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ABSTRACT In this paper, we propose a deep Recurrent Neural Networks (RNNs) based on Gated Recurrent
Unit (GRU) in a bidirectionalmanner (BGRU) for human identification from electrocardiogram (ECG) based
biometrics, a classification task which aims to identify a subject from a given time-series sequential data.
Despite having a major issue in traditional RNN networks which they learn representations from previous
time sequences, bidirectional is designed to learn the representations from future time steps which enables
for better understanding of context, and eliminate ambiguity. Moreover, GRU cell in RNNs deploys an
update gate and a reset gate in a hidden state layer which is computationally efficient than a usual LSTM
network due to the reduction of gates. The experimental results suggest that our proposed BGRU model,
the combination of RNN with GRU cell unit in bidirectional manner, achieved a high classification accuracy
of 98.55%. Various neural network architectures with different parameters are also evaluated for different
approaches, including one-dimensional Convolutional Neural Network (1D-CNN), and traditional RNNs
with LSTM and GRU for non-fiducial approach. The proposed models were evaluated with two publicly
available datasets: ECG-ID Database (ECGID) and MIT-BIH Arrhythmia Database (MITDB). This paper
is expected to demonstrate the feasibility and effectiveness of applying various deep learning approaches
to biometric identification and also evaluate the effect of network performance on classification accuracy
according to the changes in percentage of training dataset.

INDEX TERMS 1D-convolutional neural networks, bidriectional recurrent neural networks, biometrics
classification, ECG signals, gated recurrent unit, user identification, signal processing.

I. INTRODUCTION

Due to the unique characteristics of electrocardiogram (ECG)
signal, it has drawn increasing attention from biometric
researchers in broad fields of information security in recent
years. Biometrics recognition study can be considered as
identifying the individuals based on their unique physiolog-
ical and behavioral attributes of a particular person which
are encoded in a sequence of successive samples in time,
by employing statistical methods. Biometrics human identifi-
cation or authentication can be achieved using several unique
human traits such as iris or retina, face, fingerprint, voice,
written signature, etc. However, each of the discriminants
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has the limitations according to the particular hardware to
operate, the sustainability of the security against spoofing
attacks. However, leveraging the distinct and permanence to
individuals, biometrics characteristics are reliable than tradi-
tional methods, some of the biometrics features mentioned
above can easily be forged and replicated, and also unpleasant
and invasive to acquire. More recently, the electrocardiogram
which is the electrical activity of the heart on the body surface
has gained momentum, and compared with other biometric
characteristics has proven to be the most promising of them
according to its hidden nature whichmakes it hard to replicate
and inject into the system for spoofing purposes. Since ECG
signal is an electrical current that is generated by the heart as it
beats spread out not only within the heart, but also throughout
the body, and the sinus node in the heart modulated by both
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sympathetic and parasympathetic nerves, it is unique and
permanent as based on the size and shape of oneś heart and
the orientation of valves. Given the fact that ECG signals
are unique for individuals, they have potential in biomet-
ric human identification. Recently, deep learning algorithms
which are often used in the machine learning and artificial
intelligence field, offer a structure in terms of both feature
extraction and classification process, which is known as end-
to-end learning, instead of using hand-crafted features [2].
In this study, several Recurrent Neural Networks (RNN)

based models with different cell units, as well as, One-
dimensional Convolution Neural Network (1D-CNN) model
is also proposed for classifying ECG signals. For that pur-
pose, above all the deep networkmodels are designed, and the
performance of these models classification was investigated.
The main contributions of this work are:

1) We demonstrate the effectiveness of performing unidi-
rectional and bidirectional RNNs based on both Long
Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) cells, as well as 1D-CNN for biometrics
identification.

2) We designed an RNN-based bidirectional GRU
(BGRU) model. To the best of our knowledge, this is
the first work to do so.

The rest of this article is organized as follows. A brief
review of previous works is reviewed in Section II. A back-
ground overview of RNNs with different types of cell
units is discussed in Section III. The data argumentation
and preprocessing, and proposed models are explained in
Section IV and V, respectively. Experimental results and
comparisons are presented in Section VI. Finally, concluding
remarks are given in Section VII.

II. RELATED WORKS

Many researchers have been informed for ECG biometric
identification, usually based on two approaches, i.e., fiducial
and non-fiducial methods. The fiducial approach requires fea-
ture extraction process, points of interest within the heartbeat
wave (P-QRS-T complex), which are then used to extract
latency and amplitude features [1], [3]. Such approaches gen-
erally importantly rely on robust heartbeat segmentation and
fiducial point detection techniques, and also much manual
feature engineering efforts are required. The first deflection
of a heartbeat is the P wave caused by right and left atrial
depolarization of the heart as it beats. The second wave
is QRS complex, which contains a series of three deflec-
tions associated with left and right ventricular depolarization.
Finally, the T wave is the current of rapid phase three ventric-
ular repolarization [3]. It is mandatory to be able to precisely
estimate onset, offset and peak locations of the P, Q, R, S,
and Twaves of a signal. After detection of P-QRS-T complex,
commonly, the amplitude and time-interval between corre-
sponding points are measured, such process is considered
as preprocessing step in many applications, namely fiducial
features extraction, see Fig. 1.

FIGURE 1. A single cardiac cycle of the ECG signal.

For classification task, deep learning algorithms have been
successfully applied to many areas such as human hand-
writing recognition [9], face recognition [10], image classi-
fication [11], [12], and object recognition [13]. Moreover,
there are many studies have been done in the area of
bioinformatics signals by employing deep learning methods
[14]–[19]. Zhang et al. [20] used a multiresolution parallel
network based on CNN for biometric human identification in
smart health applications, and they extended the raw input
data into multiple versions of waveforms as to improve
the context representations of signal for training but auto-
correlation of raw signal and transformation of wavelet are
required. Zhang et al. [21] proposed RNN based models with
various types of cell unit in hidden layers, and reported that
both LSTM and GRU cells were not significantly different
in classification accuracy while both methods could achieve
high accuracy. Rahhal et al. [15] proposed amethod by apply-
ing stacked denoising autoencoders with sparsity constraint,
and softmax regression layer is applied on the top of the
hidden representation layer to form a deep neural network.
Zihlmann et al. [22] presented two deep neural network
models, CNN and a hybrid approach of combining CNNwith
RNN network with LSTM cell unit. Warrick and Homsi [19]
also presented an approach in the same fashion as previous
work [22] which automatically detect and identify cardiac
arrhythmias in ECG signals by deploying CNN and LSTM
techniques.

III. BACKGROUND

A. RECURRENT NEURAL NETWORKS

Recently, RNN model has been a highly preferred
method [27], especially for sequential data and typical RNN
is illustrated as show in Fig. 2(a). Every node at a time step
consists of an input from the previous node and it proceeds
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FIGURE 2. Recurrent neural networks and different cell units of its hidden layer (a) Conventional RNN
model, (b) LSTM cell unit, (c) GRU cell unit.

using a feedback loop. Each node produces a current hidden
state and output by using current input and previous hidden
state as follows:

ht = f (Whht−1 + Vhxt + bh). (1)

ot = f (Woht + bo). (2)

where ht denotes the hidden block of each time step (t),
W and V are the weights for the hidden layers in recurrent
connection, while b denotes the bias for hidden and output
states as f represents an activation function applied on each
node throughout the network.

B. LONG SHORT-TERM MEMORY (LSTM)

The common drawback of conventional RNN model is that
as the time steps increase, the network fails to derive con-
text from time steps of previous states much far behind,
such phenomenon is known as long term dependency. Due
to the deep layers of a network and recurrent behavior of
typical RNN, exploding and vanishing gradients problems
are also encountered quite often. Moreover, to address this
problem, LSTMmodels are introduced by deployingmemory
cells with several gates in a hidden layer [28]. Fig. 2(b)
illustrates the block of a hidden layer with LSTM cell unit,
and three functions of gate controllers are demonstrated as
follows:

• Forget gate ft decides which part of long-term state ct
should be omitted.

• Input gate it controls which part of c̃t should be added
to long-term state ct .

• Output gate gt determines which part of ct should be
read and outputs to ht and ot .

The following equations show the long-term and short-term
states of the cell and the output of each layer in time step
in Figure 2(b).

ft = σ (W T
xf · xt +W T

hf · ht−1 + bf ). (3)

it = σ (W T
x i · xt +W T

h i · ht−1 + bi). (4)

ot = σ (W T
x o · xt +W T

h o · ht−1 + bi). (5)

gt = tanh(W T
x g · xt +W T

h g · ht−1 + bi). (6)

ct = ft ⊗ ct−1 + it ⊗ c̃t . (7)

ot , ht = gt ⊗ tanh(ct ). (8)

whereWx f ,Wx i,Wxo,Wxg denote the weight matrices for the
corresponding connected input vector, Whf , Whi, Who, Whg

represent the weight matrices of the short-term state of the
previous time step, and bf , bi, bo, bg are bias.

C. GATED RECURRENT UNIT (GRU)

In GRU cell unit, the two vectors in LSTM cell are combined
into one vector ot [29]. One gate controller controls both
forget and input gates. When zt outputs 1, the forget gate is
opened and the input gate is closed, whereas zt is 0, the forget
gate is closed and the input gate is opened. In this fashion,
the input of the time step is deleted every time the previous
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FIGURE 3. (a) A raw ECG signal with non-linear trend. (b) Detrended ECG signal. (c) Filtered ECG signal by
applying 6th order Butterworth filter.

(t − 1) memory is stored. In the absence of an output gate,
it can be said that the GRU is a different implementation of
the delivery and combination of the information that LSTM
wants to implement. Intuitively, the reset gate determines how
to combine the new input with the previous memory, and
the update gate decides how much of the previous mem-
ory information is retained to calculate the new state, see
in Fig. 2(c). The differences from the notable LSTM, except
for the differences already described, are as follows:

rt = σ (W T
xr · xt +W T

or · ot−1 + br ). (9)

zt = σ (W T
xz · xt +W T

o z · ot−1 + bz). (10)

õt = tanh(W T
xõ · xt +W T

oõ · (rt ⊗ ot−1) + bõ). (11)

ot = zt ⊗ ot−1 + (1 − zt ) ⊗ õt . (12)

whereWxr ,Wxz,Wxõ denote the weight matrices for the cor-
responding connected input vector, Wor , Woz, Wo represent
the weight matrices of the previous time step, and br , bz, b
are bias.

IV. DATA ARGUMENTATION AND PREPROCESSING

For our experiment, ECG-ID (ECGID) and MIT-BIH
Arrhythmia Database (MITDB) from PhysioNet [25], [26]
has been performed separately for all candidate models.
ECG-ID database contains 310 ECG recordings, collected
from 90 persons. Each recording contains ECG lead I sig-
nal version for 20 seconds (10, 000 samples) digitized at
500 Hz with 12-bit resolution over a nominal +/ − 10 mV
range. The signals were recorded from volunteers of 44 men
and 46 women aged from 13 to 75 years. The MIT-BIH
Arrhythmia Database consists of ECG recordings obtained
from 47 subjects collected by the BIH Arrhythmia laboratory

between 1975 and 1979. The records were digitized at 360
samples per second with 11 − bit resolution over a 10mV
range. The signal processing step can also be considered
as data pre-processing, including following three operations,
i.e., detrending, noisy removal (filtering), and R-peak detec-
tion which is the act of locating the index numbers of cor-
responding R-peak points throughout the signal. The raw
ECG signal is detrended in order to enable the approximation
better when conducting with finite-length segments for signal
analysis. To eliminate the nonlinear trend in a signal, fit a low-
order polynomial to the signal and subtract it. In this case,
the polynomial is of order 6 [24]. Accordingly, a 6-order But-
terworth bandpass filter with 5Hz and 15Hz range is applied
to remove the baseline wander (low frequency noise due to
the perspiration that affects electrode impedance, respiration,
body movements, for example finger movements on the elec-
trode) while recording the signal. The result of detrending
and filtering a raw signal can be found in Fig. 3. Then the
filtered signals are normalized in the range of 0 and 1, and
by subtracting from mean value to balance the contribution
for training phase using (13) and (14), where x and x̃ are
the original ECG signal and new processed ECG signal,
respectively.

x̃ =
(x − min(x))

(max(x) − min(x))
. (13)

x̃ = x̃ − mean(x̃). (14)

The traces of heartbeat consist of three complexes: P, QRS,
and T. There are respectively defined by their corresponding
fiducial points which are the peak of each complex. Time
domain features such as amplitudes and intervals of these
points are commonly used as the distinct unique features
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FIGURE 4. Multiple samples utilized for the extraction of a single
heartbeat according to the respective R peak points on ECG signals of
MITDB dataset.

to individuals. However, due to the non-fiducial approach
with deep learning technique such fiducial extraction is omit-
ted. The R-peak detection, thereafter, is performed using the
Pan-Tompkins algorithms [25] for indexing the correspond-
ing peaks throughout the signal since R peak is the most
prominent peak, and it can be used as an index of given
heartbeat waveform to segment the raw signal into individual
heartbeat waveforms. Once indices of R peak of the signal are
detected, a certain number of samples before and after a given
R peak are extracted to form a vector which illustrates the
heartbeat waveform. By concatenating 125 samples before
and after of R peak indices of MITDB dataset, and 150 sam-
ples before and after of R peak points for ECG-ID dataset
since both datasets have different sampling rates, form a
vector which decodes the heartbeat waveform given in Fig. 4.

For each recording, from MITDB dataset, approximately
45 heartbeat waveforms can be withdrawn with 251 sam-
ples, whereas 51 heartbeats are extracted with 301 samples
from ECG-ID dataset. For CNN model, blind segmentation
with two-second window was used to enrich the training the
dataset and each window includes 750 samples where at least
one or more heartbeats can be extracted randomly from a
signal.

V. MODELS OVERVIEW

In this section, several deep neural networks were designed
to perform classification task on biometircs ECG signals. The
first of these models is based on 1-D CNN which enables to
learn the hierarchical distinct features in order to compose a
new feature set of representation of a high level abstraction,
which can then be fed into a classifier such as fully connected

FIGURE 5. Proposed 1D-CNN network architecture.

layer for further category identification process. The second
and third models are based on RNN with modified cell units,
LSTM and GRU, in their hidden states while the training
procedure is conducted in bidirectional manner. In a conven-
tional RNN, the hidden state at a given time step is computed
as a linear combination of the previous hidden state and the
current input. GRU and LSTM networks have similar block
diagram, however the update of the hidden state is more com-
plex in both approaches. Fig. 5 and 6 illustrate the proposed
1D-CNN model, and various models of RNN networks with
different cell unit used in this study, respectively.

A. PROPOSED 1-D CNN MODEL

CNNswere initially developed in the 1980s, and it is designed
to be trained robustly by means of the stochastic gradient
descent algorithm for its layers [10]. The CNNs have been
widely used for feature extraction and signal classification
problems. In this work, a deep 1-D CNN is proposed to
perform the biometrics based classification for non-fiducial
approach. CNNs address the classification tasks without
exploiting the temporal correlations between sequential sam-
ples. The overall network structure of proposed CNN model
is implemented according to Fig. 4, and its parameters of the
network used in this study are listed in Table 1.
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FIGURE 6. Proposed bidirectional RNN based models where the hidden blocks can be used as either
LSTM or GRU cells.

TABLE 1. Values of proposed 1-D CNN model parameters.

The proposed CNN model consists of four hidden layers
for feature learning followed by a fully-connected layer with
40 neurons before decision making classification layer with
sigmoid function is deployed. The intution of the proposed
model is that this problem by nature should allow a function
which differentiate the patterns of all subjects based on their
respective input signal for identification. Usually the grown
truth distribution is expressed in terms of a one-hot distribu-
tion. The input is discrete sequential samples (x1, . . . , xT ),
where each data point xt is a vector of individual samples
aquired by the sensors at time t . These samples are blindly
segmented into two-second windows which equivalent to
750 samples (750×1 dimensions) for eachwindow randomly,
in order to capture at least one or more heartbeats from
the original signal. From the first layer to the final layer,
the values of the parameters such as filter size, stride and

padding values are applied according to Table 1, and perform
convolutional operations with non-linear activation functions
are applied between each layer. In first and second layer,
30 numbers of filters Softmax function is applied on the last
layer to express the distribution of the corresponding class
in terms of a one-hot distribution in the range of 0 to 1.
The cross-entropy loss function for a signle instance with
independent targets can be formulated as:

E = −
∑

i=1

(ŷilog(yi) + (1 − ŷi)log(1 − yi)). (15)

where ỹi is the ground truth target vector, yi is the output
vector of our model for i class. To obtain the output in
distributional manner across all the subject, outputs y1,...,i
are computed by applying non-linear sigmoid function to the
weight sums of activation function of previous layer.

B. PROPOSED RNN ARCHITECTURES

For RNN based models, the input training dataset can be
set by S = (Xn,On), n = 1, ...,N , where sample Xn =

xnk , k = 1, ..,m denotes the m numbers of samples in a signal
which is 251(an R peak index point with 125 samples from
left/right) in MITDB, while 301 (an R peak index point with
150 samples from left/right ) in ECG-ID dataset. On = oni ,
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FIGURE 7. Accuracy and loss of the 1D-CNN model per epoch over MITDB dataset: (a) Training and validation accuracies ;
(b) cross-entropy loss for training and validation per epoch.

where i denotes the number of subjects or classes.Oni denotes
the corresponding ground truth binary score for each subject
for nth input. The ground truth value for correct subject is
determined as 1, and 0 for the rest of the subjects respectively.
Formally, given a sequence input, a classifier is trained to
learn the probabilities of N classes.

1) BIDIRECTIONAL RNN WITH LSTM CELL (BLSTM)

AND GRU CELL (BGRU)

The second proposed model is based on a bidirectional RNN
with LSTM cell unit in the hidden state layer, and is briefly
called BLSTM, as shown in Fig.6 associated with the cell
unit from Fig. 2(b). The segmented signal inputs (x1, . . . , xT )
from Section IV, are fed into the network for each time step
t (t = 1, ...,T ) for each LSTM cell. Each bi-directional cell
contains a parallel of LSTM tracks, forward and a backward
sequence for utilizing context from the past and future to
predict its corresponding class. At the final time step, two
parallel tracks of backward and forward LSTM tracks are
concatenated into a single vector. In the first hidden layer,
the forward cell states hf0, the backward cell state hb0 are
initialized to zeroes for every layer N . The input xt at time
t , and previous cell states ht−1 to produce the output of the
corresponding layer ont , at time t and at n − th layer either
the backward or forward stream given its parameter θn can
be defined as:

ont , h
n
t = LSTMn(hnt−1, xt ; θn). (16)

ont , h
n
t = GRUn(hnt−1, xt ; θn). (17)

where θn denotes the parameters (b,U ,W ) of the respective
cell unit for layer n.
For third proposedmodel, the only differencewith BLSTM

is the cell unit at the hidden layers, where gated recurrent units
(GRUs) are substituted as shown in Figure 2(c). Moreover,
to address one of the most important challenges, overfitting,
in deep neural networks, the dropout layer is also applied in
each cell. However, as the outputs at the last layer resulting
from both forward and backward streams, the late-fusion for
bidirectional networks is concatenated into a single vector

and, it is followed by a softmax activation function to obtain
N-dimensional output. The forward track traces the input
segment from left to right, whereas the backward track traces
back the input from right to left in both BLSTM and BGRU,
and can be defined as follows:

o
f
t , h

f
t , c

f
t = LSTM f (cft−1, h

f
t−1, xt ;W

f ). (18)

obt , h
b
t , c

b
t = LSTMb(cbt−1, h

b
t−1, xt ;W

b). (19)

o
f
t , h

f
t , c

f
t = GRU f (cft−1, h

f
t−1, xt ;W

f ). (20)

obt , h
b
t , c

b
t = GRUb(cbt−1, h

b
t−1, xt ;W

b). (21)

VI. EXPERIMENTAL RESULTS

A. TRAINING

In order to speed up the training procedure, typically a bot-
tleneck when running a deep network with multiple layers,
our proposed network schemes are implemented using Ten-
sorflow deep learning library written in Python, which can be
executed on Graphics Processing Unit (GPU). GPU generally
brings at least 5 to 10 times speedups compared with Central
Processing Unit (CPU) and also can significantly accelerate
the training procedure, and GeForce GTX 1080 GPU is used
for our experiments.
In the training phase for 1D-CNN approach, the network

self-learns hierarchical features by convolutional and pooling
operations according to the parameters provided in Table 1.
An example of the training process is given in Fig. 7, where
the block on the left side shows the gradually decreasing train-
ing loss and the right part corresponds to the increasing train-
ing and validation accuracy per epoch. A stochastic gradient
descent (SGD) training strategy is selected to further acceler-
ate the training process, which allows for passing a subset of
training data to the neural network each time. The batch size
is chosen as 150 for all proposed methods including BGRU
and BLSTM to trade off two considerations, i.e., a large size
results in a short convergence time by reducing the variance
of stochastic gradient updates, and a small size brings more
power for SGD to jump out of shallow minima in the error
function. The epoch size is set as 50 to balance under-fitting
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FIGURE 8. Accuracy and loss of the proposed BGRU model per epoch over MITDB dataset:
(a) Training and test accuracies; (b) cross-entropy loss for training per epoch.

and over-fitting considerations, although the network can
learn the hidden patterns of the signal and converges around
14 epochs.
For training RNN based models, the batch size is deter-

mined as 150 which yields better performance than other
schemes, while the optimization is deployed by Adam opti-
mizer as the learning rate is set to 0.001, and loss function
was selected as the categorical cross-entropy as mentioned
in (22), where õl is the ground truth target vector, and ol
is the output vector of the model for l class. The optimal
window length of segmented signal is selected according to
the previous works and after various lengths of trails, in order
to capture a single heartbeat regarding to the corresponding
dataset. Moreover, all the parameters of the networks are also
conducted with various settings by trial-and-error approach,
and chose the optimal setting for each network which yields
the most with better performance results. The weights in the
models were initialized randomly at the start of the training
process, and progressively updated throughout the process.
In addition, a dropout of 0.2 at the first layer outputs of
the networks, and at the last layer inputs were deployed
to avoid an overfitting problem typically encounter in deep
neural networks. An example of the training and test process
of the proposed BGRU model on MITDB dataset is shown
in Fig. 8, where the top block presents the training cost when
the percentage of subjects used for training is 50%

E = −
∑

l=1

(õl log(ol) + (1 − õl)log(1 − ol)). (22)

B. EVALUATION METRICS

For classification task, the models were evaluated by the
classification accuracy which is defined by the confusion

TABLE 2. Confusion matrix of evaluating classification accuracy.

matrix which is one of the most intuitive metrics used for
evaluating the performance and accuracy of the model in
machine learning, commonly used for the classification prob-
lems where the output could be two or more types of classes
as show in Table 2.

The terms associated with confusion matrix can be defined
as: True positives (TP), when the actual class of the data point
is 1 and the predicted outcome is also 1. True negatives (TN)
are the cases when the actual class of the given data point
is 0 and the predicted result is also 0. False positives (FP)
are the cases when the actual class of the data point is 0
and the predicted outcome is 1, which can be assumed that
the model predicts incorrectly as the actual class is positive.
False negatives are the cases when the actual class should
be 1 and the predicted outcome is 0, where the model predicts
incorrectly as negative.

Since the accuracy in classification problems is the number
of correct predictions made by the model over all kinds pre-
dictions made. The correct predictions True Positive (TP) and
True Negative (TN) are divided by the kind of all predictions
made by the model, and it can be formulated as below:

Classificationaccuracy=
TP+ TN

TP+ FP+ FN + TN
. (23)

C. RESULTS

For the experiment, the total of 5066 recordings from both
datasets was randomly separated into training and test sets.
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FIGURE 9. Performance comparison of proposed models with standard RNN models on ECGDB dataset.

In order to demonstrate the effectiveness and performance
of percentage of training examples on the models, differ-
ent training ratios for datasets were conducted can be seen
in Fig. 9. As the results were experimented, it shows that
bidirectional network with LSTM and GRU models are more
effective than conventional RNN models, and BGRU model
obtains relatively higher performance than BLSTM model.
For both datasets, for a given subject, the capability of clas-
sification accuracy relied on different number of training
successive heartbeats from a particular session are also con-
ducted for each subject.

TABLE 3. Performance of classification accuracy for selected input
sequence length.

The reported overall classification accuracy ranged from
93.5% to 97.6% for 3-consecutive heartbeat training inputs
whereas 9-consecutive heartbeat inputs resulting from 96.1%
to 98.5% for RNN based models. The proposed BGRU mod-
els outperform conventional RNNmodels and other proposed
models, see in Table 3. In addition, the effect of varying
percentage of training data size for classification accuracy for
each subject was also evaluated for both ECGID and MITDB
dataset. The figures showed that the rate of accuracy performs
better and well classified as the training size increases, and
furthermore, the accuracy rate achieves at its peak when the
percentage of subjects used for training is 80%. According
to Fig. 9 and Fig. 10, although BLSTM surpasses the other

TABLE 4. Performance comparison with state-of-the-art models.

models in training with 70% of dataset, BGRU yields the best
results in overall experiments.

The best performances of all proposed deep neural net-
works based models were evaluated as their convergences
of classification accuracy for each epoch are illustrated
in Fig. 11. The models achieve their corresponding accuracy
convergence approximately in 60th epoch overall models.
Based on the results, proposed BGRU network produced the
best classification rate while time consumption is less than
BLSTM network in the learning phase.

Given the fact that 80% of training inputs yields the best
outcome, further investigations were conducted by compar-
ing the proposed BGRU model with other state-of-the-art
methods using 80% of training data for each subject. Accord-
ing to the Table 4, the proposed BGRU network outper-
forms other state-of-the-art methods by obtaining average
98% for both datasets, in fact, it fails to surpass the model
proposed by Yildirim [23] which scored approximately 99%,
as it requires more time compared to ours since it is based
on LSTM approach. However, the only disadvantage of
the network is the time cost of the training phase, which
is a common problem of most deep neural networks, our
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FIGURE 10. Performance comparison of proposed models with standard RNN models on MITDB
dataset.

FIGURE 11. Performance of classification accuracy of proposed models for 80% of
training size on ECGDB dataset.

proposed BGRU network is practically affordable and can
be discarded since a fully trained network is used in real
applications.

VII. CONCLUSION

In this study, the task of ECG based biometrics human iden-
tification was carried out based on deep RNN networks in
bidirectional training manner with LSTM and GRU cell unit,
which recently have performed a significant performance in
the field of machine learning. Although being held a major
issue in traditional RNN networks which they learn represen-
tations from previous time sequences, bidirectional networks
are designed to learn the representations from future time
steps which allows for better understanding of context, and
eliminate ambiguity. In addition, GRU cell in RNNs deploys
an update gate and a reset gate in a hidden state layer which is
computationally efficient than a usual LSTM network due to
the reduction of gates but still can perform as much as LSTM
network does.

Experimental reports showed that the proposed models
outperform most of the state-of-the-art methods by adapting
the bidirectional learning trait in training process signifi-
cantly improve the performance and able to extract more
distinct features by feeding along the deep layers in order
to capture the activity sequences in each time step of input
signals. However, the disadvantage of the proposed method is
the time cost of the training phase, which is a general problem
of most deep networks, and the variation of the length of a
segmented window for respective datasets should perform to
investigate the optimal length of a window which capture a
signle heartbeat of a signal for corresponding dataset. On the
other hand, limitations of our proposal can be considered as
data dependent acquistion where only ECG-I type data are
suitable for pre-processing phase before training. Thus, our
future work includes investigation on large-scale and diverse
datasets, as well as domain independent training process with
various versions of biometrics electrocardiogram waveforms
for human identification. We will also further consider more
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data representation methods and deep network architectures,
to be able to learn the correlation between the data and distinct
feature learning process.
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