TRANSACTIONS ON COMMUNICATIONS

and a Senior Editor of the IEEE WIRELESS COMMUNICATIONS LETTERS.
He was an Editor of the IEEE TRANSACTIONS ON WIRELESS COMMUNI-
CATIONS from 2006 to 2011, the IEEE TRANSACTIONS ON VEHICULAR

TECHNOLOGY from 2006 to 2017, and the IEEE SIGNAL PROCESSING

LETTERS.

Jinhong Yuan (Fellow, IEEE) received the B.E. and
Ph.D. degrees in electronics engineering from the
Beijing Institute of Technology, Beijing, China, in
1991 and 1997, respectively. From 1997 to 1999,
he was a Research Fellow with the School of Elec-
trical Engineering, University of Sydney, Sydney,
Australia. In 2000, he joined the School of Electrical
Engineering and Telecommunications, University of
New South Wales, Sydney, Australia, where he is
currently a Professor and the Head of the Telecom-
munication Group with the School. He has published

two books, five book chapters, over 300 articles in telecommunications
journals and conference proceedings, and 50 industrial reports. He is a co-
inventor of one patent on MIMO systems and two patents on low-density-
parity-check codes. His current research interests include error control coding
and information theory, communication theory, and wireless communications.
He has received four best paper awards and one best poster award, including
the Best Paper Award from the IEEE International Conference on Commu-
nications, Kansas City, USA, in 2018, the Best Paper Award from the IEEE
Wireless Communications and Networking Conference, Cancun, Mexico, in
2011, and the Best Paper Award from the IEEE International Symposium
on Wireless Communications Systems, Trondheim, Norway, in 2007. He is
currently serving as an Associate Editor of the IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS. He served as the IEEE NSW Chapter Chair
of Joint Communications/Signal Processions/Ocean Engineering Chapter from
2011–2014, and served as an Associate Editor for the IEEE TRANSACTIONS

ON COMMUNICATIONS from 2012–2017.

