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Abstract
A deductive technique is presented that uses voltage testing for the
diagnosis of single bridging faults between two gate input or out-
put lines and is applicable to combinational or full-scan sequential
circuits. For defects in this class of faults the method is accurate
by construction while making no assumptions about the logic-level
wired-AND/OR behavior. A path-trace procedure starting from
failing outputs deduces potential lines associated with the bridge.
The information obtained from the path-trace from failing outputs
is combined using an intersection graph to make further deduc-
tions. All candidate faults are implicitly represented, thereby ob-
viating the need to enumerate faults and hence allowing the explo-
ration of the space of all faults. Results are provided for all large
ISCAS89 benchmark circuits.

1 Introduction
A bridging fault [1] between two lines A and B in a circuit occurs
when the two lines are unintentionally shorted. When the lines A
andB have different logic values, the gates driving the lines will be
engaged in a drive fight (logic contention). Depending on the gates
driving the lines A and B, their input values, and the resistance of
the bridge, the bridged lines can have intermediate voltage values
VA and VB (not well defined logic values of 1 or 0). This is inter-
preted by the logic that fans out from the bridge as shown in the
shaded region in Figure 1 (a).
The logic gates downstream from the bridged nodes can have vari-
able input logic thresholds. Thus the intermediate voltage at a
bridged node may be interpreted differently by different gates. This
is known as the Byzantine Generals Problem [2, 3] and is illustrated
in Figure 1 (b). The voltage at the node A ( VA ) is interpreted as a
faulty value (0) by gate d and a good value (1) by gate c. Thus, dif-
ferent branches from a single fanout stem can have different logic
values.
The feasibility of any diagnosis scheme can be evaluated using the
parameters: accuracy, precision, storage requirements and compu-
tational complexity. Accurate simulation of bridging faults [4, 3]
is computationally expensive. Thus, it may not be feasible to per-
form bridging fault simulation during diagnosis. Further, the space
of all bridging faults is extremely large. For example, for the large
ISCAS89 benchmark circuits, it is of the order of 109 faults.
Several techniques have been proposed for the diagnosis of bridg-
ing faults in combinational circuits using voltage testing. Mill-
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man, McCluskey and Acken [5] presented an approach to diag-
nose bridging faults using stuck-at dictionaries. Chess et al. [6],
and Lavo et al. [7] improved on this technique. These techniques
enumerate bridging faults and are hence constrained to using a re-
duced set of bridging faults extracted from the layout. Further, the
construction and storage requirements of fault dictionaries may be
prohibitive. Chakravarty and Gong [8] describe a voltage-based
algorithm that uses the wired-AND (wired-OR) model and stuck-
at fault dictionaries. The wired-AND and wired-OR models work
only for technologies for which one logic value is always more
strongly driven than the other.
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Figure 1: Bridging Fault Effect Propagation

In this paper we present a deductive technique that does not re-
quire fault dictionaries and does not explicitly simulate faults, ei-
ther stuck-at or bridging. Further, no model such as wired-AND
or wired-OR is assumed at the logic-level. The class of bridging
faults considered are all single bridging faults between two lines in
the circuit. The lines could be gate outputs, gate inputs, or primary
inputs. For defects in this class of faults, the method is accurate in
that the defect is guaranteed to be in the candidate list. In the fol-
lowing, a failing vector and a failing output refer to a vector and a
primary output that fail the test on a tester (not during simulation).
The deductive technique consists of two deductive procedures. The
first is a path-trace procedure that starts from failing outputs and
uses the logic values obtained by the logic simulation of the good
circuit for each failing vector. This is used to deduce lines poten-
tially associated with the bridging faults. The second procedure
is an intersection graph constructed from the information obtained
through path-tracing from failing outputs. The path-trace and the
intersection graph are constructed and processed dynamically dur-
ing diagnosis. The intersection graph implicitly represents all can-
didate bridging faults under consideration, thereby allowing pro-



cessing of the entire space of all bridging faults in an implicit man-
ner. During diagnosis, a reduced version of the graph is maintained
that retains all diagnostic information. This reduces memory usage
and simulation time. Since the technique uses only logic simula-
tion and does not explicitly simulate faults, it is fast. The technique
outputs a list of candidate faults. If the resolution (the size of the
candidate list) is adequate, the diagnosis is complete. Otherwise,
either the candidate list can be simulated with a bridging fault sim-
ulator or other techniques [5, 6, 7, 8] can be used to improve the
resolution.

2 The Path-Trace Procedure
The path-trace procedure deduces lines in the circuit that are poten-
tially associated with a bridging fault. A potential source of error
with respect to a failing output is defined as follows.

Definition 1 A potential source of error, with respect to a failing
output, is a line in the circuit from which there exists a sensitized
path to that failing output on the application of the corresponding
failing vector.

Note that there is a distinction between potential sources of error
and the actual source(s) of error associated with the defect. In the
following, the actual source(s) of error are simply referred to as
the source(s) of error. The path-trace procedure is similar to crit-
ical path tracing [9], and star algorithm [10]. However, there are
some important differences. The above procedures were developed
for single stuck-at faults. Hence, only one line in the circuit is as-
sumed to be faulty. However, for bridging faults, due to the Byzan-
tine Generals Problem, both lines could be sources of fault effects.
Further, these effects may reconverge, leading to effects such as
multiple-path sensitization as shown in Figure 1 (b). The voltages
at lines A (VA) and B (VB) are both interpreted as faulty by gates
d and e, and the fault effect reconverges at gate f . However, the as-
sumption of a single bridging fault between two lines ensures that
at most two lines in the circuit can be sources of error.
The logic-value of a gate input is said to be controlling if it deter-
mines the gate’s output value regardless of other input values [11].
The path-trace procedure proceeds as follows. Start from a fail-
ing output and process the lines of the circuit in a reverse topolog-
ical order up to the inputs. When a gate output is reached, observe
the input values. If all inputs have noncontrolling values, continue
the trace from all inputs. If one or more inputs have controlling
values, continue the trace from any one controlling input. When
a fanout branch is reached, continue tracing from the stem. The
choice in selecting the controlling value can be exploited, as will
be explained later.
We first consider the case of a single line being the source of error
for a failing output, and then consider the case where both lines of
a bridging fault are sources of error for a failing output. Consider a
single line being the source of errors on a failing vector. When re-
convergent fanout exists, the following situations could occur. In
Figure 2 (a), the effects of an error from the stem c propagate to
the output. However, if the paths have different parities, they will
cancel each other when they reconverge. This is referred to as self-
masking [9]. Figure 2 (b) shows an example of multiple path sen-
sitization [9]. The bold lines indicate error propagation. The error
from line c propagates through two paths before reconverging and
propagating to an output.
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Figure 2: Reconvergent Fanout with Single Source of Error

Lemma 1 On any failing vector, the path-trace procedure in-
cludes all potential sources of error with respect to the failing out-
puts, assuming there is a single source of error.
Proof: When the path-trace reaches a fanout branch, it continues
from the stem. Hence, if the stem were a source of error, it would
be included. If a gate has multiple controlling values on its inputs,
then fault effects can propagate through this gate only if there ex-
ists a stem from which errors reconverge at this gate to collectively
change all the controlling values. When the path-trace reaches this
gate, it will continue along one of the lines having controlling val-
ues. Hence it will include the stem.
Lemma 1 can be interpreted as follows. If the defect causes a single
line to be faulty on some failing vector and this fault effect propa-
gates to some failing output, then the path-trace includes all lines
that are sensitized to that failing output. The path-trace procedure
is conservative with respect to single sources of error. Not all lines
in the path-trace may be potential sources of error. For example,
line h in Figure 2 (b) is not a potential source of error but would
be included in the path-trace. However, this conservative approach
is necessary when both lines of a bridging fault could be sources
of error with respect to some failing output. Note that for a single
source of error, the potential sources of error are the same as crit-
ical lines [9] in the circuit. Next, we consider the case where both
lines of a bridging fault are sources of error on some failing vector.
If there exists at least one path between the lines of a bridging fault,
then the bridging fault creates one or more feedback loops. Such
a fault is referred to as a feedback bridging fault [11]. If no paths
exist between the lines of a bridging fault, then it is called a non-
feedback bridging fault. A feedback bridging fault may cause os-
cillations to occur if the input vector creates a sensitized path from
one line of the bridging fault to the other and this path has odd in-
version parity. If such oscillations are detectable by the tester, then
they can be used as additional failing outputs for the path-trace pro-
cedure. The following Lemma, Theorem and Corollary are appli-
cable to both feedback and nonfeedback bridging faults. The sym-
bol A@B is used to represent a bridging fault.
Lemma 2 If a bridging fault A@B causes fault effect propaga-
tion to an output due to reconvergence of bridging fault effects from
both lines of the bridging fault, then the path-trace procedure start-
ing from that failing output will include at least one of the lines of
the bridging fault.
Proof: At the reconvergent gate, there exist one or more control-
ling input values. The path-trace continues from one of the lines
with controlling input value. Thus, one of the lines of the bridging
fault is covered by the path-trace.
A case of Lemma 2 is illustrated in Figure 3. The output of gate e
fails. Path-trace starts from this output and proceeds to the inputs.
Since gate e has two controlling inputs, the trace continues from
one of them. Node B, which is part of the bridging fault A@B, is
covered by the path-trace.
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Definition 2 The node set Nij is defined as the set of lines that lie
on the path-trace starting from failing output POi under the ap-
plication of test-vector tj .

Theorem 1 If neither line A nor line B of a bridging fault A@B
is in a node set Nij , then the fault A@B could not have caused
output POi to fail under test vector tj .

Proof: [By contradiction] Assume that the bridging fault A@B
caused an output POi to fail on some test-vector tj . This implies
that there exists a sensitized path fromA, orB, or the interaction of
fault effects from both A and B, to the primary output POi under
the application of test-vector tj . If neither line A nor line B is in
Nij , then due to Lemmas 1 and 2, there exists no sensitized path to
POi. This leads to a contradiction.

Corollary 1 If the defect is a single bridging fault A@B, then a
node set Nij must contain at least one of the lines A and B.

Proof: Follows directly from Theorem 1.
Note that Theorem 1 and Corollary 1 are conservative in that they
make no assumptions about the resistance of the bridging fault,
the gates feeding the bridging fault and their input values, and the
logic input thresholds of the gates downstream from the bridging
fault. The only assumption made is the presence of a single bridg-
ing fault. The information from a group of node sets can be used
to make further deductions. This is performed using the concept of
an intersection graph.

3 The Intersection Graph and Its Processing
Given a group of node sets fNijg the intersection graph is defined
as follows.

Definition 3 The intersection graph is a simple undirected graph
(no loops or multiple edges) GI = (VI ; EI) with a vertex set VI =
fNij j Nij is a node setg and edge (Nij ; Nkl) 2 E if (((i 6= k)
or (j 6= l)) and (Nij \Nkl 6= �)).

Figure 4 shows an intersection graph with 7 vertices. The corre-
sponding node sets are shown within the curly brackets. The inter-
section graph has similar structure to the initialization graph pro-
posed by Chakravarty and Gong [8]. However, there are impor-
tant differences. The initialization graph is constructed using only
structural information while the intersection graph is constructed
using logic information exploited by the path-trace procedure. The
initialization graph is created statically once before diagnosis and
processed. However, the intersection graph is updated and pro-
cessed dynamically during diagnosis. A reduction procedure main-
tains a reduced version of the graph without losing diagnostic in-
formation. The intersection graph has interesting structural prop-
erties that are useful for performing deduction and for maintaining
reduced graphs to help reduce memory requirements and simula-
tion time.
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3.1 Structural Properties
Property 1 If GI has two vertices such that (v1; v2) =2 EI . The
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Proof: Let N1

ij and N2

ij be the node sets corresponding to v1 and
v2. From Corollary 1, N1

ij and N2

ij contain at least one of the lines
of the bridging fault A@B. Since (v1; v2) =2 EI , N1

ij contains
only one of the lines A and B (say A). This implies that N2

ij con-

tains the other line (B). Consider any arbitrary vertex v3 2 V
0

I =
VI �fv1; v2g. From Corollary 1 it follows that the node set corre-
sponding to v3 contains at least one of the linesA andB. Thus v3 is
adjacent to at least one of v1 and v2. This implies that one of the fol-
lowing three conditions holds: v3 is adjacent to v1 and not adjacent
to v2; v3 is adjacent to v2 and not adjacent to v1; v3 is adjacent to
both v1 and v2.

Property 2 If V
0

1 ; V
0

2 , and V
0

3 are the three sets obtained by Prop-
erty 1 when (v1; v2) =2 EI , then V

0

1 [ fv1g and V
0

2 [ fv2g are
cliques.

Proof: From Corollary 1 and Property 1 it follows that the node
sets corresponding to every vi 2 V

0

1 [ fv1g contain one and only
one ofA andB (sayA), while the node sets corresponding to every
vj 2 V

0

2 [ fv2g contain the other line (B). Thus V
0

1 [ fv1g and
V

0

2 [ fv2g are cliques.
Figure 4 illustrates these properties. The intersection graphs can be
reduced while maintaining their properties. This reduces the num-
ber of vertices and edges. Further, this also reduces the number of
node sets that need to be maintained and their sizes. Thus the re-
duction process, which is done dynamically during diagnosis, can
help reduce memory and simulation time. The following Corollary,
which follows from Property 2, is used in the reduction process.

Corollary 2 If the intersection graph is not a clique, and G1 =
(V1; E1) and G2 = (V2; E2) are the subgraphs induced by V

0

1 [

fv1g and V
0

2 [ fv2g respectively using Property 1, then all node
sets in V1 contain only one of the lines A or B of the bridge, while
all the node sets in V2 contain the other line.

3.2 Intersection Graph Processing
Corollary 2 is used by the procedure shown in Figure 5 to reduce
the intersection graph. An irreducible intersection graph is either
a complete graph or has the following characteristic. For each
(vi; vj) =2 EI , the V

0

1 and V
0

2 sets are empty. An example of the
reduction procedure is shown in Figure 6. The initial intersection



1 : GI = (VI ; EI): The intersection graph
2 : V (Nij): Vertex corresponding to node set Nij

3 : Procedure Reduce Intersection Graph(GI )
4 : while (!irreducible)
5 : if (!clique(GI))
6 : Let (v1; v2) =2 EI

7 : // Possible to find v1; v2 since GI is not a clique
8 : V

0

1 = fvi j (vi; v1) 2 EI and (vi; v2) =2 EIg

9 : V
0

2 = fvj j (vj ; v2) 2 EI and (vj ; v1) =2 EIg

10 : // By Property 2 and Corollary 2
11 : if (V

0

1 6= �)
12 : N1

reduced = \Nij 8V (Nij) 2 V
0

1 [ fv1g

13 : if (V
0

2 6= �)
14 : N2

reduced = \Nij 8V (Nij) 2 V
0

2 [ fv2g

15 : Replace vi 2 V
0

1 [ fv1g with V (N1

reduced) = v
0

1

16 : Replace vj 2 V
0

2 [ fv2g with V (N2

reduced) = v
0

2

17 : Recompute edges incident on v
0

1 and v
0

2

Figure 5: Procedure for Reducing the Intersection Graph

graph is reduced two times to obtain an irreducible graph with two
disjoint vertices. The dynamic processing of GI proceeds as fol-
lows. After each node set Nij is obtained, update GI . Reduce the
intersection graph until an irreducible graph is obtained. After all
node sets are processed, the irreducible intersection graph obtained
contains the candidate bridging faults. The candidate list (C) is ob-
tained from the irreducible graph (GIR) using the following rules.

1. If GIR has two disconnected components, each of which has
one vertex, then let N1

ij and N2

ij be the node sets associated
with the two vertices. C = fA@B j A 2 N1

ij and B 2 N2

ijg.

2. If GIR has one component that is not a complete graph, then
for each (v1; v2) =2 E letN1

ij andN2

ij be the node sets associ-
ated with v1 and v2. Ck = fA@B j A 2 N1

ij and B 2 N2

ijg.
C = \8kCk.

3. If GIR is a complete graph, then let
jNij j � jNklj8Nij ; Nkl 2 V . C = fA@B j A 2 Nijg.

The reduced intersection graph is a compact way to implicitly rep-
resent the space of candidate bridging faults. Further, the reduc-
tion procedure prunes the space of candidate bridging faults with-
out losing diagnostic information. The defect is guaranteed to be
in the candidate list by construction. The candidate list will include
other faults which are logically equivalent or diagnostically equiv-
alent with respect to the test set. A better test set may distinguish
between some of these faults, thereby increasing the diagnostic res-
olution. WhenGIR is a complete graph, only one of the lines of the
bridge can be determined with certainty. This results in a partial
diagnosis. The experimental results indicate that partial diagnosis
does not occur often.

3.3 Implementation Issues and Complexity
The major operation performed during GI processing is its reduc-
tion. The basic operation needed by the reduction procedure is set
intersection. Further, the node sets need to be stored for each vertex
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of GI . The node sets are represented as bit-vectors with a value of
1 indicating the presence of a node and a 0 indicating the absence
of one. If there are n lines in the circuit, the size of a node set is
dn=8e bytes. The bit vector representation allows for efficient set
intersection using the bitwise AND operator. As a result of the dy-
namic processing ofGI , its size grows and shrinks. Hence, the data
structure chosen to represent GI is a two-dimensional linked list.
GI has jVI j vertices. Assuming 4 bytes each for pointers and ver-
tex indices, the worst-case memory requirement for GI and its as-
sociated node sets is (jVI j�dn=8e+8jVI j+8jVI j

2) bytes. Since
jVI j is typically much smaller than n, the worst-case space com-
plexity is O(jVI j�n). The worst-case size of jVI j is nfail, where
nfail is the total number of failing outputs on all failing vectors.
The reduction procedure results in jVI j being much smaller than
nfail, thereby reducing the memory requirements.

The reduction procedure computes the V
0

1 and V
0

2 sets based on
Corollary 2 by exploring the edges of EI . Typically, jEI j is small.
For each edge in EI the reduction procedure computes V

0

1 and
V

0

2 . Each intersection operation between the node sets of two ver-
tices of GI reduces the number of vertices of GI by 1. Thus
the maximum number of intersections possible in the procedure
reduce intersection graph() is jVI j � 2. Thus the worst-case
time complexity for the procedure reduce intersection graph()
is O(jVI j) intersections. Here again, the reduction procedure re-
sults in small jVI j values, thereby reducing the simulation time.

4 Heuristics to Improve Resolution
When the path-tracing procedure reaches a gate with multiple con-
trolling inputs, one of them is chosen. The choice of input impacts
the size of the resultant node set, its elements, and hence, impacts
the diagnostic resolution. The smaller the size of the node set, the
smaller is the intersection with other node sets, and the greater is
the likelihood of reducing the intersection graph. Two conditions
are checked to select the controlling input in such a manner that
the size of the resultant node set is reduced. The first is based on
fanout. When the path-trace reaches a stem, it continues from the
stem unconditionally. When a controlling input is the branch of a
stem, one of whose other branches has been chosen, then this in-
put should be selected, since the stem has to be selected anyway
[10]. The second condition involves checking the controllability of
the line. SCOAP controllability measures are used. The most eas-
ily controllable input (check for 0-controllability if the logic value
of the line is 0 and vice-versa) is likely to give the smallest node
set. If the same gate is reached in two different applications of the
path-trace and the same choice of controlling inputs exists, then se-
lecting different inputs for the two runs can potentially result in a
smaller intersection between the two resultant node sets. A dirty bit
is set when the path-trace chooses a controlling input. This input



is avoided in future invocations of the path-trace procedure.
Based on the above conditions, three heuristics are defined be-
low. Heuristic 1 chooses controlling input randomly. Heuristic 2
chooses controlling input by checking for fanout followed by con-
trollability. Heuristic 3 chooses controlling input by checking for
dirty bit followed by fanout and then controllability. The overall
diagnosis procedure is shown in Figure 7.

1 : for each test vector ti
2 : if faulty outputs
3 : Perform good circuit simulation with ti
4 : for each failing output POj

5 : Nij  path-trace from failing output POj

6 : update intersection graph(GI; Nij)
7 : reduce intersection graph(GI)
8 : output candidate list(GI)

Figure 7: The Diagnosis Procedure
5 Experimental Results
The diagnosis procedure was implemented in C++. All exper-
iments were performed on a SUN SPARCStation 20 with 64MB
of memory for the full-scan versions of the ISCAS89 sequential
benchmark circuits [12]. In practice, the failing responses used as
input for the diagnosis procedure would be obtained by testing the
failing circuit on a tester. For our diagnosis experiments, the failing
responses were generated using the accurate bridging fault simula-
tor E-PROOFS [4] to ensure that the diagnostic experiments were
as realistic as possible. The cell libraries for the circuits were gen-
erated manually [4]. The test vectors used were compact tests gen-
erated to target stuck-at faults [13]. Ideally, diagnostic test sets for
bridging faults would be the best choice. All large ISCAS89 bench-
mark circuits were considered.
For each of the benchmark circuits, a random sample of 500 single
two-line bridging faults were injected one at a time. For each one
of these faults, the failing responses were obtained by performing
bridging fault simulation on the given test set using E-PROOFS.
Faults that do not produce any failing outputs were dropped. For
the rest of the faults, the failing responses were used to perform di-
agnosis. The diagnosis results are summarized in Tables 1 and 2.
The average, minimum and maximum sizes of the candidate lists
are shown in Table 1 for the three different heuristics. The average
size of the candidate list is a few hundred faults, which is a signif-
icant reduction from the space of all faults. Further, as expected,
heuristics 2 and 3 improve the diagnostic resolution over heuristic
1. The reduction can be significant. For example, for s38584, the
average size of the candidate list is reduced by a factor of 4. Note
that in some cases, the method uniquely identifies the fault (reso-
lution of 1). The best resolutions are indicated in bold.
The average sizes of the node sets and the intersection graph are
shown in Figure 2. As expected, heuristic 2 does the best in terms
of node set sizes. Both heuristic 2 and heuristic 3 do better than
heuristic 1 in terms of the average size of the intersection graph.
The average values of the execution time, number of failing out-
puts and percentage of faults that were partially diagnosed is given
for heuristic 2. Other interesting observations can be made from
Table 2. Note that the average size of the sets is very small and

appears to be independent of the circuit size. Further, it is about
2–3 orders of magnitude smaller than the total number of lines in
the circuit, thereby suggesting that the path-trace procedure is ef-
ficient. The average size of the intersection graph (jVI j) is about
a quarter of the total number of failing outputs, indicating that the
graph reduction procedure is useful. As expected heuristic 2 does
the best in terms of the average size of the node set and heuristic 3
does the best in terms of the average size of the intersection graph
(jVI j).

Note that the procedure is accurate by construction; that is, the de-
fect is guaranteed to be in the candidate list. The distribution of
the sizes of the candidate lists is shown in Figure 8 for s13207 and
s38417. This trend is observed for the other circuits as well. For
about 10% of the faults, the resolution is adequate (less than 20
candidates) to consider the diagnosis complete. For about 80% of
the faults, the resolution is such (between 20� 500 faults) that the
candidate list is small enough to be accurately simulated using a
bridging fault simulator as a post-processing step. In about 25%
of the cases, the diagnosis is partial; that is, only one of the lines
of the bridge can be determined with certainty. In such cases, and
if the resolution is so large that bridging fault simulation cannot be
performed, then the diagnosis procedure can be followed with other
techniques [5, 6, 7, 8] using the candidate list to improve the resolu-
tion. Note that these resolutions were obtained using a compacted
stuck-at test set. We expect that there would be better resolution
with better test sets.

Table 1: Diagnostic Resolution

Circuit Candidate List Size
Heuristic 1 Heuristic 2 Heuristic 3

Ave. Min. Max. Ave. Min. Max. Ave. Min. Max.

s1196f 125.2 1 1656 60.7 1 828 76.7 1 765
s1238f 123.0 1 1080 62.7 1 722 76.3 1 1092
s1423f 98.2 1 2303 80.9 1 3526 83.9 1 3526
s1488f 70.7 8 165 65.7 2 280 68.9 2 375
s1494f 74.5 4 120 68.9 2 140 71.8 2 140
s5378f 284.2 2 3243 203.2 1 1659 194.2 2 1386
s9234f 866.9 18 7848 771.4 12 7020 809.4 12 7020

s13207f 240.3 1 4199 167.8 1 3809 160.5 1 1328
s15850f 694.4 1 10206 679.4 1 9100 557.3 1 9178
s35932f 128.6 4 690 125.6 4 630 115.4 4 630
s38417f 280.4 1 2793 240.1 1 2842 219.3 1 2475
s38584f 743.5 48 2130 191.6 1 2288 204.2 1 2600

The diagnosis procedure requires very small execution times, as
seen in column 8 of Table 2. The procedure requires only the logic
simulation of failing vectors and the path-trace procedure from fail-
ing outputs. Both of these procedures are linear in the size of the
circuit. Further, the graph reduction procedure is linear in the size
of its vertex set (jVI j). Techniques such as those used in [5, 6, 7, 8]
require either the storage of stuck-at fault dictionaries or the simu-
lation of stuck-at faults during diagnosis. As seen in columns 12
and 13 of Table 2, the storage requirements for dictionaries can
be very large, and the simulation time is about an order of mag-
nitude larger than that required for the diagnosis procedure. This
is expected since fault simulation has greater than linear complex-
ity in the size of the circuit. Further, fault simulation without fault
dropping needs to be performed. Techniques such as those used in
[5, 6, 7] also need to enumerate bridging faults and are hence con-
strained to use a small set of realistic faults. This trade-off between
resolution and complexity suggests that our diagnosis procedure,
which is both space- and time-efficient, could be attempted first,
and then be complemented by other procedures if greater resolu-
tion is required.



Table 2: Diagnosis Results and Comparison with Techniques Using Stuck-at Fault Information

Circuit Average Size of Average Average Values Stuck-at fault
Node Set jVI j (Heuristic 2) Information

Heu.1 Heu.2 Heu.3 Heu.1 Heu.2 Heu.3 Exec. # Fail Partial # of Storage y Exec. Time z
Time (s) POs Diag. (%) Faults (Bytes) Fault Sim. (s)

s1196f 32.3 22.7 25.3 23.6 20.5 19.9 0.28 71.8 0.24 1242 0.57 M 4.25
s1238f 30.6 22.7 24.9 27.5 25.2 23.6 0.35 77.3 0.25 1355 0.67 M 4.63
s1423f 28.8 25.1 24.9 7.8 6.9 7.1 0.11 26.1 0.12 1515 0.38 M 1.51
s1488f 35.6 29.2 30.6 20.6 20.6 19.5 0.23 42.8 0.28 1486 0.47 M 4.13
s1494f 29.5 20.9 25.2 14.9 11.4 10.7 0.20 27.5 0.24 1506 0.47 M 4.08
s5378f 52.9 48.7 49.5 13.9 13.4 13.2 1.32 66.5 0.22 4603 24.6 M 16.01
s9234f 40.2 36.3 37.0 18.7 19.3 19.3 2.32 65.4 0.35 6927 47.1 M 34.61

s13207f 29.6 28.2 27.4 62.5 58.2 27.4 31.1 298.3 0.16 12311 0.51 G 131.55
s15850f 68.8 62.5 66.3 21.6 22.0 24.6 7.43 92.3 0.28 11725 0.17 G 62.70
s35932f 20.1 18.4 17.6 3.7 3.6 3.6 6.4 8.5 0.34 46006 0.24 G 35.71
s38417f 46.4 38.2 38.9 11.6 11.5 11.5 25.0 61.6 0.14 31180 1.13 G 151.30
s38584f 38.9 28.7 29.4 31.3 28.7 29.4 30.4 64.9 0.38 36303 1.56 G 214.51
y Full fault dictionary in matrix format
z w/o fault dropping
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Figure 8: Distribution of Candidate List Size

6 Conclusions and Future Work
A deductive procedure for the diagnosis of bridging faults, which
is accurate and experimentally shown to be both space- and time-
efficient, has been described. The information obtained from a
path-trace procedure from failing outputs is combined using an in-
tersection graph, which is constructed and processed dynamically,
to make the deduction. The intersection graph provides an implicit
means of representing and processing the space of candidate bridg-
ing faults without using dictionaries or explicit fault simulation.
The procedure assumes a single bridging fault between two lines. If
the defect involves multiple faults or shorts between multiple lines,
then the properties of GI may be violated. Extensions to multiple
faults or shorts between multiple lines require looking for larger
sized cliques (Kn, n � 3) in the graph GI . An interesting ap-
plication of this work is in the area of design error location. For
design errors of multiplicity 2, the diagnosis procedure can be used
without any modification. Higher multiplicity errors require exten-
sions.
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