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Abstract 
This  paper presents the P A P R I C A - 3  massively par- 

allel S I M D  system, designed as n hardware accelerator 
f o r  real-tim.e image processing tasks. It is  composed of 
0, lin,enr array of single- hit  processsing elements, includ- 
ing a fairly complex pipelined controller, thus allowing 
the sys tem t o  take advantage also of the intrinsic par- 
allelism in a program. 

A program,ming en,ciironment has been developed t o  
ease the prototyping of applications: a code generator 
converts C++ programs into assembly, and code op- 
t imization is performed directly at the assembly level, 
following a genetic approach. 

T h e  effectiveness of the processor, as well as o f  the 
code optimizer, are discussed with the aid of an ap- 
plication example f o r  handwritten character recogni- 
t ion.  

1 Introduction 
This paper describes PAPRICA-3, a real-time hard- 

ware accelerator for low-level image processing appli- 
cations. The system is designed to be interfaced to 
a conventional microprocessor to relieve it from the 
high computational load required by the first steps of 
image processing algorithms (filtering, noise removal, 
contrast enhancement, features extraction, etc.). The 
system is able to capture a serial input data stream 
coming from an external camera (or pair of stereo cam- 
eras), to process it in parallel on a line-by-line basis, 
and to store the resulting images either on a dedicated 
dual-port memory, accessible also from the conven- 
tional processor, or on a monitor. 

One of the design goals was to build a low-cost, 
high-performance system, dedicated to embedded ap- 
plications. PAPRICA-3 was initially formulated as the 
core of a high speed system for bank cheques process- 
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ing called HACRE (HAndwritten Character REcogni- 
tion). The main task of the system was to perform 
automatic recognition of the amount handwritten on 
the legal and courtesy fields of a bank cheque, at a 
rate of about ten cheques per second. A solution to 
the problem is to design a dedicated parallel processor 
with an instruction set tailored to low-level image pro- 
cessing tasks. To meet the cost and size constraints 
typical of embedded systems, the hardware accelerator 
has to be composed of the smallest possible amount 
of components, with a single-chip unit as the most 
desirable solution. 

The heart of PAPRICA-3 consists of a linear ar- 
ray of processing elements (PES), each one devoted 
to a single line pixel. At any time, all PES execute 
the same instruction. The system operates on black 
& white, grey-scale or color bitmap images, so that a 
pixel is defined as a multi-bit value carrying informa- 
tion stored on different image bit-planes. A complete 
image bit-plane can be seen in different ways, for ex- 
ample as an independent black & white image, as part 
of one or more grey-scale or color images, or as an in- 
termediate result of operations performed on any of 
the above objects. 

Each P E  can perform logical or morphological oper- 
ations on an input pixel: logical operations compute a 
one-bit result depending on values stored on different 
image planes of the same pixel, while morphological 
operations evaluate a one-bit result based on the val- 
ues stored in the neighboring pixels on a single image 
plane, using the mathematical morphology approach 
proposed in [16]. 

The execution unit, which is common to the whole 
processor array, controls program flow and can per- 
form tests, branches, conditional execution of program 
segments, loops, and synchronization statements. To 
speed up program execution, a fairly complicated 
pipeline scheme has been adopted to exploit as much 
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instruction level parallelism as possible. The program 
is stored completely in an internal program memory 
(512 instructions wide) writable from the external pro- 
cessor, so there is no need for internal cache memory. 

A Status Register File can be used to compute and 
store global parameters of the processed images, such 
as statistics, degrees of matching between an input and 
reference images, etc.. It is accessible to the external 
processor and is aimed to increase execution speed of 
a broad class of neural algorithms. 

Two versions of the PAPRICA-3 system are un- 
der development, having the same architecture: the 
first one is dedicated to the above mentioned hand- 
writing recognition application and in the following 
will be also referenced with the name HACRE, while 
the second one is of a general purpose aimed to build 
an image processing system based on a single PCI 
bus PC expansion board and will be called generically 
PAPRICA-3. Two different ASIC chips will therefore 
be built: 

HACRE is a single-chip system. The chip is com- 
posed of 64 PES, an input video interface ded- 
icated to a linear image scanner, a lkx64 bits 
internal image memory and an internal 256 ele- 
ments Status Register File. It interfaces to a 32 
bit microcontroller with a minimum amount of 
external logic. 

PAPRICA-3 is a modular system. Each chip is 
composed of 32 PES, a generic input/output video 
interface and does not include any internal image 
memory and the Status Register File. Instead, 
the chip has a fast interface to an external image 
memory and a Status Register File, to achieve 
two goals: connecting several chips together, it is 
possible to create a system with a varying num- 
ber of PES; an external but fast image memory 
will not decrease too much the performances com- 
pared with an internal memory, but the amount of 
memory can be much higher, to cope with mem- 
ory demanding applications. 

A programming environment has been developed to 
ease prototyping of applications on PAPRICA-3. Ap- 
plication programs are written in C++; a code genera- 
tor first converts C++ statements into assembly code; 
subsequently, optimization is performed on the gener- 
ated assembly code. The optimizer performs both de- 
terministic optimizations following the standard well 
known techniques and stochastic techniques to im- 
prove performance of the pipeline structure and take 
advantage of the intrinsic instructions parallelism. 

This paper presents the whole project which started 
about 3 years ago and involved two reserach units: 
Parma University and Torino Politechnic. Next sec- 
tion describes the hardware system and architecture; 
section 3 presents the programming environment and 
details the code optimization process, describing also 
its implementation on a parallel cluster of worksta- 
tions; section 4 describes the main application that 
motivated the development of PAPRICA-3; and fi- 
nally section 5 concludes the paper with some remarks. 

2 Hardware System Description 
As shown in figure 1, the kernel of PAPRICA-3 is 

a linear array of Q identical 1-bit PES connected to 
an image memory via a bidirectional Q-bit wide bus. 
The image memory is organized in addressable words 
whose length matches that of the processor array; each 
word contains data relative to one binary pixel plane 
(also called layer) of one line of an image (Q bits wide), 
and a single cycle is needed to load an entire line of 
data into the PE’s internal registers. When executing 
a program, the correspondence between the line num- 
ber and the pixel plane of a given image and the abso- 
lute line address is computed in hardware by means of 
data structures, named Image Descriptors, stored in 
the Control Unit. An Image Descriptor is a memory 
pointer built up of three parts: a base address, a line 
counter and a page counter. Line and page counters 
can be reset or incremented by a specified amount un- 
der program control. Two counters, called M and N, 
are not directly related to image memory addressing, 
but can be used to modify program flow: instructions 
are provided to preset, increment and test them. 

Data are transferred into internal registers of each 
PE, processed and explicitly stored back into memory 
according to a RISC-like processing paradigm. 

Each PE processes one pixel of each line and is com- 
posed of a Register File and a 1-bit Execution Unit. 
The core of the instruction set is based on morpho- 
logical operators [16]: the result of an operation de- 
pends, for each processor, on the value of pixels in a 
given neighborhood (reduced 5 x 5, as sketched by the 
grey squares in figure 1). Data from E, EE, W and 
WW directions (where EE and WW denote pixels two 
bits apart in E and W directions) may be obtained 
by direct connection with neighboring PES while all 
other directions correspond to data of previous lines 
(N, NE, NW, NN) or of subsequent lines (S, SE, SW, 
SS). Operations on larger neighborhoods can be de- 
composed 121 in chains of basic operations. 

To obtain the outlined neighborhood, a number of 
internal registers (16, at present) , called Morphological 
Registers (MOR), have a structure which is more com- 
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Figure 1: General architecture of the Processor Array 

plex than that of a simple memory cell, and are actu- 
ally composed of five 1-bit cells with a S+N shift reg- 
ister connection. When a load operation from memory 
is performed, all data are shifted northwards by one 
position and the south-most position is taken by the 
new line from memory. In this way, data from a 5 x 5 
neighborhood are available inside the array for each 
PE, at the expense of a two lines latency. A second 
set of registers (48, at present), called Logical Regis- 
ters (LOR), is only 1-bit wide. On LORs and on the 
central bit of MORS it is possible to perform a dif- 
ferent portion of the instruction set which comprises 
logical and algebraic operations. 

An important characteristic of the system is the 
integration of a serial-to-parallel 1/0 device, called 
Video Interface (VIF), which can be connected to a 
conventional input imaging device (camera, linear ar- 
ray) and/or to a monitor. The interface is composed 
of two 8 bit, Q stages shift register which serially 
and asynchronously loads/stores a new line of the in- 
put/output image during the processing of the pre- 
vious/next line. Two instructions enable the bidirec- 
tional transfer between the PE’s internal registers and 
the VIF, ensuring also proper synchronization with 
the camera and the monitor. 

Image processing algorithms consist of sequences 
of low level steps, such as filters, convolutions, etc., 
to be performed line by line over the whole image. 
This means that the same block of instructions has 
to be repeated many times, and instruction fetching 
from an external memory is an important source of 
overhead. Hence we chose to pre-load each block of 
instructions into an internal memory, named Writable 
Control Store (WCS, 512 words x 32 bits), and to 
fetch instructions from there. In this way it is pos- 
sible to obtain the performance of a fast cache with 
a hit ratio close to 1, at a fraction of the cost and 
complexity. 

Two inter-processor communication mechanisms 
are also available to exchange information among PES 
which are not directly connected. The first one is the 
Status Evaluation Network (SEN), shown in figure 2, 
to which each processor sends the contents of one of its 
registers (selectable under program control) and which 
provides a Status Word divided into two subfields. The 
first one is composed of two global flags, named SET 
and RESET, which are true when the contents of the 
specified register are all Is or all Os, respectively. The 
second one is the COUNT field which is set equal to 
the number of processing elements in which the con- 
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tent of the specified register is 1. This global informa- 
tion may be accumulated and stored into the Status 
Register File and used to  conditionally modify the pro- 
gram flow. As an alternative, it may be reloaded into 
the PE’s Register File for further processing. 

Count Ones 
I I -_ 

PE 0 PE 1 PE 2 PE 3 

Figure 2: The Status Evaluation Network 

fiP RI R2 R3 

Figure 3: The Interprocessor Communication Network 

The second communication mechanism is the Inter- 
processor Communication Network (ICN), shown in 
figure 3, which allows global and multiple communi- 
cation among clusters of PES. The topology of the 
communication network may be varied during pro- 
gram execution. In fact, each P E  drives a switch that 
enables or disables the connection between pairs of ad- 
jacent processors. The PES may thus be dynamically 
grouped into clusters, each P E  can broadcast a register 
value to the whole cluster within a single instruction. 
This feature can be very useful in algorithms involving 
seed-propagation techniques, and in the emulation of 
pyramidal (hierarchical) processing. 

The Image Memory and the Status Register File 
are external to the integrated circuit in PAPRICA-3, 
in order to provide an higher degree of modularity and 
flexibility at system level, while HACRE provides an 
internal 1Kx64 bits Image Memory and 256 Status 
Registers. Besides being used to conditionally modify 
program flow, the Status Register File can be read 

by the external processor. This has been used in the 
HACRE system to implement a neural network, by 
computing the degree of matching between an image 
and a set of templates (weight matrices). 

As mentioned earlier, PAPRICA-3 was conceived as 
a modular, high-performance, low-cost and small size 
image processing system. The first PAPRICA-3 board 
is currently under development. It will be a single PCI 
bus PC expansion board. It will incorporate: an array 
of 128 PES (4 chips); a PCI 32 bit bus master con- 
troller implemented in FPGA; a 64Kx 128 bits, 20ns, 
Image Memory; a Status Register File (a FPGA and 
a memory chip); a simple PAL video camera interface 
(a single standard chip including an A/D converter, 
sync separators and pixel and line clock generators) 
connected to the input VIF. 

3 The Programming Environment 
3.1 High Level Programming Language 

The intrinsic complexity of Assembly language, es- 
pecially when combined with the SIMD computational 
model, produces a low programming efficiency; a high 
level programming language, together with a software 
tool for the generation of its corresponding Assembly 
code, were needed to ease the development of software 
applications. 

Different solutions have been considered, ranging 
from the development of a completely new ad-hoc lan- 
guage to the use of a code generator. Some considera- 
tions [8] led to the choice of a code generator based on 
the C++ object oriented language: its only drawback 
is the low level of optimization achievable in a single 
pass (generally compilers use two passes). 

The main disadvantage of a compiler-based solution 
lays in the need for a complete definition of a new lan- 
guage, which must be able to handle not only parallel 
statements, but also some other sequential functions 
(such as serial operations, data I/O, input of data from 
the user, memory management, etc.) which are of ba- 
sic importance although not dealing with the specific 
SIMD extension. Conversely, a code generator may 
inherit these capabilities from the chosen high-level 
language and thus its implementation is considerably 
less complex than the former. Moreover, in this second 
case the efficiency in the development of applications is 
significantly increased, since the programmer does not 
have to learn a new language but only its parallel ex- 
tensions. Moreover, the use of an object oriented lan- 
guage eases the programmer task since the operands 
acting on the new objects can be used intuitively by 
the application programmer thanks to the possibility 
of overloading known operators (such as ’+’, ’-’, ’*’, ...). 
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As shown in figure 4, the complete sequence of oper- 
ations required to build a PAPRICA-3 Assembly pro- 
gram is the following: first the extended C++ code 
is written and compiled; then the executable obtained 
is run and the PAPRICA-3 Assembly code is gener- 
ated. The generation of Assembly code was preferred 
with respect to the generation of binary machine code, 
thus requiring a further processing step (PAPRICA-3 
Assembler) to get the final binary code. This choice al- 
lows a faster and more efficient debugging of the code- 
generation functions, as well as a simpler implemen- 
tation of the following global optimization step, since 
in the Assembly code also comments are automati- 
cally included to ease program comprehension. More- 
over, since PAPRICA-3 has been conceived as a real- 
tame image processor, a code optimizer can be used 
to further improve the generated code. Finally the 
PAPRICA-3 Assembler is used to produce the binary 
machine code. 

3.2 Assembly Code Optimization 
The optimization process is divided into two main 

steps: a deterministic one, performed on the initial 
assembly code, and a stochastic one, iterated on the 
result of the previous step. The first step is used to 
reduce both execution time and code size and exploits 
well known traditional optimization techniques [l]; on 
the other hand, the stochastic step tends to improve 
the efficiency of the Assembly code exploiting the char- 
acteristics of the pipeline structure, the specific in- 
struction set, or, more generally, the intrinsic paral- 
lelism of each instruction [14]. This process is driven 
by the user choice about the cost function: execution 
time, code size, or a given combination of both. 

3.2.1 Deterministic Optimization 

This first step is aimed to the application of rules that 
will certainly lead to shorter and faster versions of the 
program. The techniques used are: Invariant Code 
Motion, and Removal of Jumps. 

3.2.2 Stochastic Optimization 

Since in the optimization phase no data are available, 
data-dependent branches cannot be solved (no branch 
prediction is here made). For this reason, the code is 
divided into blocks, which are defined as code segments 
without data-dependent conditional control-flow con- 
structs. Each block is optimized independently of the 
others: a first module of the optimizer tool splits the 
code into blocks, and sends them to independent pro- 
cesses in charged of the optimization, as shown in fig- 

ure 5. Finally the optimized blocks are re-assembled 
and the final program is generated. 

Each block is optimized following an iterative 
stochastic approach (as opposed to traditional [9] 
polynomial solutions [3, 61): at the i-th iteration, N ( i )  
new programs are generated by the consecutive appli- 
cation of R(i) rules (drawn randomly from a given set) 
to each program of the (i - 1)-th generation. The ones 
performing better than a given threshold T ( i )  are kept 
and will form the i-th generation, while the other are 
discarded. 

Since the population at  the first iteration is com- 
posed by only the original block, at the beginning of 
the process (when i is small) the number of rules ap- 
plied, R(i),  is high, thus allowing a large spreading of 
the initial population. As soon as i becomes large, the 
number of rules applied to the same block decreases 
to 1, for a fine tuning of the solution (see figure 6.a). 
A linear slope of R(i)  has been chosen to simplify the 
development of the tool, but more complex functions 
are under evaluation. 

Figure 6: Qualitative behavior of (a)  the number of 
rules applied consecutively to a single block, (b) the 
threshold T( i )  as a function of the iteration number i 

Figure 6.b shows a qualitative behavior of threshold 
T( i ) ,  which, starting from a value twice as large as the 
cost featured by the initial program, decreases linearly 
with i (the slope of T( i )  determines the convergence 
speed). This implies that at the beginning of the it- 
erative process (i small), solutions with a cost higher 
than the initial can be kept (this is of basic importance 
to escape from local minima), while in the following 
iterations a threshold limits the number of candidates 
and keeps only the best solutions. At each iteration 
the block used to generate the new population is also 
included in the evaluation process, in order to avoid 
jittering from the optimal solution that may have been 
eventually detected. The number of iterations of the 
stochastic process and the slope of T ( i )  is a function 
of the length of the block to be optimized: in the first 
version its dependence is inversely proportional to the 
iteration number. 

The performance of each new program is deter- 
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Figure 4: The complete sequence of operations required to build a PAPRICA-3 executable 
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Figure 5: Block diagram of the stochastic code optimization 

mined using PiPE, a tool that allows to determine 
the performance of a code segment (i.e. the number 
of clock cycles required for a complete run). Upon 
initialization, PiPE reads a description of the internal 
architecture of the processor, such as pipeline struc- 
ture, structural, data, and control hazards [12], and 
the instruction set encoding. Then the list of instruc- 
tions of a given block is sent to the PiPE tool, which 
computes and returns the total number of clock cycles 
required to  run that segment of code. 

Each rule can move, modify, add, or remove in- 
structions. Every action is fully reversible, thus allow- 
ing to return to the originating state. The elemen- 
tary rules used are: Instruction Scheduling, Instruc- 
tion Alignment, Loop Fusion and Breaking, Loop Un- 
rolling and Rolling, Instruction Fusion and Breaking, 
Multiple Assignment Removal, Common Subexpres- 
sion Elimination, Registers Reallocation. 

3.2.3 Parallel Implementation of the Code 
Optimizer 

Since the major drawback of a stochastic approach 
to  code optimization is the high computational power 

-4 Final 

(in terms of both memory and CPU time), a paral- 
lel version of the optimizer has been developed. The 
development of the parallel version started with the 
analysis of the system requirements and performance: 

0 the CPU time spent in the evaluation of the per- 
formance of a given segment of assembly code is 
up to 90% of the overall CPU time; 

0 the larger the number of iterations, the better 
the quality of the result, but also the larger the 
amount of memory required. 

Different approaches for the development of the 
parallel version of the optimizer were considered (code 
splitting and assembling is anyway a serial step which 
is performed by a single master processor). The ap- 
proach followed in the development of the current par- 
allel version (using standard MPI libraries) is based 
on the distribution of the performance evaluation step 
only: a master processor splits the code into blocks 
and generates the new blocks to be evaluated. The 
new blocks are queued and sent to different processors 
for the evaluation of their performance. When a pro- 
cessor completes the evaluation phase, it returns the 
number of clock cycles to the master node and signals 
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its availability to evaluate a new code segment. Due to 
the different computational power required by (2) the 
evaluation phase (90%) and (ii) the rest of the pro- 
cessing, this approach balances the load even in the 
case of a non-homogeneous cluster of nodes. 

The rules that are currently operative in the first 
version of the tool and that have been used in the 
examples described in this work are: Invariant Code 
Motion, Removal of Jumps, Instruction Scheduling, 
Instruction Alignment, Loop Fusion and Breaking, 
Loop Unrolling and Rolling, while Instruction Fusion 
and Breaking, Multiple Assignment Removal, Com- 
mon Subexpression Substitution, Registers Realloca- 
tion, are currently under test. The future integration 
of these rules will lead to a higher degree of optimiza- 
tion. 

4 Applications and Performance 
This section describes a practical application of 

PAPRICA-3 and compares its performance with and 
without pipeline and with commercial processors. The 
application proposed is part of an automatic handwrit- 
ing recognizer for bank cheques called HACRE [lo], 
which is made of two major blocks strictly interact- 
ing: an image preprocessor and neural recognizer and 
J context analysis subsystem. The former is imple- 
mented on PAPRICA-3, while the latter, which uses 
the redundancy contained in the amount written twice 
to reduce error probability, runs on a commercial PC 
but is not described here. Refer to [lo] for a complete 
and more detailed description. 

The proposed system and its component blocks are 
representative of the algorithms used in a wide range 
of applications of image processing, such as: hand- 
writing recognition [7, 131, mailing address interpreta- 
tion, document analysis, signature verification, bank- 
ing documents processing, quality control, etc. 

The problem of handwriting recognition is a strate- 
gic, although quite challenging problem. Besides the 
classical problems encountered in reading machine- 
printed text, such as word and character segmenta- 
tion and recognition, the domain of handwritten text 
recognition has to deal with other problems such as, 
for instance, the evident similarity of some characters 
with each other, the unlimited variety of writing styles 
and habits of different writers, and also the high vari- 
ability of character shapes issued from the same writer 
over time. This are few of the reasons why handwrit- 
ing recognition requires very powerful computing sys- 
tems, mainly to deal with real-time requirements. 

The image preprocessor and neural recognizer are 
made of three cascaded subsystems: a mechanic- 
optical scanner, to acquire a bit-map image of the 

Figure 7: Block diagram of the image preprocessor 
and neural recognizer. 

cheque; an image preprocessor for preliminary filter- 
ing, scaling, and thresholding of the image; a neural 
subsystem, based on an ensemble of neural networks, 
which detect character centers and provide hypotheses 
of recognition, for each detected character. 

The second and third blocks are both executed on a 
number of PAPRICA-3 chips (two, in the prototype) 
to cope with the tight real-time requirements of the 
application (target speed is more than 10 cheques per 
second). As shown in fig. 7, they are made of the 
cascade of the blocks listed below. 

1 the WINDOW EXTRACTOR acquires the input image 
from the SCANNER, at a resolution of 200dpi, gray 
scale, 16 levels. The scanner is an 876-pixel linear 
CCD scanned mechanically over the image, at  a 
speed of 2m/s (equivalent to about 1,200 charac- 
ters/s). Character recognition takes place in two 
smaller areas of known coordinates, containing 
the legal and the courtesy amounts,  respectively. 
These areas, 128 x 500 and 128 x 1500 pixels in 
size, respectively, are extracted from the scanned 
image by means of an ad-hoc CCD controller. 
The system has to process about 2.8 Mpixel/s of 
data. 

2. the FILTER block computes a simple low-pass fil- 
ter with a 3 x 3 pixel kernel. 

3. the BRIGHTNESS block compensates for the non- 
uniform detector sensitivity and paper color. A 
pixel-wise adaptive algorithm shifts the level of 
white to a pre-defined value and computes the 
contrast, while the image is scanned. White level 
and contrast are periodically damped, to reduce 
the influence of very bright and very black small 
spots. 

4. the THRESHOLD block converts the gray-scale im- 
age, after compensation, into a B/W image; the 
image is compared against an adaptive threshold 
which is function of both the white level and the 
contrast. 

5. the BASELINE block detects the baseline of the 
handwritten text, which is an horizontal stripe in- 
tersecting the text in a known position, as shown 

112 

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:05 from IEEE Xplore.  Restrictions apply. 



Figure 8: Preprocessing steps of handwritten images: 
a) original image, 200 dpi, 16 gray levels; b) low-pass 
filtered image; c) brightness compensation; d) thresh- 
olded image; e) spot noise removal; f) thinning, after 
6 steps; g) finding baseline (at the left side of the im- 
age). h) features detection (features are tagged by 
small crosses). i) centering detection: neural (solid 
lines) and feature-based (dashed lines). 

6. 

7. 

8. 

in fig. 8.g (left side). Unlike the other steps of 
preprocessing, baseline cannot be detected only 
by means of local algorithms (namely, algorithms 
with limited neighborhood), as it is a global pa- 
rameter of the entire image, therefore it is avail- 
able only at the end of the image, as shown in 
fig. 8.13. 
the THINNING block reduces the width of strokes 
to 1 pixel. Thinning is a morphological opera- 
tor [16] which reduces line width, while preserving 
stroke connectivity. Thinning is required to prop- 
erly identify character features (see next block). 
the FEATURES block detects and extracts from the 
image a set of 12 useful stroke features, which are 
helpful for further character recognition. Features 
are not used alone, but together with the neural 
recognizer to improve recognition reliability, as 
described in [lo]. 
the FEATURE REDUCTION block reduces the num- 

ber of features, by removing both redundant and 
useless features. Examples of redundant features 
are evident in the vertical stroke of digit “9” 
shown in fig. 8.h. 

9. the ZOOM block evaluates the vertical size of the 
manuscript and scales it in size to approximately 
25-30 pixels. Scaling the size eases the task of 
the neural recognizer, as the number of weights 
required for proper recognition is reduced. 

10. the COMPRESS block reduces image size further by 
a factor 2, approximately, by means of an ad-hoc 
topological transformation which does not pre- 
serve image shape, although preserves its connec- 
tivity. At this point, after all preprocessing steps, 
the B/W image is ready for the following neural 
recognition steps. Each character is compressed 
into 252 bits, which are then reorganized into four 
adjacent processor memory words (4 x 64 bits), to 
optimize the performance of the neural detector. 

l i .  the CENTERING DETECTOR takes care of detecting 
the location of character centers. Most handwrit- 
ing recognizers [7, 13, 151 require an indepen- 
dent character segmenter which segments each 
word into individual characters. Unfortunately 
segmentation is a quite difficult task [7, 131, es- 
pecially for handwritten texts, as there is no 
clear separation between consecutive characters. 
For this reason, we have decided to use an in- 
tegrated segmentation and recognition (ISR) ap- 
proach [lo], in which character segmentation is 
tightly integrated with character recognition, and 

12. 

no preliminary segmentation is required. This ap- 
proach has one main advantage: localization of 
character centers can be partially implemented by 
means of a neural network, therefore the system 
can self-learn to detect centers from a set of ap- 
propriate training examples (training set). This 
further reduces development time. 

In details, the CENTERING DETECTOR is made of 
two independent blocks: a neural detector: a 
two-layer (252 x 30 x 3 x 1) WRBF+MLP net- 
work [15, 111, trained to detect character centers, 
and a feature-based detector, which attempts to 
locate character centers according to the distri- 
bution and occurrence frequency of character fea- 
tures. Fig. 8.i shows the results of the two center 
detectors. It is clear that each character center is 
localized at more than one position, but the con- 
text analysis subsystem [lo] easily filters them. 
the CHARACTER RECOGNIZER recognizes each indi- 
vidual character, using a neural network trained 
from an appropriate training set. At this stage 
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Image preprocessor 
WINDOW EXTRACTOR + FILTER 
BRIGHTNESS 
THRESHOLD 
THINNING 
BASELINE 
FEATURES 
ZOOM 
COMPRESSt 
OTHER (VARIOUS) 
TOTAL PREPROCESSING 

of processing, context is not yet considered, as 
it is used by the context based subsystem de- 
scribed in [lo]. The neural network is a two-layer 
(252 x 75 x 1) WRBF network [15, 111, which is 
“triggered” for each character center detected by 
the CENTERING DETECTOR. 
As shown in table 10, the CHARACTER RECOGNIZER 
is the slowest piece of code, due to the large num- 
ber of synaptic weights involved. Fortunately it 
is computed at a relatively slow rate, namely ev- 
ery 15 lines, in the average, therefore its effects 
on computing time are limited. 

Table 10 lists execution times of the various blocks 
and compares the performance of HACRE with and 
without pipelining, with and without optimization, 
and with a Pentium 90 and a Sparcstation 10 run- 
ning the same algorithms. Figures for PAPRICA-3 
are given for a system with 64 PES, with and without 
using the pipeline, considering a 15ns cycle time plus 
30ns memory access time, and a 50ns cycle time plus 
50ns memory access time, respectively. 

All programs have also been tested on both a 
Pentium and a Sparc, using the same algorithms 
based on mathematical morphology, which are well 
suited to the specific problem of bitmap processing 
and character recognition. Some of them (FILTER, 
BRIGHTNESS, THRESHOLD, NEURAL RECOGNIZER) could 
be implemented more efficiently on sequential com- 
puter using more traditional methods; these have been 
implemented on the Pentium and their performance 
listed in table 10 for comparison. 

The performance of PAPRICA-3 are two to three 
orders of magnitude faster than that of Pentium and 
Sparc, for almost all the programs considered; this dif- 
ference reduces slightly when the system has to crunch 
numbers with many bits (typically, 32 bits fixed point, 
or 64 bits floating points). 

As the first eight programs are relatively short ones, 
they do not affect the performance of the whole appli- 
cation very much, but their performance is presented 

PAPRICA-3 
worst case 

psfline ms/check 
1.38 2.76 
2.95 5.90 
0.91 1.82 
8.34 16.7 
4.24 8.28 
3.05 6.10 
2.24 4.48 
30.8 61.6 
3.25 6.50 
57.2 114 

Pentium 90 MHz 
morphol. I ad-hoc 

7,390 
4,320 
9,490 

21,350 
3,330 
51,200 

820 160 

Sparc 10 
morphol. 
ps/line 
1,370 
1,660 
570 

7,850 
3,890 
10,430 

760 
24,950 
5,020 
56,500 

as a comparison between systems. Note that running 
the small programs individually exposes them to the 
pipeline fill up overhead (the time it takes to reach a 
steady state) , which somewhat penalizes the pipeline 
solution (up to 5-10% overhead). The real speedups of 
those pieces of code inserted in a larger program are 
higher than what shown in the table. 

5 Conclusions 
Thanks to the specific solutions adopted, the 

PAPRICA-3 system fully exploits the spatial paral- 
lelism of the processor array and the intrinsic paral- 
lelism found in the sequence of assembly instructions. 
The code generator allows the user to develop applica- 
tions without worrying about the spatial parallelism of 
the machine, while the assembly code optimizer is used 
to improve the final code exploiting instruction-level 
parallelism. Due to the high computational power re- 
quired for code optimization, the optimizer is useful 
only in the final optimization of programs whose exe- 
cution time is a key parameter. 

Recently not only the application to bank checks 
has been developed but the use of PAPRICA-3 to 
speed-up the real-time processing of images for the 
automatic guidance of a passenger car [5] has been 
investigated as well. Images are acquired by cam- 
eras installed on board of ARGO, a Lancia Thema 
passenger car, and are processed in order to detect 
the lane position and to localize possible obstacles [4]. 
Within this framework, the PAPRICA-3 system is 
now being compared to general-purpose systems, and 
in particular with a Pentium 200 MHz with MMX 
technology. From the preliminary results obtained by 
the first experiments on low-level image processing, 
the PAPRICA-3 system is from 2 to 3 times faster 
than the Pentium processor. The experiments deal 
mainly with low-level processing of images, where both 
systems can take advantage of their internal struc- 
ture; more precisely, the MMX pentium is being pro- 
grammed directly at assembly level since up to now 
no public domain C compiler (GCC ver. 2.7.2) does 
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not support MMX-based instructions. 
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