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ABSTRACT Smart grid technology increases reliability, security, and efficiency of the electrical grids.

However, its strong dependencies on digital communication technology bring up new vulnerabilities that

need to be considered for efficient and reliable power distribution. In this paper, an unsupervised anomaly

detection based on statistical correlation between measurements is proposed. The goal is to design a scalable

anomaly detection engine suitable for large-scale smart grids, which can differentiate an actual fault from

a disturbance and an intelligent cyber-attack. The proposed method applies feature extraction utilizing

symbolic dynamic filtering (SDF) to reduce computational burden while discovering causal interactions

between the subsystems. The simulation results on IEEE 39, 118, and 2848 bus systems verify the

performance of the proposed method under different operation conditions. The results show an accuracy

of 99%, true positive rate of 98%, and false positive rate of less than 2%

INDEX TERMS Anomaly, cyber-attack, smart grid, statistical property, machine learning, unsupervised

learning.

I. INTRODUCTION

Today’s power systems consist of a network of sensors and

generators that allow two way communication within the

system’s infrastructure as well as reliable energy production

through integration of Distributed Energy Resources (DERs)

and Advanced Metering Infrastructure (AMI). While this

complex communication system has tremendous advantage,

by improving energy efficiency, reliability, and manageabil-

ity, it increases the system’s vulnerabilities to cyber-attacks

due to the tremendous number of devices and access points

that operate outside the traditional administrative domain.

Since failures in the power grid may lead to catastrophic

events, it is highly important to investigate the effects of

cyber-attacks in a power system.

As reported in [1], lack of system awareness is the main

reason in the North American blackouts, which highlight
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the importance of cyber-attack analysis to maintain a sta-

ble and reliable operation of the power supply. A cyber-

attack can result in overload that will damage the equipment,

or false demand request which can result in lots of energy

generated [2]–[4]. Besides, a malicious attack can also cause

false negatives, i.e., false overload condition in a power sys-

tem. Other disruptions in different parts of the smart grid,

electric vehicle infrastructure, is also possible. It is shown

in [5], [6] that malicious attacks by blocking communications

with a device can stop services in substation computers.

Therefore, real time cyber-attack detection is paramount for

the reliable performance of the critical infrastructure includ-

ing smart grids. Online and continuous system monitoring

is a requirement to detect targeted cyber-attacks and achieve

attack resilience [7].

In general, individual sensors in a large-scale network are

the main target of security compromises. A compromised

insider can easily access information stored in a compro-

mised node. In theory, key revocation of any compromised
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node is possible by applying an authentication mechanism to

sensor networks. However, authentication approaches based

on cryptography or security gateway design, such as the one

described in [8], [9], are infeasible due to the computation

and storage constraints of the system. The existing studies

within the smart power grid context mainly focus on the net-

working security of the cyber elements [10]–[12], advanced

anomaly detection techniques [13], [14], and secure control

theories based on different state estimation techniques [15].

A detailed analysis about presence of cyberattack in a power

system is described in [16].

Although the above mentioned solutions are capable of

immunizing the power systems, majority of them are math-

ematically too expensive, physically impractical and not

scalable for large-scale complex network. Nowadays, huge

amount of data is generated all over the grids which increase

accessibility for real-time system monitoring. Exploring

these data greatly enhances the performance monitoring,

diagnosis, and prognosis of anomaly in complex systems.

Historical data describing the system’s operation can help

identify anomalies and potential attacks. However, tradi-

tional Bad Data Detection (BDD) techniques are not prepared

for real time computational and storage issues due to the

large-volume of data generated in the smart grid. These chal-

lenges opens up the possibility of using data analytical tech-

niques, such as Machine Learning (ML), to tackle complex

structure data sets with AI to detect and prevent cyber-attacks.

ML algorithms can be used to analyze various combinations

of measurements through AMI, states, and control actions

by learning their patterns [17], [18]. It can detect False Data

Injection (FDI) attack by learning the non-linear, complex

relationship between measurements. This can be done in

a similar fashion to successful techniques applied to other

power system problems as seen in the research literature [19].

There are limited studies on the application of ML on

cyber-security of the smart grids. Several ML algorithms are

tested and compared in [20] for detection of FDI attacks.

General conclusions was made about the success of machine

learning in classifying FDI attacks. [21] proposed a hybrid

intrusion detection method based on common path mining

method to detect abnormal power system events from PMU

data, relays, and energy management system (EMS) logs.

A cyber-attack detection techniques based on the correla-

tion between two PMU parameters using Pearson corre-

lation coefficient was used in [22]. This method analyzed

the change of correlation between two PMU parameters

using Pearson correlation coefficient. Authors in [20] uti-

lized Gaussian process combined with ML to model the

attack strategy for anomaly detection. In [23] a supervised

ML–based scheme is proposed to detect a cyber-deception

assault in the state estimation process. A deep learning

method which recognize important features of FDI attacks in

real-time is also proposed in [24].

Performance of the existing, data-driven attack detection

techniques can be improved using Probabilistic Graphical

Models (PGM) to model complex system behavior. Among

PGMs, Dynamic Bayesian Networks (DBN) are useful tools

which can represent complex systems evolving in time using

the causal relationships between system components [25].

Moreover, new techniques should be developed to handle

the complex and high dimensional data to maintain the

robustness, scalability and accuracy of the attack detection

mechanisms. To reduce the computational burden in large

data sets, feature extraction can be used to transform the

original features into a more meaningful representation by

reconstructing its inputs and it involves reducing the amount

of resources required [26], [27]. Detection techniques that do

not rely on pre-classified training data are essential, as there

exists anomalies which cannot be measured or simulated.

In this work, we propose a smart grid anomaly detection

method to extract the patterns of changes in FDI attacks. The

revealed features are employed to detect the attacks in real-

time. Symbolic Dynamic Filtering (SDF) is used to build a

computationally efficient feature extraction scheme to dis-

cover causal interactions between the smart grids sub-systems

through DBN. Mutual Information (MI), DBN and learn-

ing algorithms are used to detect unobservable cyber-attacks

based on free energy as the anomaly index. Our goal is to

capture dependencies between variables through associating

of a scalar energy to each variables, which serves as ameasure

of compatibility. The scalability of the proposed technique is

examined on various IEEE test systems which was modeled

on PSS/E software. The results show high accuracy and low

false alarm under different operation conditions. It should be

mentioned that the proposed method does not only relies on

the pattern in the training data sets but It also uses the concept

of free energy to differentiate between the energy level in

the attacked and normal data sets. Therefore, even new and

unseen attacked can be detected.

The main contributions of this work are as follows:

• Formulation of an unsupervised approach to detect an

anomaly in smart grids without labeling data sets.

• Proposing a scalable method by reducing computational

burden through data reduction by SDF.

• Developing a strong learning model based on DBN.

• Proposing a model-free approach, which can be

employed in hierarchical and topological networks for

different attack scenarios.

The rest of the paper is organized as follows. Mathematical

formulations are described in Section II. Proposed cyber-

attack detectionmethod is presented in Section III. Section IV

discusses the case studies and simulation results followed by

the conclusion in Section V.

II. MATHEMATICAL MODELING

A. GENERATOR’S MODEL

In this work, smart grid is modeled as a multi-agent, cyber-

physical system where each of these agents include a genera-

tor, a measurement device, a distributed control agent, and an

energy storage system that can inject or absorb real power in

the system [28]. The dynamic and static state of the system
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are described as follows:

ẋ = f (x, u, η)

z = h (x, u, ε) (1)

where x is the system state including the dynamic state of

the generator (e.g. rotor speed and rotor angle) and the static

state of the network (voltage magnitude and phase angle). f (.)

describes the non-linear, dynamic behavior of the generators

and h (.) is the measurements non-linear function. u and z

represent the output and measurements vector, respectively.

The 4-th order (two-axis) model of generator i’s can be

described as [29]:

δ̇i = �s1ωi

ω̇i =
ωs

2Hi
(PMi − PEi − Di1ωi)

Ė
′

qi =
1

T
′

di

(
−E

′

qi −
(
Xdi − X

′

di

)
Idi + Vfi

)

Ė
′

di =
1

T
′

qi

(
−E

′

di +
(
Xqi − X

′

qi

)
Iqi

)

E
′

qi = Vqi + RaiIqi + X
′

diIdi

E
′

di = Vdi + RaiIdi − X
′

qiIqi (2)

where (̇) denotes the time derivative. Generator parameters

are described using Table 1.

TABLE 1. Generator parameter description.

For synchronous generator i, excitation system controls

the field voltage, the mechanical torque is controlled by the

associated speed governor, and the electrical output can be

calculated as follows:

PEi = E
′

diIdi + E
′

qiIqi +
(
X

′

qi − X
′

di

)
IdiIqi. (3)

Let Ei denote the internal voltage of generator i, then PEi can

be expressed as [30]:

PEi=

N∑

k=1

|Ei| |Ek | (Gik cos (δi−δk)+Bik sin (δi − δk)) (4)

where Gik = Gki and Bik = Bki are the conductance and

susceptance between generators i and k , respectively.

In this work, the goal is to learn and predict the

dynamic behavior of the smart power grid (where gener-

ators are modeled as explained in this section) to detect

anomaly/cyber-attacks. SDF, DBN, and RBM are used to

develop a computationally efficient tool for discovering the

interactions between the subsystems.

B. ATTACK REPRESENTATION

Traditionally, the integrity of the state estimation process

is verified through BDD method by computing the L-norm

of measurement residual [31]. The presence of bad data is

determined if
∥∥z− Hx̂

∥∥ > Tr (5)

where z ∈ RN is the measurement vector, x̂ ∈ RD is the

estimated state vector, and H ∈ RN×D is the Jacobian matrix.

A threshold Tr is pre-defined to maintain the accuracy of

the state estimation. Aside from the fact that cyber-attacks

bypass the existing BDD technique, measurement redun-

dancy required for BDD approaches makes them impractical

for smart grid technology. In intelligent cyber-attacks, specif-

ically FDI attacks, the goal of the adversary is to control a

subset of themeasurements andmanipulate the state variables

arbitrarily. It can be done by injecting a false data vector za ∈

RN which by pass traditional BDD techniques. Suppose the

malicious attack intentionally manipulates the meter readings

by za. Accordingly, the attack- incurred measurement change

can be written as:

z = Hx̂ + za + ǫ = H


x̂ + ca︸ ︷︷ ︸

x̂a


+ qa + ǫ (6)

where ǫ is the measurement noise, and x̂a is the faulty esti-

mated state.

The injected false data (za) can be decomposed into two

parts a = Hca and qa, where ca ∈ RD is an injected vector

of data which bypass BDD tests since it lies in the column

space of H, and qa is the only detectable part that lies in

the complementary space where H
(
HTH

)−1
HT qa = 0.

In other words, the stealth attack vectors (za) always exists

even if the adversary can get partial access to the network

topology and line parameters to construct malicious attacks

that completely lie in (H ), i.e., qa = 0, thereby bypassing the

existing BDD methods [32].

The following assumptions are considered in the model of

the attack:

• In this work, the assumption is that the attacker has lim-

ited resources and could onlymanipulate limited number

of measurement readings. This could be either power

injection or power flow data, for a time period Ta ⊆ T .

This is a realistic assumption because, in the context

of power networks it is not realistic to assume that all

sensors report faulty measurements at the same time.
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Moreover, in reality, compromising all measurements

results in huge cost and effort for attackers.

• Complete knowledge of the system is literally impos-

sible for an outsider. Therefore, the attacker has par-

tial knowledge of the system topology and security

mechanisms. Such knowledge can be obtained by sta-

tistical analysis of data sent from the remote terminal

units (RTUs) to the control center or by physically cap-

turing the security information embedded in a node.

In this work, strategic sparse FDI attack with least absolute

shrinkage and selection operator (LASSO) is considered.

Jacobian matrix (H ) is decomposed based on a row-wise

approach. A sub Matrix HS =
(
Hji,:,HjN−|S|,:

)
, of H is

created to represent the secure measurements, where Hji,:
is the ji-th row of H, such that HSca = 0. Likewise, sub-

matrixHA is constructed for attacked measurements. Finally,

the attacker’s strategy is defined in a way to find a solution ca
which optimize following objective function:

Minimize

∥∥∥HAca

∥∥∥
0

Subject to HSca = 0,

‖ca‖∞ ≥ τ, (7)

where τ ≥ 0 is a given constant. The optimization problems

is solved using LASSO and Regressor Selection algorithms.

More details about the attack construction is available in [33].

The goal of the attacker is to manipulate rotor speed and

angle through FDI attack by hacking into the communication

network. Hence, ∀t ∈ Ta, for generator i, the effect of FDI

attacks on the system state can be written as:

xai (t) = xi (t) + γixi (t) + Ci (8)

where the γi is a constant coefficient and Ci represents a

constant bias in the attacked states. In other word, the attacker

is interested to alter the system state by γi andCi. Considering

that, the attacker will design za in a way that the attack vector

remains unobservable for the operator and traditional BDD

methods. In the experiments, we assume that the attacker has

access to λ measurements, which are randomly chosen to

generate a λ-sparse attack vector.

III. PROPOSED ENERGY-BASED CYBER-ATTACK

DETECTION

In this section, a cyber-attack detection framework is pro-

posed which utilize DBN modeling, feature extraction

through MI and RBM for data training. DBN and MI are

applied to smart grid test systems with extensive measure-

ments, and the RBM is used to capture the patterns in system

behaviour that are extracted by the unsupervised DBNmodel

(data are not labeled).

The proposed data driven framework for anomaly detection

is depicted in Fig. 2. At first, the system is partitioned into

several sub-systems. Then causal dependency between nom-

inal characteristics of subsystems are learned using SDF. The

proposed method is a computationally efficient tool, which

FIGURE 1. Illustration of the steps to generate DBN using SDF-based
feature extraction.

reduce the computational burden by: 1) selecting a subset

of measurements through feature selection and SDF, and

2) by domain decomposition and data processing on several

subsystems in parallel, rather than dealing with whole system

at once.

A. SYMBOLIC DYNAMIC FILTERING

In the proposed feature extraction method based on SDF,

the time series data are first converted into symbol sequences,

and then DBN are defined from these sequences to compress

the information into low-dimensional statistical patterns. The

phase space of the system in Eq. (1) is divided into a finite

number of cells. A compact region � is identified by intro-

ducing a partition B ≡ {B0, . . . ,B −1} consisting of m

mutually exclusive (i.e., Bj
⋂
Bk = ∅ ∀j 6= k) and exhaus-

tive (
⋃ −1

j=0 Bj = �) cells. The dynamic system describes

the time-series data as O ≡ {β0, . . . ,β −1} ,βi ∈ �,

which passes through the cells of the partition B [34], [35].

To understand the concepts of partitioning and mapping

into the symbol alphabet, consider the system shown in

Fig. 1 [34].

Consider the cell visited by a trajectory as a random vari-

able S with symbol value s ∈ A. Symbol alphabet is the

set A of different symbols that mark the elements in

the partition. Every initial state β0 ∈ � produce a series of

symbols which can be defined by mapping from the phase

space into the symbol space as follows:

β0 → si0 si1 . . . sik (9)

Eq. (8) is called symbolic dynamics. The symbolization

process converts multi-dimensional space into a symbol

sequence, and then into a DBN.

B. DYNAMIC BAYESIAN NETWORKS

DBNs are probabilistic graphical models that can demon-

strate system’s state as a set of variables, and model the

probabilistic dependencies of the variables between time

steps. In this work, a high order DBN on ξ variables xt =

{x1,t , . . . , xξ,t } at different time points t = 1, . . . ,T is

considered. Each xi,t represents the expression of state i at

VOLUME 7, 2019 80781
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FIGURE 2. Proposed framework for cyber-attack detection using unsupervised learning.

time t. Symbol sequence is extracted from the variables set by

SDF. To find the occurrence probability for a new symbol sn,

we assume that the DBN satisfies the L-th order Markov

property:

P
(
sn|sn−1 . . . sn−L . . . s0

)
= P

(
sn|sn−1 . . . sn−L

)
(10)

Thus, a state transition matrix 5 which describes the L-th

order Markov chain can be defined based on the training data.

The order of the model is set based on trial an error. Let the

state at time instant k be denoted as qk . The ij-th element of

5 can be defined as follows:

5ij , P
(
qk+1 = si|qk = sj

)
(11)

In this work, since we are dealing with several time series,

we use a modified version of Markov chain (xL-th order

Markov chain) [36] to predict the occurrence probability for a

new symbol in a series A using the last L symbol for another

series B. 5A and 5B are defined for L-th order Markov

representing sub-systems A and B, respectively. The same

way, causal dependencies of A on B and B on A can be

represented by cross state transition matrices 5AB and 5BA,

respectively.

Features from L-th order Markov chain are known as

the atomic patterns (APs) and the one for xL-th order

Markov chain are referred as the relational patterns (RPs).

State-transition matrices 5AB and 5BA, can be described as:

πAB

kl , P
(
qBn+1 = l|qAn = k

)
∀n

πBA

ij , P
(
qAn+1 = j|qBn = i

)
∀n (12)

where j, kǫQA and i, lǫQB, QA and QB are the state vector

related to sequence A and B, respectively.

Given a multivariate time series, the symbol sequences

S is generated with partitioning. After that, a high order

DBN is used to define the subsequent states and transition

probabilities between the vertices. We use MI criteria to

extract important feature of an AP or an RP. MI develops a

generalized linear correlation coefficient that measures the

relationship between two random variables. A non-zero value

in MI means the two variables are independent towards each

other. MI between state sequences qA and qB can be written

as Importance metric IAB as follows:

IAB = I
(
qBk+1; q

A

k+1

)
= H

(
qBk+1

)
− H

(
qBk+1|q

A

k

)
(13)

where,

H
(
qBk+1

)
= −

∑QB

i=1
P
(
qBk+1 = i

)
log2 P

(
qBk = i

)

H
(
qBk+1|q

A

k

)
= −

∑QA

i=1
P
(
qAk = i

)
H
(
qBk+1|q

A

k = i
)

H
(
qBk+1|q

a
k = i

)
= −

∑QB

j=1
P
(
qBk+1 = j|qAk = i

)

× log2 P
(
qBk+1 = j|qAk = i

)

More details about the MI-based causality can be found

in [32]. The variation of the MI matrix (IAB) between two-

time periods can be driven as:

δ (I ) = IABt1 − IABt2 (14)

Large δ means a strong predictive and informative link in AP

or RP that can be used to distinguish the two kinds of end

uses.

Once the models are ready, patterns of system’s behaviour

are learned by the RBM. Test data are used to compute the

likelihood of the learned features. In this work, we used

Restricted Boltzmann Machine (RBM) for this purpose.

C. RESTRICTED BOLTZMANN MACHINE

Boltzmann Machine is a generative method to model the

unknown distribution of data. Unlike most of the Machin

Learning techniques that only discriminate some data vectors

in favor of others, Boltzmann Machine can also generate

new data with given joined distribution, as well as pattern

completion in case of missing inputs. It is also considered

more feature-rich and flexible. RBM belongs to the class of

stochastic Energy-basedModels (EM) [38]. In EM, each state

of the system is associated to an specific energy level. Such

a system can be described by a network of stochastic binary

neurons (a set of visible variables v = {v1, . . . ,vN }) which

are connected a set of hidden variables h = {h1, . . . ,hK }.
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System’s state can be described based on joint configurations

of the visible and hidden variables. It is proved that model

estimation in RBMamounts tomaximize the likelihood of the

training data with low-energy state. As a result, an anomaly

will appear as a configuration with low probability or high-

energy [39]. Given binary variables v and hidden variables h,

the joint probability of a state (Pr (v, h)) can be described

based on the energy of that state (En (v, h)), with a Boltzmann

distribution function:

Pr (v, h) =
exp(−En(v, h))∑
v,h exp(−En(v, h))

(15)

where

En (v, h) = −

N∑

i=1

aivi +

K∑

k=1

(
bk +

N∑

i=1

wikvi

)
hk (16)

where a, b, and w are model parameters which are calculated

through maximization of the probability of the training data

with low-energy state.

Data density can be rewritten as:

Pr (v) ∝
∑

h

exp(−En(v, h)) = exp(−F(v)) (17)

where F (v) is known as free-energy and can be rewritten as:

F (v) = − log (Pr (v)) + constant (18)

Therefore, free energy can be used as the anomaly index

to rank data instances in linear time. The trained RBM is

employed to identify cyber-attack based on the probability

and energy level of event. Anomaly is represented by an event

with high energy or low probability. The assumption is that

cyber-attacks change the interaction among the sub-systems

and results in different patterns in DBN. For simplicity of

training, IAB can be normalized into binary states (0 and 1

for low and high values, respectively) for APs and RPs.

Finally, changes in the parameters related to the accepted

patterns are used to identify cyber-attacks. A distribution of

free energy is used to detect low probability events or cyber-

attacks based on distance metric. For the normal operation

condition, free energy will have similar distribution to that of

the training data. The assumption is that the training data are

mostly collected from normal operation condition. Therefore,

the learnt RBM can effectively capture the normal operation

of the system.

To quantify the difference between the energy distributions

in training and test data, Relative Entropy (RE)metric is used.

The relative entropy between two probability distributions is a

measure of the distance between them. RE for two probability

distributions P and Q on a finite set X, can be described

as [35], [36],

RE(P‖Q) =
∑

X

P(x) log
P(x)

Q(x)
(19)

where P and Q refer to the distribution of free energies in

the normal situation and under cyber-attack, respectively.

Free energies in the normal operation condition (F (vn))

and under cyber-attack condition (F (vca)), can be calculated

using Eq. (14). A symmetric RE distance can be defined

as [38],

REd (P‖Q) = RE(P‖Q) + RE(Q‖P) (20)

which can be used as an index for cyber-attack/anomaly

detection. This index will be compared with a Detection

Threshold (DT) to detect the cyber-attack. Too low thresholds

may results in many false attack detection, while too high

thresholds may lead to unidentified attack. In this work, most

of the RE values calculated through training are assumed to

be normal, while a few of them are outliers. To find the DT,

the normal distribution is used as the baseline. The assump-

tion is that 95% of the data are within two standard devi-

ations of the mean. ∀ D̃T satisfying
∣∣{RE i:D̃T ≥ RE i

}∣∣ =

0.95|{RE i}|, i = 1, 2, . . . , n that, DT = min{̃DT } where RE i
is the i-th RE in the training data. Then, anomaly is detected

when RE (t) ≥ DT . The steps can be summarized as follows:

• Transform time series data to symbolic sequence.

• Model the subsystems and their interactions using DBN.

• Evaluate the information based metric values using MI

(I ij).

• Generate a binary vector of length L using I ij, and assign

a state 0 or 1 to each I ij.

• Use RBM with visible nodes corresponding to APs and

RPs to learn the behaviour pattern.

• Detect anomaly by calculating the occurrence probabil-

ity of the current observation based on trained RBM.

The anomaly detection process algorithm is described

in Fig.3.

FIGURE 3. Proposed algorithm for anomaly detection.

IV. CASE STUDIES AND SIMULATION RESULTS

In this section a case studies under different operation con-

dition are simulated to validate performance of the proposed
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method. Case 1 is modeled as a multi-agent cyber-physical

system based on IEEE-39 bus model where each agent

includes a generator as described in Section II, ameasurement

device, a distributed control agent, and an energy storage

system as shown in Fig.4. Energy storage represent the energy

that can be fed into the system by different micro grid or

renewable sources. The same analysis is performed for all

case studies, however, for the sake of space only the results

of Case 1 are included in this section.

FIGURE 4. IEEE 39 bus system under cyber-attack in line 6-31 and 11-12.

A. TEST SYSTEM

Details of the case studies are listed in Table 2 and adapted

fromMatpower [42]. All case studies are assumed to be fully

observable. To make sure about the accuracy of the historical

data a level of security is added to the measurement model.

Large-scale power grids contain thousands of meters which

makes the protection of measurements highly expensive.

In order to reduce the cost, we identify the critical meters to

protect them based on optimal PMU placement [31]. We also

assume that the system topologies remain unchanged over the

typical days. Case studies are implemented inMatlab R2017a

and carried out on a PC with a Core(TM) i7-7700 CPU,

3.6 GHz, and a RAM of 32.00 GB.

TABLE 2. Units for magnetic properties.

By exploring the MI index, dependency between a subset

of variables that influence each other in the normal condi-

tion is used for anomaly detection. The model generated by

RBM represent the normal system since most of the collected

data are collected are from the normal conditions. It should

be mentioned that collected data are labeled as normal or

anomalous. Training data are used to obtain the baseline for

the normal condition which will be used for selecting the

threshold for the anomaly. A moving window in a subset

of the training data (with distribution P) is used to compute

the distribution Q representing the dynamic behavior of the

system. In order to measure the distance between Q and P,

the REmetric is applied in each subset. Similar setting is used

for the testing data. Finally, the twoRE are compared to detect

anomalous condition (cyber-attack in our case).

The attack strategy is designed to overload lines 6-31 and

11-12. The attack region is shown in Fig. 4. Normalized

measurement residual under normal operation condition, due

to fault, and due to cyber-attacks are presented in Fig.5 for

Case 1. It can be seen that all the measurements residuals

due to cyber-attacks have almost the same magnitude as

the measurement residual under normal operation condition

which implies that conventional residual test cannot detect

the stealthy cyber-attacks. It should be noted that faults will

results in significant residual in the measurement residual as

shown in Fig. 5. In case of a fault in the system, the operator

will be notified and clear the fault. Therefore, the fault will

not affect the states of the system.

FIGURE 5. Measurement residual before and after cyber-attack on Case 1.

In Fig. 6, the variation in the lower plot is in an acceptable

zone. However, in the top plot, the variation significantly

increases during the attack between 35-65 samples. This

indicates that there is a potential case of cyber-attack that has

gone unnoticed in bad data detection. Therefore, estimated

states with high error could be fed into the rest of the system,

which may result in irreparable damages.

B. ACCURACY, FALSE POSITIVE AND TRUE POSITIVE

In the smart grid analysis, the major concern is not only the

detection of cyber-attacks, but also the ability to avoid false

alarms. Therefore, performance of the proposed method is

analyzed based on the True Positives (TP), the True Negatives

(TN), the False Positives (FP), and the False Negatives (FN),

which are defined in Table 3.

The learning abilities and memorization properties of the

algorithms are measured by the False Positive Rate (FPR),

True Positive Rate (TPR), and Accuracy (Acc) values, which
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FIGURE 6. Variation on state estimation error, a) without cyber-attack, b)
with cyber-attack on Case 1.

TABLE 3. Units for magnetic properties.

are defined as [43]:

FPR =
FP

TN + FP

TPR =
TP

TP+ FN

ACC =
TP+ TN

TP+ TN + FP+ FN
(21)

Low FPR of 0% means that none of the secure measure-

ments are misclassified as attacked. TPR of 100% clarifies

that none of the attacked measurements are misclassified as

secure. Accuracy of 100% means that each measurement

classified as attacked is an attacked measurement, and each

measurement classified as secure is a secure measurement.

1)Effect of Threshold on FPR- Fig. 7 shows the variation of

FPR as a function of detection threshold for single attack (SA)

FIGURE 7. FPR under single and multiple cyber-attack for two different
attack magnitudes on Case 1.

FIGURE 8. TPR and ACC under single and multiple cyber-attack for two
different detection thresholds on Case 1.

and multiple attack (MA) on state variables δ2, δ4. For each

case DT was varied from 0.25DT to 1.5 DT, where DT is

the threshold defined in Section III. As can be seen from

the figure, FPR decreases sharply with increase in detection

threshold. This indicates that, when the threshold is too low,

the algorithm becomes too aggressive in attack detection, thus

suffering from high false-alarm rate.

In addition, as the figure shows, magnitude of the attack

and number of attacks does not affect the FPR significantly.

Moreover, it can be seen that for threshold larger than DT,

FPR becomes negligible (i.e., under 2%). Therefore, DT is

used as the threshold for the proposed method. Similar trend

was observed in the trend of changes in FPR vs. the threshold

for other states.

2) Effect of Attack Magnitude on TPR and ACC-

Fig. 8 shows the variation of TPR and ACC as a function of

attack magnitude for two attack scenarios on state variables

δ2, δ4. 1 (1% of the original measurement) and 10 (10%

of the original measurement) indicate low and high attack

magnitudes, respectively. Mediummagnitude (here indicated

by 5) is the regular type of attack on the literature. To verify

the effect of detection threshold on TPR and ACC, the results

are plotted for two different thresholds.

As shown in Fig.8, by increasing the attack magnitude,

TPR and ACC quickly approached 100%. In addition, it can

be seen that a very high threshold adversely affects the TPR

and impacts the minimum size detectable attack. The results

show that DT defined in Section III can effectively detect

an attack with medium and higher strength with almost 99%

accuracy and 98% TPR. A similar trend was observed in the

changes of TPR and ACC vs. the attack magnitude for all

states. Summary of the results for different case studies are

reported in Table 4.

3) Effect of Attack Sparsity on TPR and ACC- to analyze

the effect of attack sparsity, attacks with different sparsity

λ/N ∈ [0, 1] are generated. N represents the total number of

measurements in the system. As shown in Fig. 9, both TPR

and ACC increase as the number of contaminated measure-

ments increases. Here, sparsity 1 means all measurements are

manipulated by the attacker. The figure shows that proposed
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TABLE 4. Summary of results for single attack with medium attack
magnitude (average).

FIGURE 9. TPR and ACC under single and multiple cyber-attack for
different attack sparsity on Case 1.

algorithm has very high TPR (94%) and ACC (90%) when

only 35% of the measurements are manipulated. Once half of

the measurements are attacked, which is a realistic assump-

tion for successful attack implementation from the attacker’s

perspective, the algorithm is highly effective with 99% TPR

and 98% ACC.

C. PERFORMANCE ANALYSIS UNDER DIFFERENT

OPERATION CONDITION

To validate efficieny of the proposed method, four different

scenarios are considered:1) normal condition without attack,

2) random attack, 3) single FDI attack on 6-31, 4) multi-

ple, simultaneous FDI attacks on lines 6-31 and 11-12. Pro-

posed method is compared with the two most popular BDD

approaches; LNR test and Chi-Square test. The threshold

is set to 3σ while σ is the standard deviation, to minimize

the false positives due to the noise, thus FPR due to noise

is less than 1% [44]. For accurate and detailed comparison,

the threshold is normalized for all detectors. The same crite-

rion is considered for setting threshold in LNR test. For more

information about LNR and Chi-Square test refer to [20].

Detector’s output are depicted in Fig. 10.

As shown in Fig. 10 (a), in normal operation condition, the

output of all detectors is under the threshold which specifies

that there is no trace of bad data or cyber-attack in the system.

Fig. 10 (b) shows that all methods are able to detect the

random attack. Since the attack is unintelligent, it will leave

its trace in the data sets and the operator will be informed of

an attack presence. The random bad data, which was injected

to the measurement set, results in significant changes in the

measurement residual vector, which leads to the increase in

FIGURE 10. Detector out put under a) normal condition, b) random
attack, c) single cyber-attack, d) multiple cyber-attack on Case 1.

cost function. In an optimal state estimation, we evaluate

the cost function based on the residual of the measurements.

In the normal operation condition, without bad data in the

system, the cost function follows a normal distribution with

zero mean. Under a random attack, the cost function will pass

the threshold for optimal state estimation. Therefore, both

LNR and chi-square tests will trigger the alarm successfully.

In case of single or multiple FDI attacks, as can be seen

in Fig. 10 (c) and (d), the cost function for both LNR and

Chi-Square detector stayed in the true range of predefined

thresholds. Both approaches resulted in their normalized

residue values below the specified threshold and thus they

were unable to detect the attack in the system. However, in the

same setup, output of the proposed detector is above the given

threshold and can trigger the alarm. The main reason is that

the LNR test and Chi-Square test are based on residual of the

measurement vector while cyber-attacks are carefully crafted

to bypass the statistical detector with no trace in residual

vector. Similar results were observed for all case studies.

Average detection time for all case studies was 1ms with

0.2ms deviations.
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In general, any type of FDI attack in line or system topol-

ogy results in the same changes in the network with minor

modification. Therefore, the proposed method can success-

fully detect various FDI attacks from different sources. Fur-

thermore, since the proposed scheme analyze the patterns

between the compromised data and the normal data, its suc-

cess rate does not depends on the attack scenarios.

V. CONCLUSION

In the context of smart grid anomaly detection, the solutions

proposed in the literature are mainly offline approaches with

restriction to deal with dynamically evolving cyber threats.

This paper propose a real time and computationally efficient

tool for anomaly detection that utilizing feature extraction

scheme and time series partitioning to discover causal inter-

actions between the subsystems. DBN concept and learning

algorithms based on Boltzmann Machine are used to detect

unobservable attacks based on free energy as the anomaly

index. Performance of the proposed algorithm was evaluated

on different IEEE test systems and under different operation

conditions for several measures (TPR, FPR, and ACC). The

results demonstrated that the system achieves an accuracy of

99%, TPR of 98% and FPR of less than 2%.
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