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Abstract

Background: Single-cell RNA sequencing (scRNA-seq) is an emerging technology that can assess the function of an

individual cell and cell-to-cell variability at the single cell level in an unbiased manner. Dimensionality reduction is

an essential first step in downstream analysis of the scRNA-seq data. However, the scRNA-seq data are challenging

for traditional methods due to their high dimensional measurements as well as an abundance of dropout events

(that is, zero expression measurements).

Results: To overcome these difficulties, we propose DR-A (Dimensionality Reduction with Adversarial variational

autoencoder), a data-driven approach to fulfill the task of dimensionality reduction. DR-A leverages a novel

adversarial variational autoencoder-based framework, a variant of generative adversarial networks. DR-A is well-

suited for unsupervised learning tasks for the scRNA-seq data, where labels for cell types are costly and often

impossible to acquire. Compared with existing methods, DR-A is able to provide a more accurate low dimensional

representation of the scRNA-seq data. We illustrate this by utilizing DR-A for clustering of scRNA-seq data.

Conclusions: Our results indicate that DR-A significantly enhances clustering performance over state-of-the-art methods.

Keywords: Adversarial autoencoder, Variational autoencoder, Dimensionality reduction, Generative adversarial networks,

Single-cell RNA sequencing

Background
Dimensionality reduction is a universal preliminary step

prior to downstream analysis of scRNA-seq data such as

clustering and cell type identification [1]. Dimension re-

duction is crucial for analysis of scRNA-seq data because

the high dimensional scRNA-seq measurements for a

large number of genes and cells may contain high level

of technical and biological noise [2]. Its objective is to

project data points from the high dimensional gene

expression measurements to a low dimensional latent

space so that the data become more tractable and noise

can be reduced. In particular, a special characteristic of

scRNA-seq data is that it contains an abundance of zero

expression measurements that could be either due to

biological or technical causes. This phenomenon of zero

measurements due to technical reasons is often referred

to as “dropout” events where an expressed RNA molecule

is not detected. The identification of distinct cellular states

or subtypes is a key application of scRNA-seq data. How-

ever, some methods may not work well because of the

existence of dropout events.

The most commonly used method is principal compo-

nent analysis (PCA), which transforms the observations

onto the latent space by defining linear combinations of the

original data points with successively largest variance (that

is, principal components) [3]. However, PCA is under the

assumptions of linear dimensions and approximately

normally distributed data, which may not be suitable for

scRNA-seq data [4]. Another linear technique is factor

analysis, which is similar to PCA but aims to model correla-

tions instead of covariances by describing variability among

correlated variables [5]. Based on the factor analysis frame-

work, a recent state-of-the-art method, Zero-Inflated Factor

Analysis (ZIFA), accounts for the presence of dropouts by

adding a zero-inflation modulation layer [6]. A limitation of

ZIFA, however, is that the zero-inflation model may not be
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proper for all datasets [4]. Recently, deep learning frame-

works, such as Single-cell Variational Inference (scVI) [7]

and Sparse Autoencoder for Unsupervised Clustering,

Imputation, and Embedding (SAUCIE) [8], utilizes the

autoencoder which processes the data through narrower

and narrower hidden layers and gradually reduces the di-

mensionality of the data. It should be noted that scVI and

SAUCIE take advantage of parallel and scalable features in

deep neural networks [7, 8].

Visualization of high dimensional data is an important

problem in scRNA-seq data analysis since it allows us to

extract useful information such as distinct cell types. In

order to facilitate the process of visualization, dimensional-

ity reduction is normally utilized to reduce the dimension

of the data, from tens-of-thousands (that is, the number of

genes) to 2 or 3 [2]. T-distributed stochastic neighbor

embedding (t-SNE) is a popular method for visualizing

scRNA-seq data [9–11], but not recommended as a dimen-

sionality reduction method due to its weaknesses such as

curse of intrinsic dimensionality and the infeasibility of

handling general dimensionality reduction tasks for a di-

mensionality higher than three [12]. On the other hand, a

recently-developed nonlinear technique called Uniform

Manifold Approximation and Projection (UMAP) [13] is

claimed to improve visualization of scRNAseq data com-

pared with t-SNE [14].

Generative Adversarial Networks (GANs) [15] are an

emerging technique that has attracted much attention in

machine learning research because of its massive poten-

tial to sample from the true underlying data distribution

in a wide variety of applications, such as videos, images,

languages, and other fields [16–18]. The GAN frame-

work consists of two components including a generative

model G and a discriminative model D [15]. In practice,

these two neural networks, G and D, are trained simul-

taneously. The generative model G is trained to generate

fake samples from the latent variable z, while the dis-

criminative model D inputs both real and fake samples

and distinguishes whether its input is real or not. The

discriminative model D estimates higher probability if it

considers a sample is more likely to be real. In the

meantime, G is trained to maximize the probability of D

making a wrong decision. Concurrently, both G and D

play against each other to accomplish their objectives

such that the GAN framework creates a min-max adver-

sarial game between G and D.

Recently, a variant of the GAN framework called an

Adversarial AutoEncoder [19] was proposed to be a prob-

abilistic autoencoder that leverages the GAN concept to

transform an autoencoder into a GAN-based structure.

The architecture of an Adversarial AutoEncoder is com-

posed of two components, a standard autoencoder and a

GAN network. The encoder in an Adversarial AutoEncoder

is also the generative model of the GAN network. The

GAN-based training ensures that the latent space conforms

to some prior latent distribution. The Adversarial AutoEn-

coder models have been applied to identify and generate

new compounds for anticancer therapy by using biological

and chemical data [20, 21].

The main contributions of this work are as follows: In

this work, we propose a novel GAN-based architecture,

which we refer to as DR-A (Dimensionality Reduction

with Adversarial variational autoencoder), for dimen-

sionality reduction in scRNA-seq analysis. We directly

compare the performance of DR-A to dimensionality

reduction methods implemented in widely used soft-

ware, including the PCA, ZIFA, scVI, SAUCIE, t-SNE,

and UMAP. Across several scRNA-seq datasets, we

demonstrate that our DR-A approach leads to better

clustering performance.

Results
Overview of DR-A

DR-A represents a deep adversarial variational autoencoder-

based framework, which combines the concepts of two deep

learning models including Adversarial AutoEncoder [19]

and Variational AutoEncoder [22] (see Methods). Figure 1

provides an overview of the model structure in DR-A, which

models scRNA-seq data through a zero-inflated negative

binomial (ZINB) distribution structure [7, 23] in a GAN

framework. DR-A is a novel structure of an Adversarial

Variational AutoEncoder with Dual Matching (AVAE-DM),

where both the generator and discriminator examine the

input scRNA-seq data. As shown in Fig. 1, an additional dis-

criminator D2 tries to differentiate between real scRNA-seq

data and the reconstructed scRNA-seq data from the

decoder. While DR-A manages to match the latent space

distribution with a selected prior, it concurrently tries to

match the distribution of the reconstructed samples with

that of the underlying real scRNA-seq data. This approach

refers to dual distribution matching.

In accordance with the Wasserstein distance-based scheme

[24], DR-A further integrates the AVAE-DM structure with

the Bhattacharyya distance [25]. The Bhattacharyya distance

BD(p, q) is an alternative metric to measure the similarity

between two probability distributions, p and q distributions,

over the same domain X. The Bhattacharyya distance is

defined as

BD p; qð Þ ¼ − ln
X

x∈X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p xð Þ�q xð Þ
p

 !

Therefore, our new Bhattacharyya distance-based scheme

can be formalized as the following minimax objective:

min
G

max
D

BD Ex�Pdata
D xð Þ½ �; Ez�P zð Þ D G zð Þð Þ½ �

� �
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where pdata and p(z) are the data distribution and the

model distribution, respectively.

In summary, DR-A has the following five key advan-

tages: (1) DR-A matches the distribution of the recon-

structed samples with the underlying real scRNA-seq

data. (2) DR-A matches the latent space distribution with

a chosen prior. (3) DR-A provides a ZINB distribution,

which is a commonly-accepted distributional structure for

gene expression. (4) DR-A is more stable for GAN train-

ing with the Bhattacharyya distance-based scheme. (5)

DR-A accounts for parallel and scalable features in a deep

neural network framework (see Methods).

Real data analysis

To evaluate the performance of our approach for dimen-

sion reduction, we compared our DR-A framework with

other state-of-the-art methods, including the PCA [3],

ZIFA [6], scVI [7], SAUCIE [8], t-SNE [12], and UMAP

[13]. The dimensionality reduction was studied in 2

latent dimensions (K = 2), 10 latent dimensions (K = 10),

and 20 latent dimensions (K = 20) for these methods.

In these experiments, we employed five datasets

(Table 1), including the Zeisel-3 k [1], Macoskco-44 k

[10], Zheng-68 k [26], Zheng-73 k [26], and Rosenberg-

156 k [27] datasets as described in the Methods section,

where the cell types with ground truth are available.

We evaluated the effectiveness of these methods with

impacts on the clustering performance of the K-means

clustering algorithm with the latent dimensions of K = 2,

10, and 20. We assessed the clustering performance

using the normalized mutual information (NMI) scores

[28]. First, we applied the K-means clustering algorithm

using the latent variables from the various algorithms of

dimensionality reduction as an input and generated the

predicted clustering labels. Then, we utilized NMI scores

to measure the cluster purity between the predicted

clustering labels and the cell types with ground truth in

a given dataset. Based on the NMI scores, we compared

our DR-A framework with other algorithms of dimen-

sionality reduction (including the PCA, ZIFA, scVI,

SAUCIE, t-SNE, and UMAP methods).

As shown in Table 2, our DR-A framework performed

maximally or comparably in all cases. The best NMI

Table 1 Summary of scRNA-seq datasets employed in this study. There were 720 highest variance genes selected in each dataset

for subsequent experiments

Dataset Number of cells Number of cell types Reference

Zeisel-3 k 3005 7 Zeisel et al. [1]

Macoskco-44 k 44,808 39 Macosko et al. [10]

Zheng-68 k 68,579 10 Zheng et al. [26]

Zheng-73 k 73,233 8 Zheng et al. [26]

Rosenberg-156 k 156,049 73 Rosenberg et al. [27]

Fig. 1 The novel architecture of an Adversarial Variational AutoEncoder with Dual Matching (AVAE-DM). An autoencoder (that is, a deep encoder

and a deep decoder) reconstructs the scRNA-seq data from a latent code vector z. The first discriminator network D1 is trained to discriminatively

predict whether a sample arises from a sampled distribution or from the latent distribution of the autoencoder. The second discriminator D2 is

trained to discriminatively predict whether the scRNA-seq data is real or fake
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scores (with 10 and 20 latent dimensions) for the five

datasets were all based on the DR-A method (Table 2(b),

K = 10; Table 2(c), K = 20). With 2 latent dimensions,

the UMAP method performed marginally better than

the DR-A method using the Rosenberg-156 k dataset

(Table 2(a), K = 2). In addition, the best NMI scores

(with 2 latent dimensions) for the Zheng-73 k, Zheng-68

k, Macosko-44 k, and Zeisel-3 k datasets were all based

on the DR-A method (Table 2(a), K = 2).

Furthermore, we compared our DR-A framework with

other variants of the GAN framework, including the

AVAE-DM structure with the Wasserstein distance and

AVAE structure. Our DR-A framework adopts the

AVAE-DM structure with Bhattacharyya distance. The

DR-A method improved the performance compared to

the AVAE-DM with the Wasserstein distance and AVAE

methods (Additional file 1: Table S1), indicating the ad-

vantage of the Bhattacharyya distance and dual matching

architecture. In addition, the experimental results of the

DR-A method with various batch sizes were shown in

Additional file 1: Table S2.

Our analysis indicated that our DR-A framework is

well-suited for large-scale scRNA-seq datasets. The

hyperparameters for various datasets of DR-A were

shown in Table 3.

Data visualization

Moreover, we performed two-dimensional (2-D)

visualization of the clustering results for the DR-A, PCA,

ZIFA, scVI, SAUCIE, t-SNE, and UMAP methods using

the Zeisel-3 k (Fig. 2), Zheng-73 k (Fig. 3), Macoskco-44 k

(Additional file 1: Figure S1), Zheng-68 k (Additional file 1:

Figure S2), and Rosenberg-156 k (Additional file 1: Figure

S3) datasets, respectively. We also carried out the two-step

approach of combining DR-A with t-SNE (see Methods).

We illustrated the 2-D plots on the Macoskco-44 k

(Additional file 1: Figure S1) and Rosenberg-156 k

datasets (Additional file 1: Figure S3) only by using

Table 2 Details of experimental results based on NMI scores for various dimension reduction algorithms, including the DR-A, PCA,

ZIFA, scVI, SAUCIE, t-SNE, and UMAP methods. We carried out the experiments using the Rosenberg-156 k, Zheng-73 k, Zheng-68 k,

Macosko-44 k, and Zeisel-3 k datasets. These dimension reduction algorithms were investigated with (a) 2 latent dimensions (K = 2),

(b) 10 latent dimensions (K = 10), and (c) 20 latent dimensions (K = 20)

Algorithm Rosenberg-156 k Zheng-73 k Zheng-68 k Macosko-44 k Zeisel-3 k

(a) K = 2

DR-A 0.5573 0.8457 0.5931 0.4936 0.7263

PCA 0.2523 0.3396 0.2538 0.2984 0.4721

ZIFA 0.3049 0.3794 0.2810 0.3120 0.4250

scVI 0.5199 0.8261 0.5417 0.4599 0.7006

SAUCIE 0.4046 0.4304 0.2749 0.2707 0.4622

t-SNE 0.4343 0.6562 0.4081 0.4091 0.7103

UMAP 0.5591 0.6507 0.4377 0.4184 0.7214

(b) K = 10

DR-A 0.5850 0.8503 0.5756 0.5156 0.7893

PCA 0.3276 0.5612 0.3877 0.4243 0.5559

ZIFA 0.5074 0.8354 0.5152 0.4785 0.7807

scVI 0.5821 0.8060 0.5571 0.5155 0.7606

SAUCIE 0.4773 0.4209 0.3147 0.2874 0.5110

t-SNE N/A N/A N/A N/A N/A

UMAP 0.5735 0.6911 0.4393 0.4129 0.7413

(c) K = 20

DR-A 0.5842 0.8002 0.5888 0.5176 0.7639

PCA 0.3761 0.5623 0.3874 0.4306 0.5561

ZIFA N/A N/A N/A N/A 0.7114

scVI 0.5831 0.7976 0.5691 0.5105 0.7419

SAUCIE 0.4740 0.4254 0.2952 0.2775 0.4808

t-SNE N/A N/A N/A N/A N/A

UMAP 0.5656 0.6906 0.4413 0.4177 0.7419

N/A denotes that we could not run the given algorithm
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the top ten cell types in terms of the number of cells.

Due to the large number of distinct cell types for the

Macoskco-44 k and Rosenberg-156 k datasets (39 and

73, respectively), it may not be obvious to distinguish

in 2-D visualization by using all cell types.

Discussion
In this work, we specifically addressed the problem of

the identification of distinct cellular subtypes in terms of

dimensionality reduction in scRNA-seq data. We devel-

oped a conceptually different class of the GAN frame-

work, DR-A, which is an AVAE-DM-based method for

robust estimation of cell types and is applicable to large-

scale scRNA-seq datasets. We further demonstrated the

utility of DR-A in an application to five real scRNA-seq

datasets assuming 2, 10, and 20 latent dimensions. We

also compared the performance of DR-A to state-of-the-

art methods and intriguingly showed the improvement

offered by DR-A over widely used approaches, including

PCA, ZIFA, scVI, SAUCIE, t-SNE, and UMAP.

Furthermore, our experiments demonstrated that our

DR-A framework, which is based on the AVAE-DM

model with the Bhattacharyya distance, is a promising

novel approach. All in all, our DR-A method had a bet-

ter performance than state-of-the-art methods for all five

datasets, indicating that DR-A is scalable for large-scale

scRNA-seq datasets.

Although the t-SNE method is a wide-used approach

for data visualization of scRNA-seq data, it has been

suggested that t-SNE may not be feasible for dimension-

ality reduction [12]. In line with this finding in the previ-

ous study, the clustering performances of t-SNE in some

Table 3 Details of hyperparameters for DR-A based on the experimental results in Table 2. We carried out the experiments using

the Rosenberg-156 k, Zheng-73 k, Zheng-68 k, Macosko-44 k, and Zeisel-3 k datasets. The DR-A algorithm was investigated with (a) 2

latent dimensions (K = 2), (b) 10 latent dimensions (K = 10), and (c) 20 latent dimensions (K = 20). G denotes a generative model and

D denotes a discriminative model

Dataset Batch size Hidden layer Hidden unit Learning rate

(a) K = 2

Rosenberg-156 k 128 4 G: 1024/512/512/256
D: 32/16/16/8

7 × 10−5

Zheng-73 k 128 3 G: 512/512/512
D: 32/32/32

6 × 10−5

Zheng-68 k 128 4 G: 256/256/256/256
D: 32/32/16/16

0.0001

Macosko-44 k 128 3 G: 256/128/64
D: 64/64/64

0.0001

Zeisel-3 k 128 4 G: 512/512/512/512
D: 32/32/32/32

8 × 10−4

(b) K = 10

Rosenberg-156 k 128 4 G: 512/256/128/64
D: 256/128/64/32

6 × 10−5

Zheng-73 k 128 4 G: 1024/512/512/256
D: 32/32/32/32

2 × 10−5

Zheng-68 k 128 4 G: 256/256/256/256
D: 32/32/16/16

7 × 10−5

Macosko-44 k 128 4 G: 512/256/256/128
D: 256/128/128/64

7 × 10−5

Zeisel-3 k 128 1 G: 512
D: 512

7 × 10−4

(c) K = 20

Rosenberg-156 k 128 4 G: 1024/1024/1024/1024
D: 64/64/64/64

6 × 10−5

Zheng-73 k 128 4 G: 1024/512/512/256
D: 64/32/32/16

1 × 10−5

Zheng-68 k 128 1 G: 256
D: 256

2 × 10−5

Macosko-44 k 128 1 G: 256
D: 256

7 × 10−5

Zeisel-3 k 128 1 G: 512
D: 512

7 × 10−4

Lin et al. BMC Bioinformatics           (2020) 21:64 Page 5 of 11



datasets were worse than those of other algorithms such

as scVI and DR-A in this study (Table 2). To overcome

this weakness, some studies [10] utilized a technique of

using t-SNE for data visualization after performing other

dimensionality reduction methods. In accordance with

this technique, we adapted the two-step approach of

using DR-A with t-SNE. Interestingly, we found that the

two-step approach combines the advantages of both DR-

A and t-SNE methods and had an improved result that

cells from relevant cell types appeared to be adjacent to

each other, for example, as shown in Fig. 2 (a), (f), and

(h) for the Zeisel-3 k dataset. Likewise, the improvement

for data visualization is presented for other four datasets

(Fig. 3, Additional file 1: Figure S1, Additional file 1:

Figure S2, and Additional file 1: Figure S3). Therefore,

our results demonstrate that DR-A is an effective 2-D

visualization tool for scRNA-seq data.

Conclusions
In summary, we developed DR-A, a novel AVAE-DM-

based framework, for scRNA-seq data analysis and appli-

cations in dimension reduction and clustering. Compared

systematically with other state-of-the-art methods, DR-A

achieves higher cluster purity for clustering tasks and is

generally suitable for different scale and diversity of

scRNA-seq datasets. We anticipate that scalable tools such

as DR-A will be a complementary approach to existing

methods and will be in great demand due to an ever-

increased need for handling large-scale scRNA-seq data.

In future work, we will verify if DR-A could also be benefi-

cial for other forms of downstream analysis, such as

lineage estimation.

Methods
Generative adversarial networks

The idea of GANs is to train two neural networks (the

generator G and the discriminator D) concurrently to es-

tablish a min-max adversarial game between them. The

generator G(z) gradually learns to transform samples z

from a prior distribution p(z) into the data space, while

the discriminator D(x) is trained to distinguish a point x

in the data space between the data points sampled from

the actual data distribution (that is, true samples) and

the data points produced by the generator (that is, fake

samples). It is assumed that G(z) is trained to fully con-

fuse the discriminator with its generated samples by

using the gradient of D(x) with respect to x to modify its

parameters. This scheme can be formalized as the fol-

lowing type of minimax objective [15]:

Fig. 2 2-D visualization for the Zeisel-3 k dataset. The Zeisel-3 k dataset was reduced to 2-D by using (a) DR-A, (b) PCA, (c) ZIFA, (d) scVI, (e)

SAUCIE, (f) t-SNE, (g) UMAP, and (h) DR-A combined with t-SNE methods. Each point in the 2-D plot represents a cell in the testing set of the

Zeisel dataset, which have 7 distinct cell types. There was an 80% training and 20% testing split from the original dataset in these experiments
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min
G

max
D

Ex�Pdata
logD xð Þ½ � þ Ez�P zð Þ log 1−D G zð Þð Þð Þ½ �

where pdata is the data distribution and p(z) is the model

distribution.

The generator G and the discriminator D can be both

modeled as fully connected neural networks and then are

trained by backpropagation using a suitable optimizer. In

our experiments, we used adaptive moment estimation

(Adam) [29], which is an extension to stochastic gradient

descent.

Adversarial AutoEncoder

A variant of GAN models called an Adversarial AutoEnco-

der [19] is a probabilistic autoencoder that transforms an

autoencoder into a generative model by using the GAN

framework. The structure of an Adversarial AutoEncoder is

composed of two components, a standard autoencoder and

an adversarial network. The encoder is also the generator

of the adversarial network. The idea of the Adversarial

AutoEncoder is that both the adversarial network and the

autoencoder are trained simultaneously to perform infer-

ence. While the encoder (that is, the generator) is trained

to fool the discriminator to believe that the latent vector is

generated from the true prior distribution, the discrimin-

ator is trained to distinguish between the sampled vector

and the latent vector of the encoder at the same time. The

adversarial training ensures that the latent space matches

with some prior latent distribution.

Variational AutoEncoder

A variant of autoencoder models called Variational

Autoencoder [22] is a generative model, which estimates

the probability density function of the training data. An

input x is run through an encoder, which generates pa-

rameters of a distribution Q(z | x). Then, a latent vector

z is sampled from Q(z | x). Finally, the decoder decodes

z into an output, which should be similar to the input.

This scheme can be trained by maximizing the following

objective with gradient-based methods:

Ez�Q zjxð Þ logpmodel x j zð Þ−DKL Q zð jxð Þ‖pmodel zð ÞÞ

where DKL is the Kullback–Leibler divergence, and pmo-

del(x | z) is viewed as the decoder.

Adversarial Variational AutoEncoder

Figure 4 shows the structure of an Adversarial Vari-

ational AutoEncoder (AVAE), which adopts the struc-

tures of Adversarial Autoencoder [19] and Variational

Autoencoder [22]. Let x be the input of the scRNA-seq

Fig. 3 2-D visualization for the Zheng-73 k dataset. The Zheng-73 k dataset was reduced to 2-D by using (a) DR-A, (b) PCA, (c) ZIFA, (d) scVI, (e)

SAUCIE, (f) t-SNE, (g) UMAP, and (h) DR-A combined with t-SNE methods. Each point in the 2-D plot represents a cell in the testing set of the Zheng-

73 k dataset, which have 8 distinct cell types. There was an 80% training and 20% testing split from the original dataset in these experiments
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expression level (M cells x N genes) and z be the latent

code vector of an autoencoder, which consists of a deep

encoder and a deep decoder. Let p(z) be the prior distri-

bution imposed on the latent code vector, q(z|x) be an

encoding distribution and p(x|z) be the decoding distri-

bution. The deep encoder provides the mean and covari-

ance of Gaussian for the variational distribution q(z|x)

[22]. The autoencoder gradually learns to reconstruct

the input x of the scRNA-seq data to be as realistic as

possible by minimizing the reconstruction error. Note

that the encoder of the AVAE is also the generator of

the GAN framework. The encoder is trained to fool the

discriminator of the GAN framework such that the la-

tent code vector q(z) stems from the true prior distribu-

tion p(z). Meanwhile, the discriminator is trained to

distinguish between the sampled vector of p(z) and the

latent code vector q(z) of the encoder (that is, the gener-

ator) at the same time. Thus, the GAN framework

guides q(z) to match p(z). Eventually, AVAE is able to

learn an unsupervised representation of the probability

distribution of the scRNA-seq data. In our work, we

used the normal Gaussian distribution N(0, I) for the

prior distribution p(z). In addition, the generator was up-

dated twice for each discriminator update in this work.

Note that in the training phase, labels for cell types are

not provided and the entire framework is unsupervised.

Adversarial Variational AutoEncoder with dual matching

(AVAE-DM)

In this paper, we explore AVAEs in a different structure

by altering the network architecture of an AVAE (Fig. 4).

Figure 1 shows the novel structure of an Adversarial Vari-

ational AutoEncoder with Dual Matching (AVAE-DM)

employed in this work. Unlike a conventional AVAE, both

the generator and discriminator observe the input scRNA-

seq data in an AVAE-DM. In additional to the original

AVAE structure (Fig. 4), we add another discriminator D2

that attempts to distinguish between real scRNA-seq data

and the decoder’s output (that is, the reconstructed

scRNA-seq data). As in the original AVAE structure, the

goal of this AVAE-DM architecture remains the same in

the unsupervised setting (that is, labels for cell types are

not provided during training). This architecture ensures

that the distribution of the reconstructed samples match

that of the underlying real scRNA-seq. At the same time,

the latent space distribution is matched with a chosen

prior, leading to dual distribution matching.

Since the Wasserstein distance have been shown to be

more stable for GAN training, the AVAE-DM can be

combined with the Wasserstein distance [30]. The

AVAE-DM can also be explored with the Wasserstein

distance with gradient penalty (GP) [24]. Wasserstein

distance W(p, q), also known as the earth mover’s

distance, is informally defined as the minimum cost of

transiting mass between the probability distribution p

and the probability distribution q. The Wasserstein

distance-based scheme can be formalized as the follow-

ing minimax objective [24]:

min
G

max
D

Ex�Pdata
D xð Þ½ �−Ez�P zð Þ D G zð Þð Þ½ �

Furthermore, we proposed to integrate the AVAE-DM

with the Bhattacharyya distance [25], which is yet another

metric to measure the similarity of two probability distri-

butions. The Bhattacharyya distance BD(p, q) between p

and q distributions over the same domain X is defined as

Fig. 4 The overall architecture of an Adversarial Variational AutoEncoder (AVAE) framework. An autoencoder (that is, a deep encoder and a deep

decoder) reconstructs the scRNA-seq data from a latent code vector z. A discriminator network is trained to discriminatively predict whether a

sample arises from a prior distribution or from the latent code distribution of the autoencoder
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BD p; qð Þ ¼ − ln
X

x∈X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p xð Þ�q xð Þ
p

 !

Then, our new objective is

min
G

max
D

BD Ex�Pdata
D xð Þ½ �; Ez�P zð Þ D G zð Þð Þ½ �

� �

where pdata and p(z) are once again the data distribution

and the model distribution, respectively.

Our DR-A approach mainly encompasses the AVAE-

DM-based algorithm with Bhattacharyya distance. In

DR-A, we employed ZINB conditional likelihood for

p(x|z) to reconstruct the decoder’s output for the

scRNA-seq data [7, 23]. To accordingly handle dropout

events (that is, zero expression measurements), DR-A

models the scRNA-seq expression level x following a

ZINB distribution, which appears to provide a good fit

for the scRNA-seq data [7, 23].

In this study, the encoder, decoder, and discriminator

are designed from 1, 2, 3, or 4 layers of a fully connected

neural network with 8, 16, 32, 64, 128, 256, 512, or 1024

nodes each. The best hyper-parameter set from numer-

ous possibilities was chosen from a grid search that

maximized clustering performance in the testing data

sets. Dropout regularization was used for all neural net-

works. The activation functions between two hidden

layers are all leaky rectified linear (Leaky ReLu) activa-

tion functions. Deep learning models have high variance

and never give the same answer when running multiple

times. In order to achieve reproducible results, we used

the Python and TensorFlow commands such as np.ran-

dom.seed(0) and tf.set_random_seed(0) to obtain a single

number.

Benchmarking

For the benchmarking task, we employed several state-

of-the-art methods as described below. We employed

the ZIFA method [6] with the block algorithm (that is,

function block) using default parameters, which is imple-

mented in the ZIFA python package (Version 0.1) and is

available at https://github.com/epierson9/ZIFA. The out-

come of ZIFA is an N x K matrix corresponding to a

low-dimensional projection in the latent space with the

number of samples N and the number of latent dimen-

sions K, where we chose K = 2, 10, and 20.

Furthermore, we used the PCA method [3] from

Scikit-learn, a machine learning library, using default

parameters and log-data. We also employed the t-SNE

method [12] from Scikit-learn, a machine learning li-

brary, using default parameters (for example, perplexity

parameter of 30). In addition, we utilized the UMAP

method [13], a manifold learning technique, using de-

fault parameters and log-data. The embedding layer was

2 10, and 20 latent dimensions.

Moreover, we utilized scVI [7], which is based on the

variational autoencoder [22] and conditional distribu-

tions with a ZINB form [31]. Based on the implications

described in scVI [7], we used one layer with 128 nodes

in the encoder and one layer with 128 nodes in the de-

coder. We also used two layers with 128 nodes in the

encoder and two layers with 128 nodes in the decoder.

The embedding layer was 2, 10, and 20 latent dimen-

sions. The ADAM optimizer was used with learning rate

0.001. The hyper-parameters were selected through best

clustering performance in the testing data.

We also employed SAUCIE [8], which is based on the

autoencoder [32]. SAUCIE consists of an encoder, an

embedding layer, and then a decoder. Based on the indi-

cations reported in SAUCIE [8], we used three layers

with 512, 256, and 128 nodes in the encoder and sym-

metrically three layers with 128, 256, and 512 nodes in

the decoder. We also used three layers with 256, 128,

and 64 nodes in the encoder and symmetrically three

layers with 64, 128, and 256 nodes in the decoder. The

embedding layer was 2 10, and 20 latent dimensions.

The ADAM optimizer was used with learning rate 0.001.

The hyper-parameters were chosen via best clustering

performance in the testing data sets.

Datasets

Table 1 shows the list of the five scRNA-seq datasets

used in this study. All datasets were pre-processed to ob-

tain 720 highest variance genes across the cells [33]. It is

assumed that genes with highest variance relative to

their mean expression are as a result of biological effects

instead of technical noise [4]. The transformation used

in the counts matrix data C was log2 (1 +C).

As shown in Table 1, the Zeisel-3 k dataset [1] consists

of 3005 cells in the somatosensory cortex and hippocam-

pal region from the mouse brain. The Zeisel-3 k dataset

has the ground truth labels of 7 distinct cell types such

as pyramidal cells, oligodendrocytes, mural cells, inter-

neurons, astrocytes, ependymal cells, and endothelial

cells in the brain.

Moreover, the Macoskco-44 k dataset [10] is comprised

of cells in the mouse retina region and chiefly consists of

retinal cell types such as amacrine cells, bipolar cells, hori-

zontal cells, photoreceptor cells, and retinal ganglion cells.

In addition, the Zheng-68 k dataset [26] contains fresh

peripheral blood mononuclear cells in a healthy human

and principally involves major cell types of peripheral

blood mononuclear cells such as T cells, NK cells, B cells,

and myeloid cells. Furthermore, the Zheng-73 k dataset

[26] consists of fluorescence-activated cell sorting cells in

a healthy human and primarily incorporates T cells, NK

cells, and B cells. Finally, the Rosenberg-156 k dataset [27]

consists of cells from mouse brains and spinal cords and
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mainly contains neuronal cell types such as cerebellar

granule cells, mitral cells, and tufted cells.

Performance evaluation

In order to evaluate the quality of low-dimensional rep-

resentation from dimension reduction, we applied the K-

means clustering algorithm to the low-dimensional

representations of the dimension reduction methods (in-

cluding the DR-A, PCA, scVI, SAUCIE, ZIFA, t-SNE, and

UMAP methods as described previously) and compared

the clustering results to the cell types with ground truth

labels, where we set the number of clusters to the number

of cell types. Then, we employed NMI scores [28] to

assess the performance. Assume that X is the predicted

clustering results and Y is the cell types with ground truth

labels, NMI is calculated as follows:

NMI ¼
MIðX;Y Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HðXÞHðY Þ
p

where MI is the mutual entropy between X and Y, and

H is the Shannon entropy.

Data visualization

After we performed the dimensionality reduction task using

our DR-A framework, we leveraged the low-dimensional

view of the data for visualization. The objective of the

visualization task is to identify cell types in an un-labelled

dataset and then display them in 2-D space. Note that all

our datasets had a training set and a testing set with an

80% training and 20% testing split from the original dataset.

First, we trained our DR-A model to perform the clustering

task in 2 latent dimensions (K = 2) using the training set.

Next, we obtained a two-dimensional embedding (K = 2) of

the scRNA-seq data by projecting the testing set with the

trained DR-A model. This latent (K = 2) estimated by our

DR-A model represents two dimensional coordinates for

each input data point, which was then utilized to perform a

2-D plot. Similarly, we implemented 2-D plots for the PCA,

ZIFA, scVI, SAUCIE, t-SNE, and UMAP methods after per-

forming the clustering task in 2 latent dimensions (K = 2),

respectively.

In addition, we performed data visualization by a two-

step approach, which combines our DR-A method with

the t-SNE algorithm. In the first step, we performed the

clustering task in 10 latent dimensions (K = 10) using

our DR-A model. In the second step, we used the latent

(K = 10) estimated in the first step as input to the t-SNE

algorithm and generated a two-dimensional embedding

(K = 2) of the scRNA-seq data. This latent (K = 2) esti-

mated by the t-SNE algorithm represents two dimen-

sional coordinates for each input data point, which was

then utilized to perform a 2-D plot.
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