
A Dedicated Image Processor
Exploiting Both Spatial and Instruction-Level Parallelism*

A.Broggi, M.Bertozzi, G.Conte F.Gregoretti, R.Passerone, C. Sansoit , L.M .Reyneri

Dipartimento di Ingegneria dell’Informazione
UniversitA di Parma
1-43100 Parma, Italy

Abstract
This paper presents the P A P R I C A - 3 massively par-

allel S I M D system, designed as n hardware accelerator
f o r real-tim.e image processing tasks. It is composed of
0, lin,enr array of single- hit processsing elements, includ-
ing a fairly complex pipelined controller, thus allowing
the sys tem t o take advantage also of the intrinsic par-
allelism in a program.

A program,ming en,ciironment has been developed t o
ease the prototyping of applications: a code generator
converts C++ programs into assembly, and code op-
t imization is performed directly at the assembly level,
following a genetic approach.

T h e effectiveness of the processor, as well as o f the
code optimizer, are discussed with the aid of an ap-
plication example f o r handwritten character recogni-
t ion.

1 Introduction
This paper describes PAPRICA-3, a real-time hard-

ware accelerator for low-level image processing appli-
cations. The system is designed to be interfaced to
a conventional microprocessor to relieve it from the
high computational load required by the first steps of
image processing algorithms (filtering, noise removal,
contrast enhancement, features extraction, etc.). The
system is able to capture a serial input data stream
coming from an external camera (or pair of stereo cam-
eras), to process it in parallel on a line-by-line basis,
and to store the resulting images either on a dedicated
dual-port memory, accessible also from the conven-
tional processor, or on a monitor.

One of the design goals was to build a low-cost,
high-performance system, dedicated to embedded ap-
plications. PAPRICA-3 was initially formulated as the
core of a high speed system for bank cheques process-

‘This work was partially supported by the CNR and the
Italian Ministry for University and Scientific Research 40%.

0-8186-7987-5197 $10.00 0 1997 IEEE 106

Dipartimento di Elettronica
Politecnico di Torino
1-10129 Torino, Italy

ing called HACRE (HAndwritten Character REcogni-
tion). The main task of the system was to perform
automatic recognition of the amount handwritten on
the legal and courtesy fields of a bank cheque, at a
rate of about ten cheques per second. A solution to
the problem is to design a dedicated parallel processor
with an instruction set tailored to low-level image pro-
cessing tasks. To meet the cost and size constraints
typical of embedded systems, the hardware accelerator
has to be composed of the smallest possible amount
of components, with a single-chip unit as the most
desirable solution.

The heart of PAPRICA-3 consists of a linear ar-
ray of processing elements (PES), each one devoted
to a single line pixel. At any time, all PES execute
the same instruction. The system operates on black
& white, grey-scale or color bitmap images, so that a
pixel is defined as a multi-bit value carrying informa-
tion stored on different image bit-planes. A complete
image bit-plane can be seen in different ways, for ex-
ample as an independent black & white image, as part
of one or more grey-scale or color images, or as an in-
termediate result of operations performed on any of
the above objects.

Each P E can perform logical or morphological oper-
ations on an input pixel: logical operations compute a
one-bit result depending on values stored on different
image planes of the same pixel, while morphological
operations evaluate a one-bit result based on the val-
ues stored in the neighboring pixels on a single image
plane, using the mathematical morphology approach
proposed in [16].

The execution unit, which is common to the whole
processor array, controls program flow and can per-
form tests, branches, conditional execution of program
segments, loops, and synchronization statements. To
speed up program execution, a fairly complicated
pipeline scheme has been adopted to exploit as much

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:05 from IEEE Xplore. Restrictions apply.

instruction level parallelism as possible. The program
is stored completely in an internal program memory
(512 instructions wide) writable from the external pro-
cessor, so there is no need for internal cache memory.

A Status Register File can be used to compute and
store global parameters of the processed images, such
as statistics, degrees of matching between an input and
reference images, etc.. It is accessible to the external
processor and is aimed to increase execution speed of
a broad class of neural algorithms.

Two versions of the PAPRICA-3 system are un-
der development, having the same architecture: the
first one is dedicated to the above mentioned hand-
writing recognition application and in the following
will be also referenced with the name HACRE, while
the second one is of a general purpose aimed to build
an image processing system based on a single PCI
bus PC expansion board and will be called generically
PAPRICA-3. Two different ASIC chips will therefore
be built:

HACRE is a single-chip system. The chip is com-
posed of 64 PES, an input video interface ded-
icated to a linear image scanner, a lkx64 bits
internal image memory and an internal 256 ele-
ments Status Register File. It interfaces to a 32
bit microcontroller with a minimum amount of
external logic.

PAPRICA-3 is a modular system. Each chip is
composed of 32 PES, a generic input/output video
interface and does not include any internal image
memory and the Status Register File. Instead,
the chip has a fast interface to an external image
memory and a Status Register File, to achieve
two goals: connecting several chips together, it is
possible to create a system with a varying num-
ber of PES; an external but fast image memory
will not decrease too much the performances com-
pared with an internal memory, but the amount of
memory can be much higher, to cope with mem-
ory demanding applications.

A programming environment has been developed to
ease prototyping of applications on PAPRICA-3. Ap-
plication programs are written in C++; a code genera-
tor first converts C++ statements into assembly code;
subsequently, optimization is performed on the gener-
ated assembly code. The optimizer performs both de-
terministic optimizations following the standard well
known techniques and stochastic techniques to im-
prove performance of the pipeline structure and take
advantage of the intrinsic instructions parallelism.

This paper presents the whole project which started
about 3 years ago and involved two reserach units:
Parma University and Torino Politechnic. Next sec-
tion describes the hardware system and architecture;
section 3 presents the programming environment and
details the code optimization process, describing also
its implementation on a parallel cluster of worksta-
tions; section 4 describes the main application that
motivated the development of PAPRICA-3; and fi-
nally section 5 concludes the paper with some remarks.

2 Hardware System Description
As shown in figure 1, the kernel of PAPRICA-3 is

a linear array of Q identical 1-bit PES connected to
an image memory via a bidirectional Q-bit wide bus.
The image memory is organized in addressable words
whose length matches that of the processor array; each
word contains data relative to one binary pixel plane
(also called layer) of one line of an image (Q bits wide),
and a single cycle is needed to load an entire line of
data into the PE’s internal registers. When executing
a program, the correspondence between the line num-
ber and the pixel plane of a given image and the abso-
lute line address is computed in hardware by means of
data structures, named Image Descriptors, stored in
the Control Unit. An Image Descriptor is a memory
pointer built up of three parts: a base address, a line
counter and a page counter. Line and page counters
can be reset or incremented by a specified amount un-
der program control. Two counters, called M and N,
are not directly related to image memory addressing,
but can be used to modify program flow: instructions
are provided to preset, increment and test them.

Data are transferred into internal registers of each
PE, processed and explicitly stored back into memory
according to a RISC-like processing paradigm.

Each PE processes one pixel of each line and is com-
posed of a Register File and a 1-bit Execution Unit.
The core of the instruction set is based on morpho-
logical operators [16]: the result of an operation de-
pends, for each processor, on the value of pixels in a
given neighborhood (reduced 5 x 5, as sketched by the
grey squares in figure 1). Data from E, EE, W and
WW directions (where EE and WW denote pixels two
bits apart in E and W directions) may be obtained
by direct connection with neighboring PES while all
other directions correspond to data of previous lines
(N, NE, NW, NN) or of subsequent lines (S, SE, SW,
SS). Operations on larger neighborhoods can be de-
composed 121 in chains of basic operations.

To obtain the outlined neighborhood, a number of
internal registers (16, at present) , called Morphological
Registers (MOR), have a structure which is more com-

107

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:05 from IEEE Xplore. Restrictions apply.

E f A

N f % n-bit inputfrom serial

camera
/ k lines of binary

image plane i

n-bit serial f/
output to

monitor

Figure 1: General architecture of the Processor Array

plex than that of a simple memory cell, and are actu-
ally composed of five 1-bit cells with a S+N shift reg-
ister connection. When a load operation from memory
is performed, all data are shifted northwards by one
position and the south-most position is taken by the
new line from memory. In this way, data from a 5 x 5
neighborhood are available inside the array for each
PE, at the expense of a two lines latency. A second
set of registers (48, at present), called Logical Regis-
ters (LOR), is only 1-bit wide. On LORs and on the
central bit of MORS it is possible to perform a dif-
ferent portion of the instruction set which comprises
logical and algebraic operations.

An important characteristic of the system is the
integration of a serial-to-parallel 1/0 device, called
Video Interface (VIF), which can be connected to a
conventional input imaging device (camera, linear ar-
ray) and/or to a monitor. The interface is composed
of two 8 bit, Q stages shift register which serially
and asynchronously loads/stores a new line of the in-
put/output image during the processing of the pre-
vious/next line. Two instructions enable the bidirec-
tional transfer between the PE’s internal registers and
the VIF, ensuring also proper synchronization with
the camera and the monitor.

Image processing algorithms consist of sequences
of low level steps, such as filters, convolutions, etc.,
to be performed line by line over the whole image.
This means that the same block of instructions has
to be repeated many times, and instruction fetching
from an external memory is an important source of
overhead. Hence we chose to pre-load each block of
instructions into an internal memory, named Writable
Control Store (WCS, 512 words x 32 bits), and to
fetch instructions from there. In this way it is pos-
sible to obtain the performance of a fast cache with
a hit ratio close to 1, at a fraction of the cost and
complexity.

Two inter-processor communication mechanisms
are also available to exchange information among PES
which are not directly connected. The first one is the
Status Evaluation Network (SEN), shown in figure 2,
to which each processor sends the contents of one of its
registers (selectable under program control) and which
provides a Status Word divided into two subfields. The
first one is composed of two global flags, named SET
and RESET, which are true when the contents of the
specified register are all Is or all Os, respectively. The
second one is the COUNT field which is set equal to
the number of processing elements in which the con-

108

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:05 from IEEE Xplore. Restrictions apply.

tent of the specified register is 1. This global informa-
tion may be accumulated and stored into the Status
Register File and used to conditionally modify the pro-
gram flow. As an alternative, it may be reloaded into
the PE’s Register File for further processing.

Count Ones
I I -_

PE 0 PE 1 PE 2 PE 3

Figure 2: The Status Evaluation Network

fiP RI R2 R3

Figure 3: The Interprocessor Communication Network

The second communication mechanism is the Inter-
processor Communication Network (ICN), shown in
figure 3, which allows global and multiple communi-
cation among clusters of PES. The topology of the
communication network may be varied during pro-
gram execution. In fact, each P E drives a switch that
enables or disables the connection between pairs of ad-
jacent processors. The PES may thus be dynamically
grouped into clusters, each P E can broadcast a register
value to the whole cluster within a single instruction.
This feature can be very useful in algorithms involving
seed-propagation techniques, and in the emulation of
pyramidal (hierarchical) processing.

The Image Memory and the Status Register File
are external to the integrated circuit in PAPRICA-3,
in order to provide an higher degree of modularity and
flexibility at system level, while HACRE provides an
internal 1Kx64 bits Image Memory and 256 Status
Registers. Besides being used to conditionally modify
program flow, the Status Register File can be read

by the external processor. This has been used in the
HACRE system to implement a neural network, by
computing the degree of matching between an image
and a set of templates (weight matrices).

As mentioned earlier, PAPRICA-3 was conceived as
a modular, high-performance, low-cost and small size
image processing system. The first PAPRICA-3 board
is currently under development. It will be a single PCI
bus PC expansion board. It will incorporate: an array
of 128 PES (4 chips); a PCI 32 bit bus master con-
troller implemented in FPGA; a 64Kx 128 bits, 20ns,
Image Memory; a Status Register File (a FPGA and
a memory chip); a simple PAL video camera interface
(a single standard chip including an A/D converter,
sync separators and pixel and line clock generators)
connected to the input VIF.

3 The Programming Environment
3.1 High Level Programming Language

The intrinsic complexity of Assembly language, es-
pecially when combined with the SIMD computational
model, produces a low programming efficiency; a high
level programming language, together with a software
tool for the generation of its corresponding Assembly
code, were needed to ease the development of software
applications.

Different solutions have been considered, ranging
from the development of a completely new ad-hoc lan-
guage to the use of a code generator. Some considera-
tions [8] led to the choice of a code generator based on
the C++ object oriented language: its only drawback
is the low level of optimization achievable in a single
pass (generally compilers use two passes).

The main disadvantage of a compiler-based solution
lays in the need for a complete definition of a new lan-
guage, which must be able to handle not only parallel
statements, but also some other sequential functions
(such as serial operations, data I/O, input of data from
the user, memory management, etc.) which are of ba-
sic importance although not dealing with the specific
SIMD extension. Conversely, a code generator may
inherit these capabilities from the chosen high-level
language and thus its implementation is considerably
less complex than the former. Moreover, in this second
case the efficiency in the development of applications is
significantly increased, since the programmer does not
have to learn a new language but only its parallel ex-
tensions. Moreover, the use of an object oriented lan-
guage eases the programmer task since the operands
acting on the new objects can be used intuitively by
the application programmer thanks to the possibility
of overloading known operators (such as ’+’, ’-’, ’*’, ...).

109

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:05 from IEEE Xplore. Restrictions apply.

As shown in figure 4, the complete sequence of oper-
ations required to build a PAPRICA-3 Assembly pro-
gram is the following: first the extended C++ code
is written and compiled; then the executable obtained
is run and the PAPRICA-3 Assembly code is gener-
ated. The generation of Assembly code was preferred
with respect to the generation of binary machine code,
thus requiring a further processing step (PAPRICA-3
Assembler) to get the final binary code. This choice al-
lows a faster and more efficient debugging of the code-
generation functions, as well as a simpler implemen-
tation of the following global optimization step, since
in the Assembly code also comments are automati-
cally included to ease program comprehension. More-
over, since PAPRICA-3 has been conceived as a real-
tame image processor, a code optimizer can be used
to further improve the generated code. Finally the
PAPRICA-3 Assembler is used to produce the binary
machine code.

3.2 Assembly Code Optimization
The optimization process is divided into two main

steps: a deterministic one, performed on the initial
assembly code, and a stochastic one, iterated on the
result of the previous step. The first step is used to
reduce both execution time and code size and exploits
well known traditional optimization techniques [l]; on
the other hand, the stochastic step tends to improve
the efficiency of the Assembly code exploiting the char-
acteristics of the pipeline structure, the specific in-
struction set, or, more generally, the intrinsic paral-
lelism of each instruction [14]. This process is driven
by the user choice about the cost function: execution
time, code size, or a given combination of both.

3.2.1 Deterministic Optimization

This first step is aimed to the application of rules that
will certainly lead to shorter and faster versions of the
program. The techniques used are: Invariant Code
Motion, and Removal of Jumps.

3.2.2 Stochastic Optimization

Since in the optimization phase no data are available,
data-dependent branches cannot be solved (no branch
prediction is here made). For this reason, the code is
divided into blocks, which are defined as code segments
without data-dependent conditional control-flow con-
structs. Each block is optimized independently of the
others: a first module of the optimizer tool splits the
code into blocks, and sends them to independent pro-
cesses in charged of the optimization, as shown in fig-

ure 5. Finally the optimized blocks are re-assembled
and the final program is generated.

Each block is optimized following an iterative
stochastic approach (as opposed to traditional [9]
polynomial solutions [3, 61): at the i-th iteration, N (i)
new programs are generated by the consecutive appli-
cation of R(i) rules (drawn randomly from a given set)
to each program of the (i - 1)-th generation. The ones
performing better than a given threshold T (i) are kept
and will form the i-th generation, while the other are
discarded.

Since the population at the first iteration is com-
posed by only the original block, at the beginning of
the process (when i is small) the number of rules ap-
plied, R(i), is high, thus allowing a large spreading of
the initial population. As soon as i becomes large, the
number of rules applied to the same block decreases
to 1, for a fine tuning of the solution (see figure 6.a).
A linear slope of R(i) has been chosen to simplify the
development of the tool, but more complex functions
are under evaluation.

Figure 6: Qualitative behavior of (a) the number of
rules applied consecutively to a single block, (b) the
threshold T(i) as a function of the iteration number i

Figure 6.b shows a qualitative behavior of threshold
T(i) , which, starting from a value twice as large as the
cost featured by the initial program, decreases linearly
with i (the slope of T(i) determines the convergence
speed). This implies that at the beginning of the it-
erative process (i small), solutions with a cost higher
than the initial can be kept (this is of basic importance
to escape from local minima), while in the following
iterations a threshold limits the number of candidates
and keeps only the best solutions. At each iteration
the block used to generate the new population is also
included in the evaluation process, in order to avoid
jittering from the optimal solution that may have been
eventually detected. The number of iterations of the
stochastic process and the slope of T (i) is a function
of the length of the block to be optimized: in the first
version its dependence is inversely proportional to the
iteration number.

The performance of each new program is deter-

110

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:05 from IEEE Xplore. Restrictions apply.

Optimized
PAPRICA-3 optimizer

Assembly code PAPRICA-3 PAPRICA-3 dz' 1-k Assembler binarycode
PAPRICA-3

Assembly code
Execution

Code Generation Optional Code Optimization Machine Code Generation

Figure 4: The complete sequence of operations required to build a PAPRICA-3 executable

Set of
Rules

Assembly Code
Stochastic Optimizer

Performance
Evaluation

and Threshold

Assembler

Figure 5: Block diagram of the stochastic code optimization

mined using PiPE, a tool that allows to determine
the performance of a code segment (i.e. the number
of clock cycles required for a complete run). Upon
initialization, PiPE reads a description of the internal
architecture of the processor, such as pipeline struc-
ture, structural, data, and control hazards [12], and
the instruction set encoding. Then the list of instruc-
tions of a given block is sent to the PiPE tool, which
computes and returns the total number of clock cycles
required to run that segment of code.

Each rule can move, modify, add, or remove in-
structions. Every action is fully reversible, thus allow-
ing to return to the originating state. The elemen-
tary rules used are: Instruction Scheduling, Instruc-
tion Alignment, Loop Fusion and Breaking, Loop Un-
rolling and Rolling, Instruction Fusion and Breaking,
Multiple Assignment Removal, Common Subexpres-
sion Elimination, Registers Reallocation.

3.2.3 Parallel Implementation of the Code
Optimizer

Since the major drawback of a stochastic approach
to code optimization is the high computational power

-4 Final

(in terms of both memory and CPU time), a paral-
lel version of the optimizer has been developed. The
development of the parallel version started with the
analysis of the system requirements and performance:

0 the CPU time spent in the evaluation of the per-
formance of a given segment of assembly code is
up to 90% of the overall CPU time;

0 the larger the number of iterations, the better
the quality of the result, but also the larger the
amount of memory required.

Different approaches for the development of the
parallel version of the optimizer were considered (code
splitting and assembling is anyway a serial step which
is performed by a single master processor). The ap-
proach followed in the development of the current par-
allel version (using standard MPI libraries) is based
on the distribution of the performance evaluation step
only: a master processor splits the code into blocks
and generates the new blocks to be evaluated. The
new blocks are queued and sent to different processors
for the evaluation of their performance. When a pro-
cessor completes the evaluation phase, it returns the
number of clock cycles to the master node and signals

111

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:05 from IEEE Xplore. Restrictions apply.

its availability to evaluate a new code segment. Due to
the different computational power required by (2) the
evaluation phase (90%) and (ii) the rest of the pro-
cessing, this approach balances the load even in the
case of a non-homogeneous cluster of nodes.

The rules that are currently operative in the first
version of the tool and that have been used in the
examples described in this work are: Invariant Code
Motion, Removal of Jumps, Instruction Scheduling,
Instruction Alignment, Loop Fusion and Breaking,
Loop Unrolling and Rolling, while Instruction Fusion
and Breaking, Multiple Assignment Removal, Com-
mon Subexpression Substitution, Registers Realloca-
tion, are currently under test. The future integration
of these rules will lead to a higher degree of optimiza-
tion.

4 Applications and Performance
This section describes a practical application of

PAPRICA-3 and compares its performance with and
without pipeline and with commercial processors. The
application proposed is part of an automatic handwrit-
ing recognizer for bank cheques called HACRE [lo],
which is made of two major blocks strictly interact-
ing: an image preprocessor and neural recognizer and
J context analysis subsystem. The former is imple-
mented on PAPRICA-3, while the latter, which uses
the redundancy contained in the amount written twice
to reduce error probability, runs on a commercial PC
but is not described here. Refer to [lo] for a complete
and more detailed description.

The proposed system and its component blocks are
representative of the algorithms used in a wide range
of applications of image processing, such as: hand-
writing recognition [7, 131, mailing address interpreta-
tion, document analysis, signature verification, bank-
ing documents processing, quality control, etc.

The problem of handwriting recognition is a strate-
gic, although quite challenging problem. Besides the
classical problems encountered in reading machine-
printed text, such as word and character segmenta-
tion and recognition, the domain of handwritten text
recognition has to deal with other problems such as,
for instance, the evident similarity of some characters
with each other, the unlimited variety of writing styles
and habits of different writers, and also the high vari-
ability of character shapes issued from the same writer
over time. This are few of the reasons why handwrit-
ing recognition requires very powerful computing sys-
tems, mainly to deal with real-time requirements.

The image preprocessor and neural recognizer are
made of three cascaded subsystems: a mechanic-
optical scanner, to acquire a bit-map image of the

Figure 7: Block diagram of the image preprocessor
and neural recognizer.

cheque; an image preprocessor for preliminary filter-
ing, scaling, and thresholding of the image; a neural
subsystem, based on an ensemble of neural networks,
which detect character centers and provide hypotheses
of recognition, for each detected character.

The second and third blocks are both executed on a
number of PAPRICA-3 chips (two, in the prototype)
to cope with the tight real-time requirements of the
application (target speed is more than 10 cheques per
second). As shown in fig. 7, they are made of the
cascade of the blocks listed below.

1 the WINDOW EXTRACTOR acquires the input image
from the SCANNER, at a resolution of 200dpi, gray
scale, 16 levels. The scanner is an 876-pixel linear
CCD scanned mechanically over the image, at a
speed of 2m/s (equivalent to about 1,200 charac-
ters/s). Character recognition takes place in two
smaller areas of known coordinates, containing
the legal and the courtesy amounts, respectively.
These areas, 128 x 500 and 128 x 1500 pixels in
size, respectively, are extracted from the scanned
image by means of an ad-hoc CCD controller.
The system has to process about 2.8 Mpixel/s of
data.

2. the FILTER block computes a simple low-pass fil-
ter with a 3 x 3 pixel kernel.

3. the BRIGHTNESS block compensates for the non-
uniform detector sensitivity and paper color. A
pixel-wise adaptive algorithm shifts the level of
white to a pre-defined value and computes the
contrast, while the image is scanned. White level
and contrast are periodically damped, to reduce
the influence of very bright and very black small
spots.

4. the THRESHOLD block converts the gray-scale im-
age, after compensation, into a B/W image; the
image is compared against an adaptive threshold
which is function of both the white level and the
contrast.

5. the BASELINE block detects the baseline of the
handwritten text, which is an horizontal stripe in-
tersecting the text in a known position, as shown

112

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:05 from IEEE Xplore. Restrictions apply.

Figure 8: Preprocessing steps of handwritten images:
a) original image, 200 dpi, 16 gray levels; b) low-pass
filtered image; c) brightness compensation; d) thresh-
olded image; e) spot noise removal; f) thinning, after
6 steps; g) finding baseline (at the left side of the im-
age). h) features detection (features are tagged by
small crosses). i) centering detection: neural (solid
lines) and feature-based (dashed lines).

6.

7.

8.

in fig. 8.g (left side). Unlike the other steps of
preprocessing, baseline cannot be detected only
by means of local algorithms (namely, algorithms
with limited neighborhood), as it is a global pa-
rameter of the entire image, therefore it is avail-
able only at the end of the image, as shown in
fig. 8.13.
the THINNING block reduces the width of strokes
to 1 pixel. Thinning is a morphological opera-
tor [16] which reduces line width, while preserving
stroke connectivity. Thinning is required to prop-
erly identify character features (see next block).
the FEATURES block detects and extracts from the
image a set of 12 useful stroke features, which are
helpful for further character recognition. Features
are not used alone, but together with the neural
recognizer to improve recognition reliability, as
described in [lo].
the FEATURE REDUCTION block reduces the num-

ber of features, by removing both redundant and
useless features. Examples of redundant features
are evident in the vertical stroke of digit “9”
shown in fig. 8.h.

9. the ZOOM block evaluates the vertical size of the
manuscript and scales it in size to approximately
25-30 pixels. Scaling the size eases the task of
the neural recognizer, as the number of weights
required for proper recognition is reduced.

10. the COMPRESS block reduces image size further by
a factor 2, approximately, by means of an ad-hoc
topological transformation which does not pre-
serve image shape, although preserves its connec-
tivity. At this point, after all preprocessing steps,
the B/W image is ready for the following neural
recognition steps. Each character is compressed
into 252 bits, which are then reorganized into four
adjacent processor memory words (4 x 64 bits), to
optimize the performance of the neural detector.

l i . the CENTERING DETECTOR takes care of detecting
the location of character centers. Most handwrit-
ing recognizers [7, 13, 151 require an indepen-
dent character segmenter which segments each
word into individual characters. Unfortunately
segmentation is a quite difficult task [7, 131, es-
pecially for handwritten texts, as there is no
clear separation between consecutive characters.
For this reason, we have decided to use an in-
tegrated segmentation and recognition (ISR) ap-
proach [lo], in which character segmentation is
tightly integrated with character recognition, and

12.

no preliminary segmentation is required. This ap-
proach has one main advantage: localization of
character centers can be partially implemented by
means of a neural network, therefore the system
can self-learn to detect centers from a set of ap-
propriate training examples (training set). This
further reduces development time.

In details, the CENTERING DETECTOR is made of
two independent blocks: a neural detector: a
two-layer (252 x 30 x 3 x 1) WRBF+MLP net-
work [15, 111, trained to detect character centers,
and a feature-based detector, which attempts to
locate character centers according to the distri-
bution and occurrence frequency of character fea-
tures. Fig. 8.i shows the results of the two center
detectors. It is clear that each character center is
localized at more than one position, but the con-
text analysis subsystem [lo] easily filters them.
the CHARACTER RECOGNIZER recognizes each indi-
vidual character, using a neural network trained
from an appropriate training set. At this stage

113

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:05 from IEEE Xplore. Restrictions apply.

Image preprocessor
WINDOW EXTRACTOR + FILTER
BRIGHTNESS
THRESHOLD
THINNING
BASELINE
FEATURES
ZOOM
COMPRESSt
OTHER (VARIOUS)
TOTAL PREPROCESSING

of processing, context is not yet considered, as
it is used by the context based subsystem de-
scribed in [lo]. The neural network is a two-layer
(252 x 75 x 1) WRBF network [15, 111, which is
“triggered” for each character center detected by
the CENTERING DETECTOR.
As shown in table 10, the CHARACTER RECOGNIZER
is the slowest piece of code, due to the large num-
ber of synaptic weights involved. Fortunately it
is computed at a relatively slow rate, namely ev-
ery 15 lines, in the average, therefore its effects
on computing time are limited.

Table 10 lists execution times of the various blocks
and compares the performance of HACRE with and
without pipelining, with and without optimization,
and with a Pentium 90 and a Sparcstation 10 run-
ning the same algorithms. Figures for PAPRICA-3
are given for a system with 64 PES, with and without
using the pipeline, considering a 15ns cycle time plus
30ns memory access time, and a 50ns cycle time plus
50ns memory access time, respectively.

All programs have also been tested on both a
Pentium and a Sparc, using the same algorithms
based on mathematical morphology, which are well
suited to the specific problem of bitmap processing
and character recognition. Some of them (FILTER,
BRIGHTNESS, THRESHOLD, NEURAL RECOGNIZER) could
be implemented more efficiently on sequential com-
puter using more traditional methods; these have been
implemented on the Pentium and their performance
listed in table 10 for comparison.

The performance of PAPRICA-3 are two to three
orders of magnitude faster than that of Pentium and
Sparc, for almost all the programs considered; this dif-
ference reduces slightly when the system has to crunch
numbers with many bits (typically, 32 bits fixed point,
or 64 bits floating points).

As the first eight programs are relatively short ones,
they do not affect the performance of the whole appli-
cation very much, but their performance is presented

PAPRICA-3
worst case

psfline ms/check
1.38 2.76
2.95 5.90
0.91 1.82
8.34 16.7
4.24 8.28
3.05 6.10
2.24 4.48
30.8 61.6
3.25 6.50
57.2 114

Pentium 90 MHz
morphol. I ad-hoc

7,390
4,320
9,490

21,350
3,330
51,200

820 160

Sparc 10
morphol.
ps/line
1,370
1,660
570

7,850
3,890
10,430

760
24,950
5,020
56,500

as a comparison between systems. Note that running
the small programs individually exposes them to the
pipeline fill up overhead (the time it takes to reach a
steady state) , which somewhat penalizes the pipeline
solution (up to 5-10% overhead). The real speedups of
those pieces of code inserted in a larger program are
higher than what shown in the table.

5 Conclusions
Thanks to the specific solutions adopted, the

PAPRICA-3 system fully exploits the spatial paral-
lelism of the processor array and the intrinsic paral-
lelism found in the sequence of assembly instructions.
The code generator allows the user to develop applica-
tions without worrying about the spatial parallelism of
the machine, while the assembly code optimizer is used
to improve the final code exploiting instruction-level
parallelism. Due to the high computational power re-
quired for code optimization, the optimizer is useful
only in the final optimization of programs whose exe-
cution time is a key parameter.

Recently not only the application to bank checks
has been developed but the use of PAPRICA-3 to
speed-up the real-time processing of images for the
automatic guidance of a passenger car [5] has been
investigated as well. Images are acquired by cam-
eras installed on board of ARGO, a Lancia Thema
passenger car, and are processed in order to detect
the lane position and to localize possible obstacles [4].
Within this framework, the PAPRICA-3 system is
now being compared to general-purpose systems, and
in particular with a Pentium 200 MHz with MMX
technology. From the preliminary results obtained by
the first experiments on low-level image processing,
the PAPRICA-3 system is from 2 to 3 times faster
than the Pentium processor. The experiments deal
mainly with low-level processing of images, where both
systems can take advantage of their internal struc-
ture; more precisely, the MMX pentium is being pro-
grammed directly at assembly level since up to now
no public domain C compiler (GCC ver. 2.7.2) does

114

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:05 from IEEE Xplore. Restrictions apply.

not support MMX-based instructions.

References
[l] A. Aho, R. Sethi, and J. Ullman. Compil-

ers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, MA, 1986.

[2] G. Anelli, A. Broggi, and G. Destri. Decomposi-
tion of Arbitrarily Shaped Binary Morphological
Structuring Elements using Genetic Algorithms.
IEEE Transactions o n P A M I , 1997. In press.

[3] S. J. Beaty, S. Colcord, and P. H. Sweany. Us-
ing Genetic Algorithms to Fine-Tune Instruction-
Scheduling Heuristics. In Proceedings MPCS-96
- I E E E International Conference o n Massively
Parallel Computing Systems. IEEE Computer So-
ciety - EuroMicro, May 6-9 1996.

[4] M. Bertozzi and A. Broggi. GOLD: a Parallel
Real-Time Stereo Vision System for Generic Ob-
stacle and Lane Detection. I E E E Transactions
o n Image Processing, 1997. In press.

[5] M. Bertozzi and A. Broggi. Vision-based Vehi-
cle Guidance. I E E E Computer, 30(7):49-55, July
1997.

M. J. Bourke 111, P. H. Sweany, and S. J . Beaty.
Extending List Scheduling to Consider Extension
Frequency. In Proceedings of the 29th Hawaii In-
ternational Conference o n Sys tem Sciences, pages
193-202. IEEE Computer Society, 1996.

R. Bozinovic and S . Srihari. Off-line cursive script
word recognition. I E E E Trans. o n P A M I , 11:68-
83, Jan. 1989.

A. Broggi. The PAPRICA-3 Programming and
Simulation Environment. In Proceedings MPCS-
96 - I E E E International Conference o n Massively
Parallel Computing Systems, Ischia, Italy, May 6-
9 1996. IEEE Computer Society - EuroMicro.

D. J . DeWitt. A Machine Independent A p -
proach to the Production of Optimal Horizontal
Microcode. PhD thesis, Dept of Computer and
Communication Sciences, University of Michigan,
Ann Arbor, 1976.

F. Gregoretti, B. Lazzerini, A. Mariani, and
L. Reyneri. Mixing neural networks and context
based techniques in a high-speed handwriting rec-
ognizer. submitted to I E E E Trans. o n Pat tern
Analysis and Machine Intelligence.

[ll] S. Haykin. Neural Networks: A Comprehensive
Foundation. Mc Millan College Publishing Com-
pany, 1994.

[12] J . L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, Inc., 1990.

[13] F. Kunihito and W. Nobuaki. Handwritten al-
phanumeric character recognition by the neu-
rocognitron. I E E E Trans. o n Neural Networks,
2(3) ~355-365.

(141 B. Ramakrishna Rau and J. A. Fisher. Instruc-
tion Level Parallel Processing: History, Overview,
and Perspective. The Journal of Supercomputing,
pages 9-50, 1993.

[15] L. Reyneri. Weighted radial basis functions for
improved pattern recognition and signal process-
ing. Neural Processing Letters, May 1995.

[16] J. Serra. Image Analysis and Mathematical Mor-
phology. Academic Press, London, 1982.

115

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 28, 2009 at 11:05 from IEEE Xplore. Restrictions apply.

