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Abstract

Background: Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is
affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on
gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene
expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer
Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising
auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve
the model by introducing dropout to prevent overfitting and improve performance.

Results: To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and
gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms
other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model
with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align
well with true gene expression patterns.

Conclusion: We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study
demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models
to understand genotypes’ contribution to gene expression. With the emerging availability of richer genomic data, we
anticipate that deep learning models play a bigger role in modeling and interpreting genomics.
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Background

As a critical biological process, gene expression repre-

sents a key intermediate level that genotypes could bring

about effect on a particular phenotype. Changes in gene

expression can result in phenotypic variation, while gene

expression is manifested by many factors at various lev-

els including genetic variants at DNA level. Hence, these

genetic variants may influence phenotypes by poten-

tially perturbing gene expression, and the fluctuations of

gene expression could then give rise to an organism’s

phenotypic changes. Genetic variants reflect the genetic
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difference among individuals and contain many types,

ranging from single nucleotide polymorphisms (SNPs)

to large structural variants. Recent sequencing initiatives

have started to generate sequences of tens of thousands

of individuals across a wide variety of species. For exam-

ple, the Genome 10K Project [1] intends to assemble a

“Noah’s Ark” of genomic data to help understand how

complex animal life evolves and use this knowledge to save

dying species. Thanks to the availability of these DNA

sequences, the biological community has consequently

generated detailed catalogs and genotypes of genetic vari-

ants in various biological systems. Studies have shown

that genetic variants are associated with not only pheno-

typic traits of many kinds, but also linked with molecular

traits such as gene expression. Therefore, assessing the

effect of genetic variation on gene expression will improve
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our knowledge in understanding how genetic variation

leads to phenotypic variation with regard to an organism’s

development, growth and survival.

Quantitative trait locus (QTL) mapping has been

demonstrated to be a powerful tool to associate genetic

variation with quantitative traits. Particularly, expression

QTL (eQTL) mapping [2, 3] has been widely performed

to study the influence of genetic variants on gene expres-

sion, where gene expression is considered as a quantitative

trait. Various eQTL studies [2] have been performed in

yeast [4–17], zebrafish [18], human [19–31], and many

other organisms. These eQTL studies have accumulated

a growing list of SNPs associated with gene expres-

sion changes. Interestingly, SNPs associated with diseases

through genome-wide association studies (GWAS) stud-

ies, are enriched for eQTLs [32, 33]. This observation

points to an important perspective of understanding the

link between genetic variants and gene expression, where

eQTL studies can be employed to interpret and pin-

point GWAS findings especially for GWAS signals in

non-coding regions.

Taking genotypes and gene expression quantifications

as input, traditional eQTL mapping performs a statis-

tical test (often using a linear regression or correlation

model) between the genotypes of a genetic variant and

the expression profiles of each gene in a set of samples.

The nominal p-values from these statistical tests on all

variant-gene pairs, will be subject to multiple test correc-

tion. Those variant-gene pairs passing statistical threshold

for multiple test correction will be reported as significant

associations. The majority of eQTL mapping is focused

on cis analysis, where only local genetic variants located

within a window of certain distance from the gene (typ-

ically using the coordinate of the transcription start site

of the gene). Distal trans analysis, can be conducted in a

similar fashion, where genetic variants outside of the des-

ignated window on the same chromosome or even on a

different chromosome from the gene will be tested for

associations.

However, genomic data for eQTL mapping is usually

high-dimensional, where the numbers of genetic variants

and genes are typically large and the sample size is rel-

atively much smaller. Another feature of genomic data

is the low signal-to-noise ratio, where only a very small

amount of signals is relevant and the rest could be just

noises. Given the sparsity and low signal-to-noise ratio

of genomic data, it is thus statistically and computation-

ally challenging to identify eQTL associations particularly

trans associations. With the sparsity in mind, classical

sparse learning methods, like the Least Absolute Shrink-

age and Selection Operator (Lasso) model [34], can be

used to identify associations between genetic variants

and gene expression in eQTL mapping. This is because

Lasso typically prefers solutions with fewer parameter

values, and thus results in a sparse model which in turn

make it appropriate to handle high-dimensional data as in

genomic data analysis. Particularly, the Lasso model min-

imizes the usual sum of squared errors, with a bound on

the sum of the absolute values of the coefficients. Thus,

the Lasso model effectively reduces the number of vari-

ables upon which the given solution is dependent. For this

reason, Lasso and its variants are fundamental to the field

of compressed sensing. Under certain conditions, it can

recover the exact set of non-zero weights. Therefore Lasso

simultaneously produces an accurate yet sparse model,

which makes it a feasible variable selection method for

eQTL mapping.

One common critique of traditional eQTL mapping is

that genetic variants and genes are tested independently.

In reality, multiple genetic variants can be located within

a haplotype block or sit on a pathway and hence their

genotypes can be correlated. In the meanwhile, multiple

genes can be co-regulated or involved in the same path-

way and thus their expressions can be correlated. New

methods have been proposed to incorporate the biolog-

ical prior knowledge into eQTL mapping, such that the

relationships between genetic variants and/or genes are

taken into account. For example, multi-task Lasso and its

graph-guided variants [14, 35–37] have been proposed

for eQTL mapping. These graph-guided Lasso models

work by adding regularization terms to a multi-task Lasso

model, so that two variants or genes highly correlated are

more likely to be selected together as a group.

Another approach previously used for eQTL mapping

is Random Forests [38–41], which is an ensemble learn-

ing method for classification, regression and other tasks.

By constructing a multitude of decision trees at training

time, Random Forests are capable of performing classifi-

cation or mean prediction (regression) of the individual

trees. Additionally, Random Forests correct for decision

trees’ habit of overfitting to their training set [42]. Studies

have shown that Random Forests outperform traditional

eQTL methods [43].

In addition to providing improved eQTLmapping, these

machine learning based models have potentials for build-

ing a predictive model of inferring gene expression from

genotypes. Note that this goal of prediction differs from

the aforementioned eQTL mapping since eQTL mapping

only focuses on constructing a mapping between genetic

variants and associated genes, rather than predicting gene

expression levels [44, 45]. Recently, a K-Nearest-Neighbor

(KNN) method and a regularization linear regression

model (i.e. Elastic Net) have been showed to allow for

prediction of gene expression from only SNP genotypes

in human Lymphoblastoid cell lines [44, 45]. Therefore,

it is desirable to investigate innovative machine learning

models and assess their capabilities of predicting gene

expression from genotypes.
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In addition to identifying eQTL associations, these

machine learning models are well posed to be used for

constructing predictive models. In this study, we set

out to explore emerging deep learning models to build

such a predictive model. Deep learning [46] has been

demonstrated as a powerful model that shows encour-

aging performance in many tasks including text mining,

natural language processing, image and video analysis

[47]. Deep learning differs from previous shallow mod-

els in that they include a hierarchy of hidden layers that

captures unknown structure in data. These hierarchical

hidden layers, where higher levels represent more abstract

entities, map the lowest input layer to the uppermost

output layer without using hand-crafted features or rules

[48]. With the rapid growth of genomics data, we wit-

ness an increase of deep learning models that encode

hierarchical representations of various biological mech-

anisms captured in genomics data. For example, a deep

neural network was developed that uses RNASeq data

to predict splicing patterns in different tissues in mouse

and evaluate differences in splicing patterns across tissues

[49]. Another work built a convolutional neural network

model to investigate the activities of transcription factors

and histone modifications during E2-induced G1e differ-

entiation [50]. Other examples of deep learning models

in genomics include models to predict protein contact

map [51, 52], protein residue-residue contacts [53, 54],

protein sequence labeling [55], protein disorderedness

[56, 57], protein structures [58–61], protein properties

[62], protein fold recognition [63], the functional effect

of non-coding variants [64], the pathogenicity of variants

[65], and the regulatory code of genomes [66, 67].

Nonetheless, there is limited research with regard to

predicting a quantitative trait from genetic variation. To

investigate the feasibility of doing so, we develop a deep

learning model to predict gene expression, a quantitative

molecular trait, from solely genotypes of genetic vari-

ants in the same samples. Specifically, we construct a

deep learning model based on MultiLayer Perceptron and

Stacked Denoising Auto-encoder (MLP-SAE) to accom-

modate the high-dimensional genomic data. As seen in

Fig. 2, this MLP-SAE model includes four layers, namely

one input layer, one output layer and two hidden layers

using stacked denoising auto-encoders. Each layer is pre-

trained using a local unsupervised criterion. The model is

further improved to prevent overfitting by using a dropout

technique.

To assess the performance of the proposed MLP-SAE

model, we compare it with other commonly used meth-

ods (e.g. Lasso and Random Forest) on real genomic

datasets on yeast. We observe that our MLP-SAE model

with dropout outperforms other models to predict gene

expression patterns from solely genotypes of genetic vari-

ants on yeast. In summary, this study applies a deep

learning model to address yet another biological problem,

that is, predicting quantitative traits from genotypes for

genomic prediction. This model is demonstrated to work

well in predicting gene expression quantifications in yeast

but can be applied to many other organisms to predict

various traits not limited to gene expression.

Methods

Data collection and pre-processing

We collect a widely-used yeast data set, with 2 956 SNPs

genotyped and the expression of 7 085 genes measured in

112 samples which are crosses of the BY4716 and RM11-

1a strains [68]. We then remove missing values (denoted

as ‘NA’) in the gene expression quantifications, resulted

in the expression profiles of 6 611 genes. We pre-process

the SNP genotype file by conducting imputing and scaling

using the Imputer and MinMaxScaler [69] tookits in the

Scikit-Learn package [70].

Deep learning regression model

Since the output for gene expression prediction is quanti-

tative, we use a linear regression model as the final layer of

our deep learning model to generate the output. A linear

regression model can be formalized as in Eq. 1.

f (x) = ωTx + b. (1)

Here, x stands for the input variables or features (in this

case, the genotypes of genetic variants), y represents the

output or labels which are gene expression quantifications

in this study, w is the weight matrix and b is the bias.

In such a linear regression model, both w and b can be

trained to minimize the objective function.

Multilayer perceptrons

A Multilayer Perceptron (MLP) is a feedforward neural

network that maps the input to the output. AMLP is com-

posed of nodes (i.e. neurons) at multiple layers, including

the input, output, and one or more hidden layers. Each

layer in a MLP is fully connected with the next layer. In

the hidden layers, each node is operated with a nonlin-

ear activation function. Typically, two types of activation

functions are used dependent on the data values operated

on each node. Let’s use oi to represent the output of the

ith node, and vi to represent the weighted sum of the input

synapses. For a value within a range from 0 to 1, a logistic

function is used as described in Eq. 2.

o (vi) = (1 + e−vi)−1. (2)

For a value ranging from −1 to 1, a hyperbolic tangent

is used as in Eq. 3.

o (vi) = tanh (vi) . (3)

After the data of each neuron in a MLP is processed,

the MLP network can be learned by adjusting connection
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weights between nodes, using a backpropagation algo-

rithm [71]. By comparing the output predicted by a MLP

and the expected output values, we calculate the errors

of the MLP and use supervised learning to learn a MLP

model by minimizing the calculated error.

Denoising auto-encoders

An auto-encoder [72] is another type of neural networks

that helps learning efficient codings of input data. With

a primary goal of learning a compressed and distributed

representation (i.e. encoding) of the input data, an auto-

encoder can thus be used for dimensionality reduction.

Similar to a MLP, a simple form of an auto-encoder is

a feedforward and non-recurrent neural net [73], which

consists an input layer, an output layer and one or mul-

tiple hidden layers in between. In an auto-encoder, the

activation of the final hidden layer can be treated as a

compressed representation of the input, if the hidden lay-

ers have fewer nodes than the input or output layers. The

activation functions used in a MLP can be also applied to

auto-encoders.

Despite their similarities, an auto-encoder differs from

a MLP in many ways. For example, the output layer of

an auto-encoder has the same number of nodes as in

the input layer. While an MLP can be learned to predict

some target value y given the input x, an auto-encoder

is trained to reconstruct its original input x by gener-

ating a reconstructed input x′ through optimizing its

objective function. For an auto-encoder, the model tries

to reproduce the provided input data x by using super-

vised learning, where the difference between the original

input x and reconstructed input x′ is minimized. There-

fore, backpropagation is also appropriate for training an

auto-encoder [74].

The training process of an auto-encoded is usually based

on backpropagation with the following three iterative

steps. First, we perform a feedforward pass to compute the

data values of all nodes after activation in the hidden lay-

ers and generate an output x̂ at the output layer for each

input x. Second, we calculate the deviation of the output

x̂ from the input x using measurements like square errors.

Last, we backpropagate the calculated error through the

network and update weights on the links using strategies

like stochastic gradient descent algorithms.

To build robust models from high-dimensional data, a

denoising auto-encoder has been developed as an exten-

sion of a classical auto-encoder [72]. The main goal of

such a denoising auto-encoder is to separate signals from

noises, which will allow the model to robustly reconstruct

the output from partially destroyed input. Specifically, the

corruption process of a denoising auto-encoder, as illus-

trated in Fig. 1, can be conducted in the following four

steps. Step 1:Aprocess q is performed to corrupt the input

X is corrupted. Step 2: The corrupted input is mapped

Fig. 1 An Illustration of an Auto-encoder Corruption Model. The raw
input X is corrupted via process q. The black nodes denote the
corrupted input. The corrupted input is converted to Y via process fθ .
Afterwards, Y attempts to reconstruct the raw input via process gθ ,
and generates the reconstruction Z. A loss function L(X , Z) is used to
calculate the reconstruction error for backpropagation

to Y via process fθ . Step 3: A process gθ is conducted to

reconstruct Y and generate the reconstruction of Z. Step

4: The reconstruction error is measured by a loss func-

tion L(X,Z), which will be used for backpropogation. The

training process in a denoising auto-encoder is targeted

for minimizing the loss function by resampling the shuf-

fled inputs and re-reconstructing the data. The training of

the model is completed when it finds the input that brings

its model closest to the truth.

The loss function can be denoted as L(X,Z) between

the original X and the reconstruction Z [75]. Different

loss functions can be used. For example, a squared error

objective can be used for a real value X as in Eq. 4) and a

cross-entropy objective for a binary X as in Eq. 5)

L (X,Z) = ||X − Z||2 (4)

L (X,Z) = −

d∑

k

[ xklogzk − (1 − xk) log(1 − zk)] (5)

These denoising auto-encoders can be stacked as build-

ing blocks for constructing deep networks such as MLPs

[72]. The performance of a traditional MLP is not good

if we directly optimize a supervised objective function

using algorithms like gradient descent with randomly ini-

tialized parameters. A better MLP can be constructed by

applying a local unsupervised learning to pre-train each

layer in turn, and produce a useful higher-level represen-

tation from the lower-level one using the output from

the previous layer. By doing so, the gradient descent on

the supervised objective leads to much better solutions

in terms of generalization performance [75]. With this

in mind, we use the MLP with stacked denoising auto-

encoders and utilize pre-training and backpropogation in

this study.
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Fig. 2 An Overview of Our MLP-DAE Model. The input layers takes the pre-processed data. The auto-encoder1 and auto-encoder2 serve as hidden
layers for the prediction model and are trained using back propagation. The output layer is built on a regression model to make the final predictions

The MLP-SAEmodel

To build a predictive model for estimating gene expres-

sion from genetic variation, we construct a deep denoising

auto-encoder model utilizing the Multilayer Perceptron

and Stacked Denoising Auto-Encoder (MLP-SAE). As

shown in Fig. 2, our proposed MLP-SAE model is com-

posed of four layers, one input, one output, and two

hidden layers including two auto encoders. The input

layer takes input as SNP genotypes from yeast, with pre-

processing conducted before feeding into the model. The

output layer of the model is a regressionmodel which gen-

erates the output as the predicted gene expression values.

Stacked denoising auto-encoders are used as the hid-

den layers of the model. The MLP-SAE model is trained

and optimized by a backpropagation algorithm. The first

training step is based on training the auto encoder with

a stochastic gradient descent algorithm and the second

training step utilizes the two auto-encoders as two hidden

layers and training them with the multilayer perceptron.

After training, we use cross validation to select the opti-

mal model and evaluate the performance of the model on

an independent data set.

The detailed workflow of constructing this MLP-SAE

regression model is illustrated in Fig. 3. The model first

processes the raw input data and then performs pre-

training as the first step of training. Next, the model is

finetuned by backpropagation when it reaches the output

layer. The algorithm stops when the model reaches con-

vergence. The MLP-SAE model is implemented using the

pylearn2 package [76].

The MLP-SAEmodel with dropout

In modeling high-dimensional genomic model, overfitting

is a challenging problem that needs to be carefully han-

dled. One commonly-used strategy to prevent overfitting

in a deep learning model is to apply dropout that has been

shown to be able to efficiently combine many different

neural network architectures [77]. In a neural network,

the dropout strategy means that units are dropped out

either at the hidden or visible layers to avoid overfitting

and improve model performance. Specifically, to drop out

a unit is to temporarily remove the unit from the network,

along with all of its incoming and outgoing links in the

network. A simple strategy for doing so is that each unit

is kept in the network with a retention probability p inde-

pendent of any other units. The probability p can chosen

using a validation set, or naively set at 0.5. A pre-set of

the probability p at 0.5, albeit simple, seems to be close to

optimal for a variety of networks and tasks. One excep-

tion is that for the input units, the optimal probability of

retention is usually close to 1 than 0.5.

Fig. 3 An Overall Workflow of the MLP-SAE Model. After
pre-processing the input data, two layers of denoising autoencoders
are used and the final regression layer produces the output of
predicted gene expression quantification. The model is trained using
pre-training and backpropagation for optimizing of the objective
function
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With the above ideas in mind, a dropout strategy for

a deep learning model, just like the application of regu-

larization to mitigate overfitting works as follows. First,

remove units and their associated weights in the network

by a retention probability p for certain training samples

and train the network with dropout using backpropaga-

tion. Second, repeat the dropout procedure (i.e., remove

any other random set of units and their connections) and

train the model on the training samples. Finally, take the

mean of the weights across all of these modified network

structures with dropouts when conducting predictions

on new samples. In this study, we implement the MLP-

SAE model on the yeast data with and without dropout

respectively, and evaluate their performances.

Other methods for comparison

We choose two methods to compare with our proposed

MLP-SAE model, namely Lasso [34] and Random Forests.

Previous study has shown that a regularization model

using Elastic Net [44, 45] is capable of making predicted

expressions that are highly correlated with observed

expression values. We choose Lasso over Elastic Net

because Lasso is sparse and fits well on high-dimensional

genomic data. Lasso is a linear model with an l1 norm

as regularizer, while a Elastic Net uses an l2 norm. As

described in Eq. 6, the objective function of a Lasso model

is to minimize the least-square penalty with an l1 norm.

min
1

2n
||Xw − y||22 + α||w||1. (6)

Here, α is a constant and ||w||1 is the l1-norm of the

parameter vector. The hyperparameter α can be learned

through training to control the sparsity of the model.

When α is big, the model is sparser and more coefficients

will be shrunk to zero with fewer features with non-zero

coefficients being selected from the model.

In comparison, the Random Forests model is an ensem-

ble method that has been shown to have nice prediction

properties to solve a regression or classification problem

[78]. Studies [79] have reported that Random Forests are

related to KNN. KNN has been previously demonstrated

as an efficient model to predict gene expressions from

SNP genotypes [44, 45]. A Random Forests predictor has

also been shown to outperform legacy eQTL methods in

mapping genotypes to gene expression changes [43].

Therefore, in this study, we compare our newly devel-

oped MLP-SAE model with another two widely-used

methods which have been shown to work well. Specifi-

cally, we evaluate Lasso, Random Forests, and MLP-SAE

methods using the yeast dataset [68]. In our experimen-

tal setup, we split the dataset into three datasets, with a

training dataset and validation dataset to be used in train-

ing phase, and an independent test dataset not part of any

training to avoid overfitting. In addition, we extract part of

the training dataset into a validation dataset, which does

not participate in training, and then use five-fold cross

validation on the training dataset to obtain the optimal

model. Finally, we apply the trained model with learned

parameters to an independent test dataset to obtain and

compare the predictive results. To compare the perfor-

mance of different models, we use mean square error

(MSE, Eq. 7) for model evaluation.

MSE =
1

n

n∑

i

(zi − yi)
2. (7)

Here, n is the number of samples, yi is the original

output, and zi is the predicted output with i ∈ [1,n].

Results

MLP-SAE compared with Lasso and Random Forests

We first evaluate the performance of the three mod-

els respectively, namely Lasso, Random Forests and our

newly developed MLP-SAE model. We conduct experi-

ments on estimating the MSE values for each hyperpa-

rameter setting. Table 1 lists the hyperparameter learned

for each model during training and resulted MSE val-

ues after cross validation. For Lasso, the hyperparame-

ter learned via training is α, which controls the model

sparsity. For Random Forests, the hyerparameter is the

number of estimators or trees. For the MLP-SAE model,

the hyperparameter determined in training is the learn-

ing rate. The row highlighted in bold in Table 1 shows

the hyperparameter learned for the optimal model of

Lasso (α = 0.7, MSE = 0.2912), Random Forests

(the number of estimators = 200, MSE = 0.2967) and

MLP-SAE (learning rate = 0.1, MSE = 0.2890) respec-

tively using cross validation on the yeast data. With such

optimal settings, we observe that the MLP-SAE model

outperforms other classical methods like Lasso and Ran-

dom Forests.

MLP-SAE with and without dropout

We further improve the MLP-SAE model by incorporat-

ing dropout [77] to handle overfitting. Overfitting is a

critical problem for high-dimensional data analysis, since

there are typically more features/variables than samples in

such data. We observe an improvement of performance of

MLP-SAE with dropout, compared with MLP-SAE with-

out dropout. The average MSE of MLP-SAE with dropout

is 0.3082, while the average MSE of MLP-SAE without

dropout is 0.3093.

We then calculate the correlations (e.g. R2 values)

between the estimated expression and the true expression

of each gene in the samples for both the MLP-SAE model

and the MLP-SAE dropout model. Table 2 shows that

there are more genes with higher correlations from MLP-

SAE with dropout compared with the MLP-SAE model
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Table 1 Comparison of Lasso, Random Forests, and MLP-SAE
model

Method Hyperparameter Hyperparameter
value

MSE

Lasso α 0.05 0.3516

0.1 0.3182

0.2 0.3002

0.3 0.2951

0.4 0.2930

0.5 0.2918

0.6 0.2914

0.7 0.2912

0.8 0.2912

Random forests Number of
estimators

10 0.3221

20 0.3127

30 0.3080

40 0.3001

50 0.2989

60 0.3003

70 0.2986

100 0.3003

150 0.2974

200 0.2967

MLP-SAE model Learning
rate

0.1 0.2890

0.01 0.2909

0.001 0.2895

0.0001 0.2908

0.00001 0.2918

Each row represents the hyperparameter used and corresponding MSE for each
hyperparameter setup of each model. Bold rows denote the hyperparameters and
corresponding MSE for the optimal models of the three methods respectively

without dropout. As further illustrated in Fig. 4, there

are more genes that are highly correlated between true

expression values and estimated values using the MLP-

SAE model with dropout than those predicted from the

MLP-SAE model without dropout. In other words, the

MLP-SAEmodel with dropout improves on theMLP-SAE

model without dropout by making predictions that are

more correlated with the true gene expression.

Therefore, the MLP-SAE model with dropout has been

demonstrated as the best model for predicting gene

expression from SNP genotypes, based on our evaluations

of three relevant models (e.g. Lasso, Random Forests,

and MLP-SAE) on the yeast dataset. Earlier studies have

shown that genomic features like functional annotations

of the SNPs can be incorporated into a model to improve

Table 2 Number of Genes Within R2 Bins for MLP-SAE and
MLP-SAE with Dropout Models

R2 MLP-SAE MLP-SAE with Dropout

(0,0.05] 3621 3507

(0.05,0.1] 1128 1121

(0.1,0.2] 1111 1086

(0.2,0.3] 436 493

(0.3,0.4] 181 229

(0.4,0.5] 96 110

(0.5,0.6] 23 43

(0.6,0.7] 8 13

(0.7,0.8] 0 2

For each gene, R2 is calculated between the true and estimated expression values
using the MLP-SAE model or the MLP-SAE model with dropout

its predictive performance [44, 45]. Since our MLP-SAE

model with dropout is based on deep learning, naturally

it can be extended to incorporate evidence from other

datasets or features including information on epigenetic

markers and functional elements, and it should be scalable

to larger datasets.

Final results using MLP-SAE with dropout

Using the best performance model in this study, i.e. the

MLP-SAE model with dropout, we produce the final pre-

dictions of gene expressions solely from SNP genotypes on

the yeast data. Figure 5 visualizes the true gene expression

quantifications and the estimated values predicted from

Fig. 4 Predictions Using the MLP-SAE Model with Dropout are More
Correlated with the True Gene Expressions than Predictions from the
MLP-SAE Model Without Dropout. X axis denotes the correlation bins
between true and predicted gene expression values, and Y axis
represents the log of number of genes in each correlation bin
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Fig. 5 True Expression and Predicted Expression of All Genes Using MLP-SAE with Dropout

the model for all the 6 611 genes in the yeast data. Figure 6

zooms into a detailed view of the expression profiles of

genes that are well predicted by our model. We observe

that the estimated gene expression values predicted using

our model align well with the true data. Although the true

and estimated values are not always the same, our model

recapitulates the changes in gene expression quantifica-

tions. In particular, the estimated gene expression values

show similar peaks to the true values, while the absolute

values might differ. This suggests that the gene expression

estimations predicted using only SNP genotypes, encode

similar up-regulated and down-regulated trend of gene

expression compared to those expression profiles mea-

sured from gene expression microarrays as in the yeast

data. Such observations are useful especially for those sit-

uations that gene expressions are not directly measurable.

In those situations, we can use SNP genotypes to infer

gene expression values to investigate the gene expression

and regulation patterns, which are otherwise unavailable.

Follow up analysis can then be conducted on the predicted

gene expression quantifications to assess differential gene

expression patterns under different conditions or across

various tissues. Since genes are regulated at many differ-

ent layers and controlled bymultiple factors, we argue that

our model can be further improved to recapitulate the

true gene expression signals by including more features

(e.g. annotation and sequences of regulatory elements,

biological pathways and networks) and environmental

conditions (e.g. diet, biomass production, growth/survival

and temperature).

Discussion

In this study, we demonstrate a case of using genotypes

of SNPs to predict gene expression in yeast. Since genes

are regulated at many different layers and controlled by

multiple factors, we argue that our model can be further

improved to recapitulate the true gene expression sig-

nals by including more types of features at different levels

of gene transcription and regulation. For example, the

annotations and sequences of regulatory elements can be

included to leverage the contribution of variants in these

regions for better gene expression prediction. Moreover,

Fig. 6 True Expression and Predicted Expression of Selected Genes Using MLP-SAE with Dropout
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biological pathways networks can be incorporated in var-

ious forms such as regulatory networks, co-expression

networks, signaling networks, and protein protein inter-

action networks. Since gene expression is dependent on

environmental conditions (e.g. diet, biomass production,

growth/survival and temperature) and tissue/cell types,

such information should be also included in model-

ing gene expression. Additionally, gene expression can

be affected by epigenetic markers including non-coding

RNAs (e.g. microRNAs, long non-coding RNAs), DNA

methylation, and histone modifications in many organ-

isms. Such comprehensive epigenetic features can also be

incorporated to help gene expression prediction.

This study uses a dataset with 2956 SNPs and 6611

genes assessed in 112 yeast samples. We anticipate that

a larger dataset has potentials to capitalize the power of

deep learning models to improve the modeling of gene

expression. For instance, with the recent advance of sin-

gle cell sequencing at DNA and RNA levels, we expect to

gain an unprecedented amount of data for predicting gene

expression (and other outcomes) from genomic sequences

and genotypes.

Conclusion

In this study, we provide a new deep learning model based

on a deep denoising auto-encoder, namely the Multilayer

Perceptron with Stacked Denoising Auto-encoder (MLP-

SAE), for predicting gene expression profiles from geno-

types. Applying the MLP-SAE model with dropout to

a well-established yeast dataset [68], we show that this

model outperforms other models including MLP-SAE

without dropout, Lasso and Random Forests. In addition

to its nice properties, the MLP-SAE model with dropout

can be extended to include many other data types (e.g.

epigenetic, metabolic, and environmental factors) to fur-

ther improve the model performance. For example, pro-

tein quantifications [80, 81], metabolite screening [82, 83]

and chromatin accessibility data [84, 85] are available for

yeast. More comprehensive assessment of SNP genotypes

and gene expressions of a larger cohort of yeast is also

available [86, 87]. Such data can be incorporated into

our model to predict any trait of interest, not limited to

gene expression. Additionally, since the hierarchical layers

of the MLP-SAE model with dropout can accommodate

non-linear relationships in the input data, our model will

naturally encapsulate complex interactions and structures

encoded in the data. Therefore, our model can potentially

capture epistasis and interactions, which have been

shown to improve the modeling of quantitative traits of

yeast [86, 87].

Although we focus on the yeast data set, our model

is applicable for many other organisms. For example, a

MLP-SAE with dropout model can be constructed to pre-

dict gene expressions in each tissue using the genotypes

in the corresponding tissue, and then compare with

true gene expression measurements to assess the model’s

performance in recapitulating tissue-general and tissue-

specific gene expression patterns in The Genotype-Tissue

Expression (GTEx) project [88]. Additionally, there are

many deep learning architectures such as the Restricted

Boltzmann Machine [89] and Recurrent Neural Network

[90], that can be applied to solve the quantitative trait

prediction problem in this study. We anticipate that with

the availability of richer data of more types, deep learning

models have potentials to revolutionize genomic studies

as in other fields.
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