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Abstract: Skin cancers are the most cancers diagnosed worldwide, with an estimated > 1.5 million new
cases in 2020. Use of computer-aided diagnosis (CAD) systems for early detection and classification
of skin lesions helps reduce skin cancer mortality rates. Inspired by the success of the transformer
network in natural language processing (NLP) and the deep convolutional neural network (DCNN)
in computer vision, we propose an end-to-end CNN transformer hybrid model with a focal loss (FL)
function to classify skin lesion images. First, the CNN extracts low-level, local feature maps from
the dermoscopic images. In the second stage, the vision transformer (ViT) globally models these
features, then extracts abstract and high-level semantic information, and finally sends this to the
multi-layer perceptron (MLP) head for classification. Based on an evaluation of three different loss
functions, the FL-based algorithm is aimed to improve the extreme class imbalance that exists in the
International Skin Imaging Collaboration (ISIC) 2018 dataset. The experimental analysis demonstrates
that impressive results of skin lesion classification are achieved by employing the hybrid model and
FL strategy, which shows significantly high performance and outperforms the existing work.

Keywords: deep learning; skin lesion; hybrid model; focal loss

1. Introduction

According to the International Agency of Research on Cancer (IARC) report, in 2020
an estimated 325,000 new cases of melanoma were diagnosed worldwide and about
57,000 people died from the disease. Scientists from IARC predict that from 2020 to 2040
the number of new cases of cutaneous melanoma will increase by >50%, to >500,000 per
year, and the number of deaths caused by melanoma will increase by over two-thirds,
to almost 100,000 per year [1]. The cancer generally develops as a result of exposure to
ultraviolet (UV) rays from the sun, which harms the deoxyribonucleic acid (DNA) of skin
cells [2]. The gold standard for a diagnosis of invasive melanoma is the examination of
histopathological whole slide skin biopsy images by an experienced dermatopathologist [3].
The cost per melanoma detected has been estimated at USD 32,594, and 30% of costs coming
from biopsy [4]. To become a licensed dermatologist requires many years of education
and training. On average, it takes at least 12 years of education and training after high
school [5]. Likewise, training an inexpert dermatologist is also time-consuming. Derma-
tologists achieve only about 75% accuracy when diagnosing melanoma [6]. However, to
improve the diagnosing rate of malignancy, a computer-aided diagnosis (CAD) system can
be used to automatically classify skin lesions in dermoscopic images.

As compared with the binary class classification problem, multiclass classification
is more complex due to the similarity between different types of skin lesions [7]. The
International Skin Imaging Collaboration (ISIC) 2018 dataset was published by the ISIC as
a large-scale dataset of dermoscopy images [8]. Its Task 3 concerns lesion classification, and
contains a total 10,015 labeled dermoscopic images. It classifies the dermoscopic images
into one of the following categories: melanoma (MEL), melanocytic nevus (NV), basal cell
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carcinoma (BCC), actinic keratosis (AKIEC), benign keratosis lesion (BKL), dermatofibroma
(DF), and vascular lesion (VASC). The ISIC 2018 dataset includes seven classes, and there is
a high imbalance between the different classes, as illustrated in Figure 1. Especially, there
are around 58 times more samples in the NV class than there are DF class samples. This
will degrade the overall performance of a network when it is biased towards classes with
the greatest number of examples. This paper uses the public dataset of dermoscopic images
provided by ISIC 2018.

Figure 1. Histogram of the classes in International Skin Imaging Collaboration (ISIC) 2018 dataset.
AKIEC = actinic keratosis; BCC = basal cell carcinoma; BKL = benign keratosis lesion; DF = dermatofi-
broma; MEL = melanoma; NV = melanocytic nevus; VASC = vascular lesion.

In this work, our main contributions can be summarized as: We show that significant
performance improvements can be achieved by proposing a deep CNN transformer hybrid
framework. To the best of our knowledge, this is the first network to combine Transformers
with CNN and improve the classification of skin lesions. In addition, we apply three
different loss functions to demonstrate improvements in the imbalanced ISIC dataset
of 2018.

The remainder of this paper is structured as follows: Section 2 presents related works.
Section 3 describes the architecture of our hybrid CNN transformer model including three
different loss functions to reduce the data imbalance problem and enhance the performance
of the model. Section 4 describes the simulation environment and presents the performance
metrics, experimental results, and a discussion. It also provides a performance comparison
of the proposed solution with state-of-the-art methods. Finally, Section 5 concludes the
paper and advances future research directions.

2. Related Works

Previously, handcrafted feature-based techniques were introduced for skin lesion
classification [9–11]. However, these conventional machine-learning approaches did not
achieve good results due to variations in the shape, color, and size of skin cancer.

In recent years, deep learning has been used for analyzing different medical im-
ages [7,12–20] and shows excellent performance. Different medical image categories in-
clude X-ray, magnetic resonance imaging (MRI), computed tomography (CT), dermoscopic
and so on. Compared with traditional methods, techniques based on deep convolutional
neural network (DCNN) can directly learn meaningful features from skin lesion datasets
and have already achieved significantly improved performance [7,16–20]. For example,
Kumar et al. [20] have claimed that using deep learning exhibits higher performance than



Diagnostics 2023, 13, 72 3 of 18

all the other conventional models, such as random forest (RF), and support vector ma-
chine(SVM). Esteva et al. [17] utilized Inception-v3 CNN [21] architecture, which achieves
performance on par with all tested experts, demonstrating an artificial intelligence (AI)
capable of classifying skin cancer with a level of competence comparable to that of der-
matologists. Pacheco et al. [22] analyzed the out-of-distribution detection in skin cancer
classification of four competitive CNN models: DenseNet-121 [23], MobileNet-v2 [24],
ResNet-50 [25], and VGGNet-16 [26], showing that the Mahalanobis and Gram Matrix-
based methods achieve competitive performance. Table 1 summarized the findings and
limitations of the related works. From this table, we can see that the biggest disadvantage
of traditional handcrafted methods is that they can only train small datasets. The use
of deep learning methods can solve this problem. For example, Esteva et al. [17] used
129,450 images to train the model. In our paper, we mainly study and discuss deep-learning
methods for skin lesion classification.

Many recent works have striven to design more effective architecture for vision. The
transformer was initially developed by Google [27] for the natural language processing
(NLP) field and has had much success in this field. The previous recurrent neural network
(RNN) model had limited memory and no way to parallelize the processing, in contrast
to the transformer. Vision transformers (ViTs) have been shown by Steiner et al. to attain
highly competitive performance for a wide range of vision applications [28]. Theirs was the
first study to successfully train a transformer encoder on ImageNet, attaining very good
results compared with familiar convolutional architectures. Tolstikhin et al. [29] presented
a multi-layer perceptron (MLP) mixer, an architecture based exclusively on MLPs.

Moreover, some researchers [7,30–33] propose to combine different features, which
can have an impressive impact on the classification performance. In the cited works, fusion
was done by concatenation, or majority vote, using pre-computed representations in a low
resolution. Afza et al. [7] described a method of five primary steps using a hybrid whale
optimization algorithm and entropy and mutual information. Zhou et al. [34] proposed an
approach consisting of self-attention blocks and guided-attention blocks to evaluate the
Human Against Machine with 10,000 training images (HAM10000) dataset, with impressive
performance. He et al. [35] employed the full transformer network, which is a hierarchical
transformer computing feature using a spatial pyramid transformer.

The transformer is the first method that entirely depends on the self-attention mecha-
nism to explore long-range dependency in NLP. The transformer layer comprises a multi-
head attention (MHA) layer and an MLP. A skip connection and layer normalization
are applied in the MHA and the MLP layers. On the other hand, the ViT is composed
purely of transformer layers, which have been proposed for image recognition. It has been
demonstrated that the transformer can achieve state-of-the-art performance [36].

Although CNNs have proved their effectiveness in skin lesion classification, they
fail to effectively capture contextual information because of the intrinsic locality of the
convolution operator [27,36]. Long-range dependencies are prerequisites for forming
contextual information, and such information is crucial for classification tasks. So far, many
solutions have been proposed to improve CNNs. Gessert et al. [30] relied on ensemble
models for patient metadata. Dosovitskiy et al. [36] reported that sequences of image
patches can perform very well on image classification tasks and that ViT attains excellent
results. CNN-based methods attempt to explore global features by gradually expanding the
receptive field while ignoring long-range contextual information. Vision transformers can
extract contextual features, but the learning ability regarding local information is limited,
and there is a significant computational complexity simultaneously [37]. This paper was
inspired by this challenge, and reports on applying a hybrid CNN transformer model to
skin lesion classification.
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Table 1. Summary of the selected related works.

Phase
Paper Study Year Proposed Finding Limitation

Handcrafted

[9] 2014
Proposed an automatic diag-
nosis of melanoma based on a
7-point checklist

It used traditional machine learn-
ing methods, first boundary detec-
tion and then feature extraction, final
make a classification

Very small dataset, only 300 im-
ages; Private dataset, cannot be re-
produced

[10] 2007

Used the relative color his-
togram analysis technique to
evaluate skin lesion discrimi-
nation in dermoscopic images

Traditional handcrafted method fo-
cus on color histogram analysis

Small dataset with two classes, 113
malignant and 113 benign

[11] 2013
Proposes a hierarchical clas-
sification system with the K-
Nearest Neighbors

Hierarchical structure decomposed
the skin lesion classification into
a set of simpler problems; Color
and texture information from im-
ages acquired by a standard camera
(non-dermoscopy)

Private dataset; Small dataset, 960 im-
ages; Only two hierarchical levels

Deep-learning

[7] 2022
Applied hybrid deep fea-
tures selection on skin
lesion classification

using hybrid whale optimization se-
lect feature; contrast enhancement

HAM10000 and ISIC2018 are same
training dataset; There is no clear in-
dication about test dataset, and there
is no standard benchmark

[16] 2015
Combined deep learning,
sparse coding, and SVM
learning algorithms

Using sparse coding as unsupervised
feature learning

Only using three metrics: accuracy, sen-
sitivity, specificity; Only three classes:
melanoma, atypical and benign

[17] 2017
Used Google’s Inception v3
CNN architecture to classify
skin cancer

The CNN achieves classifying skin
cancer with a level of compe-
tence comparable to dermatologists;
Trained a CNN using a dataset of
129,450 clinical images comprising
2032 different diseases

The dataset is huge but not all avail-
able since some come from the Stan-
ford Hospital

[18] 2022
Proposed a new residual deep
convolutional neural network
for skin lesions

Trained and tested using six skin can-
cer datasets, PH2, DermIS and Quest,
MED-NODE, ISIC2016, ISIC2017,
and ISIC2018

Innovation is not obvious, a deep
neural architecture based on resid-
ual learning

[19] 2022
Proposed deep metric atten-
tion learning CNN for skin le-
sion classification

With a triplet-based network; using a
mixed attention mechanism; hybrid
loss function

Only experimented on small datasets
(ISIC 2016, ISIC 2017, and PH2),
did not use larger datasets, such as
ISIC2018

[20] 2021
Proposed fusion-based Deep
learning methodology(RF,
SVM, ANN)

Using sum rule fusion method; Met-
ric, Mean Square Error, Peak Signal
to Noise ratio for assessing the qual-
ity of the pre-processing strategy

Insufficient comparison test

[33] 2020

Proposed global-par CNN
model with data-transformed
ensemble learning and eval-
uated on the ISIC 2016 and
ISIC 2017

Three fusion strategies: averaging
predictions, SVM stacking, and a
weighted ensemble of predictions;
Data-transformed ensemble learning

Singe modality of dermoscopy im-
age cannot provide enough informa-
tion to classify the melanoma; fu-
ture(dermoscopy image, clinical im-
age, and patient’s metadata)

[34] 2021
Propose a Mutual Attention
Transformer(MAT) for skin le-
sion diagnosis

Fine-grained features from the two
modalities (image and text); The
MAT consists of self-attention blocks
and guided-attention blocks

To deal with the problem of data imbal-
ance, simply use data augmentation

[38] 2018
Proposed ensembled deep con-
volutional neural networks on
skin lesion classification

Fuse the outputs of the classifica-
tion layers of four different deep neu-
ral network architectures; Different
fusion-based methods; Have a uni-
fied benchmark

Small dataset with 2000 images; Not
experimented with larger databases

[39] 2019 Proposed Bayesian deep net-
works for skin lesion diagnosis

Bayesian deep networks can boost
the diagnostic performance without
incurring additional parameters or
heavy computation

Only accuracy is used, and sev-
eral other standard classification
criteria are missing. No com-
parison with other researchers’
experimental results
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Dataset imbalance can cause two problems [40]: Firstly, the training becomes inef-
fective, as most observations are easy samples (normal samples) that provide no learning
benefit to the model. Secondly, normal samples can dominate the training and cause the
classifier to favor classes with a large number of labeled samples. One common solution to
address such a class imbalance problem is augmenting small classes with more data through
replication or transformation operations(data augmentation). Recently, Lin et al. [41] de-
veloped the focal loss (FL) strategy, by defining the class weight factor as a function to
improve the performances of detectors. This loss function can make the model applicable
to minority classes.

3. Proposed Method

Convolutional neural networks may be indirectly limited [31] when trained with
highly variable and distinctive image datasets with limited samples, such as dermoscopic
image datasets. As shown in Figure 2, we utilized the hybrid neural network to build
an automatic system to classify different class skin lesions. This is quite common in
medical diagnostics as positive cases are often in the minority compared with negative
cases [38]. To minimize these effects, we have also included cross-entropy (CE), weighted
cross-entropy (WCE), and FL function to enhance the underrepresented categories. The
following subsections will explain in detail.

3.1. Architecture of the Proposed Hybrid Model

The hybrid model combines traditional CNN feature extraction with vision transfor-
mation. The ViT component consists of three main parts: an embedding layer, a transformer
encoder, and an MLP head. A more detailed structure is given in Figure 2. Being widely
used, CNNs are usually composed of convolutional layers, pooling layers, fully connected
(FC) layers, and so on. Benefiting from layer-by-layer structures, they allow abstract features
to be gradually extracted from stacked layers. Various CNN models have been proposed in
the past few years, ResNet being one of the most classic frameworks. (In the present study,
ResNet-50 was selected for CNN feature extraction. The CNN model applied the first ten
layers of Resnet-50 as the feature extractor, as shown in Figure 2b. Input dermoscopic
images are processed by ResNet-50, which consists of a convolutional layer (7 × 7 kernel), a
max pooling layer, and a series of residual blocks, followed by the patch embedding layer.
(In this study, the kernel size and stride of the convolutional layer in patch embedding
have become one, and this layer was only used for adjusting the channel.) The latter part
is vision transformation. This needs to add the class token as well as position embedding
before entering the transformer encoder. The class token and position embedding are
trainable parameters. The transformer encoder is a network consisting of repeated stacking
of encoder block L times. It mainly consists of the following parts: layer norm, multi-head
attention, and MLP block, as shown on the right side of Figure 2. Multi-layer perceptron is
composed of an FC layer, a Gaussian error linear unit (GELU) activation function, and a
dropout layer.

Different from traditional attention [42–44], the adopted MHA feature maps a set of
key-value (K, Q) pairs and a set of queries (Vs) to output vectors; and the dimensions of
the three learnable matrices are dk, dk, and dv, respectively. For each element in the input
sequence R, the values of Q, K, and V are calculated by multiplying R by three learned
matrices, PQKV ∈ RD×3dk .

[Q, K, V] = RPQKV (1)
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Figure 2. Overview of the proposed hybrid architecture: (a) The model comprises two main parts:
the convolutional neural network (CNN) and the vision transformer (ViT); (b) the CNN for feature
map generation; (c) the transformer encoder; (d) scaled dot product attention; and (e) multi-layer
perceptron (MLP). The ViT works on global attention encoding for the MLP head classification.
GELU = Gaussian error linear unit.

As a core module of the ViT, the MHA feature allows the model to jointly attend
to information from different representation subspaces at other positions. As shown in
Figure 2d, the MHA calculates the scaled dot-product attention, to obtain the corresponding
head. Before performing the scaled dot-product attention calculation, it performs three
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linear projections to transform the Qs, Ks, and Vs to more discriminated representations,
respectively. Then, each head is concatenated and fed into another linear projection to
obtain the final outputs of the MHA. Dot products are computed, and the Qs with all Ks are
coupled with a scaling factor (1/(dk)

1/2), and then calculated using the softmax function
on the Vs to form attention weights. Thus, the generated attention weights implying the
key part of image patches are defined as follows:

Attention(V, K, Q) = So f tmax(
QKT
√

dk
)V (2)

To reduce sequence computation, it is beneficial to map the Qs, Ks, and Vs h times
with different linear projections and then perform Equation (2) in parallel. Subsequently,
formed h vectors are concatenated via the concatenation layer, and each vector is called a
“head”. After concatenation, the MHA results can be obtained as follows:

MHA(V, K, Q) = Concat(head1, . . . , headh)Wo, (3)

where headi = Attention(QWQ
i , KWK

i , VWV
i ), Wo ∈ Rh×dv×D means learnable weights of

a feedforward layer and Concat(·) denotes the operation of concatenation.
When the output of the MHA module is determined, the corresponding results are

further processed by the MLP module illustrated in Figure 2e. In the MLP block, two
FC layers with the GELU are stacked to produce the output of the single layer in the
transformer encoder. The equation for the GELU is as follows:

GELU(x) = xφ(x) = x · 1
2
[1 + er f (x/

√
2)], (4)

where φ(x) represents the standard Gaussian cumulative distribution, and

er f (x) = (2/
√

π)
∫ x

0
e−η2

dη (5)

Furthermore, the layer norm(LN) in the transformer encoder is calculated as follows:

µ f =
1
H

H

∑
i=1

a f
i (6)

σ f =

√√√√ 1
H

H

∑
i=1

(a f
i − µ f )2, (7)

where H represents the number of hidden units of a layer, a f
i denotes the summed inputs

of the ith hidden unit in the f th layer, and all hidden units in a layer share the same
normalization terms µ and σ. Thereafter, the normalized hidden unit â f can be generated via

â f =
a f − µ f√
(σ f )2 + ε

, (8)

where ε is a constant for numerical stability.

3.2. Loss Function

In this section, we first discuss the common loss functions: CE, WCE loss and FL. We
then introduce our proposed hybrid model, which is a CNN mixed with a ViT.
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3.2.1. Cross-Entropy Loss

Cross-entropy loss [45] is often used in multi-class classification. Because CE involves
calculating the probability of each category, it is almost always used with the softmax [46]
(or the sigmoid) function come together. In a neural network, we usually use the softmax
layer to obtain a multi-class predicted probability distribution, and then we apply CE to
calculate a score that summarizes the average difference between the predicted and the
actual probability distributions for all classes in the problem. The score is minimized; a
perfect CE value is 0.

Figure 3 shows the process of gaining loss and learning, and the model’s prediction
process. The final layer of the neural network receives the score from each category scores.
The score is passed into the softmax function to obtain the probability output. The class
probability output predicted by the model is the same as that of the real class one hot form
to compute the CE loss. Ultimately, there are only two classes that the model needs to
predict at the end in binary classification. For each class, the probability of the prediction is
p and 1− p. The formula of CE loss function [47] is expressed as follows::

LCE = −
M

∑
i

yiclog(pic) (9)

• M = number of categories (M > 2).
• yic = symbolic function ( 0 or 1 ), if the true class of the c sample i is equaled 1, or

otherwise takes 0.
• pic = the predicted probability that the observed sample i belongs to the class c.
• zi = the output value of the ith node,

where pic is obtained by applying the softmax function, which ensures that the output of
the function is a value between 0 and 1.

pic = so f tmax(zi) =
ezi

∑M ezM
(10)

Figure 3. Calculation process of cross-entropy(CE) loss function.

3.2.2. Weighted Cross-Entropy Loss

Since skin lesion classification is treated equally in the form of CE loss (Equation (9)),
some categories with few samples do not make a significant contribution to the total loss
and thus tend to be ignored during training. An effective way to remedy this problem is
to assign suitable weights to each object class as represented in Equation (11) below. The
idea with WCE is to use a coefficient to describe the impact of sample loss [48]: For a small
number of samples, this will strengthen the contribution to loss, while for a large number
of samples, there will be reduced loss . This is only a small change from binary CE, that is,
a wi coefficient is added to the discrimination of positive samples to control the balancing
severity. wi is calculated in advance based on he dataset. The defined weight vector
wi ∈ RM with elements wi > 0 is defined over the range of class labels i ∈ {1, 2, . . . , M}.
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The more examples in the training data, the smaller the weight of the loss. The method is
to normalize the weights proportionally to the reverse of the initial weights.

LWCE = −
M

∑
i

wiyiclog(pic) (11)

3.2.3. Focal Loss

To further enhance the model’s performance, we employed a loss function called “focal
loss” [41]. This is a special type of categorical loss that seeks a solution to data imbalance.
It considers the contribution of each sample to the loss based on the classification error.
Using this function, the loss decreases when the model correctly classifies a sample. Focal
loss focuses training on a small subset of hard examples and avoids a large number of easy
negatives from overwhelming the classifier during training. This idea is mathematically
expressed in Equation (12). To increase the weight of difficult samples and reduce the
weight of simple samples, an adjustment factor is added on the basis of the CE loss function.
Obviously, with FL, easily classified samples are diminished while hard-to-classify samples
have greater loss values, which makes the model pay more attention to these samples,
and as a result, improves the precision for them. This approach solves the class imbalance
problem by making the loss indirectly focus on challenging classes.

LFL = − α
M

∑
i
(1− pic)

γyiclog(pic) (12)

In Equation (12), α is used to deal with the problem of class imbalance, whereas γ
is used to solve the problem of unbalanced difficult and easy samples. They are two
adjustable parameters.

4. Experimental Results and Discussion

To evaluate the effectiveness of the approach, we compared the performance of the
proposed deep hybrid model with that of the original Resnet-50 model. We also con-
ducted experiments to evaluate the three different loss functions in skin cancer classifi-
cation. We compared the results with recent studies to examine the performance of the
proposed method.

4.1. Implementation Details

We conducted six models in the experiment, CNNce, CNNwce, CNNfc, CNNViTce,
CNNViTwce, and CNNViTfc. We split the ISIC 2018 dataset into a training set, a validation
set and a testing set with a split ratio of 0.7, 0.1, and 0.2. The experiment in this paper used
the Pytorch framework and Python language to implement the proposed approach.

Parameter settings have a significant impact on experimental results. In this paper,
the most suitable training strategy and hyperparameters were determined in numerous
experiments. The training settings were as follows: We used Cosine Annealing as the
learning rate schedule, and the initial learning rate was 0.002. We further used a CE function
with label smoothing, with the label smoothing factor set to 0.1. Adam optimization
algorithm was applied as an optimizer. The weight decay coefficient was 0.001, the batch
size was 32, and all models were trained until convergence was reached. Batch size and
learning rate were based on the graphics processing unit (GPU) memory requirements of
each architecture. We evaluated every five epochs and saved the model that achieved the
best mean class recall. Training was performed on NVIDIA GTX 2080TI graphics cards. The
parameter values were α = 0.25 and γ = 2 in the FL function, demonstrated in the literature
to be optimum values leading to the best performance [41].

Before feeding the dermoscopic images to the CNN, we performed extensive data
augmentation. We used random flipping, random rotation, brightness and contrast changes,
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random scaling, and random cropping. Furthermore, we used color jitter and random
affine transformation.

4.2. Evaluation Metrics

To evaluate the effects using different skin cancer classification models, we applied
multiple evaluation criteria including accuracy, precision, recall (=sensitivity), and F1 score,
as shown in Equations (13)–(16). Accuracy can clearly be used to judge the performance of
our model, but there is a serious flaw: When the sample proportion of different categories is
unbalanced, the category with the largest proportion will often become the most important
factor affecting the accuracy, and this case the accuracy is not very good. This reflects
the overall situation of the model. The confusion matrix can clearly display the number
of correctly classified samples for each class and the details for each misclassified class.
However, it is not easy to evaluate the performance of various classification models based
on the confusion matrix. Therefore, a variety of classification accuracy indicators are
employed, among which overall accuracy (OA), macro average (macro avg), and area
under the receiver operating characteristic (ROC) curve (AUC) are the most widely used.

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1-score =
2× (Precision× Recall)

Precision + Recall
(16)

AUC =
∑i∈positiveClass ranki − M(1+M)

2

M× N
(17)

• TP = True positive.
• FP = False positive.
• FN = False negative.
• TN = True negative.
• ranki = the serial number of the ith sample. (Probability scores are ranked from small

to large, in rank position).
• M, N = the number of positive and negative samples, respectively.
• ∑i∈positiveClass = only using the serial numbers of the positive sample.

“Macro average” essentially refers to the arithmetic mean of each statistical indicator
value for all categories, so the simple mean ignores the situation that there may be a great
imbalance in the distribution of samples. To solve the issue that the sample imbalance is
not considered in Macro, when calculating Precision and Recall, the Precision and Recall
of each category is multiplied by the proportion of the category in the total sample to be
summed up(weighted average). “Micro average” computes a global average by counting
the sums of the true positives (TPs), false negatives (FNs), and false positives (FPs).

Area under the ROC curve [49], is a two-dimensional plot of the TP rate. The value
of this area is between 0 and 1, which can intuitively evaluate the quality of the classifier.
The larger the AUC value, the better the classifier effect a perfect model has an AUC
close to one.

4.3. Results, and Discussion

We trained the six different models and observed the rate of convergence of the model
with 1000 epochs. In addition, we began saving the model providing the highest mean
class recall value. To further illustrate the effectiveness of the proposed method, we present
the confusion matrices of all models in Figure 4.
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(a) Cross entropy(CE). (b) Vision transformer(VIT) Cross entropy.

(c) Weighted cross entropy (WCE). (d) Vision transformer (VIT) weighted cross entropy.

(e) Focal loss (FL). (f) Vision transformer (VIT) focal loss.

Figure 4. (a–f) Confusion matrix results of different methods used on the International Skin Imag-
ing Collaboration (ISIC) 2018 dataset. AKIEC = actinic keratosis; BCC = basal cell carcinoma;
BKL = benign keratosis lesion; DF = dermatofibroma; MEL = melanoma; NV = melanocytic ne-
vus; VASC = vascular lesion.
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To further intuitively evaluate the confusion degree and different class classification
errors, we provided six confusion matrices on the ISIC 2018 dataset by using the six
proposed models. Figure 4 presents the confusion matrices’ experimental results, which
indicate an improvement in correct classification of the classes, such as NV, AKIEC, BKL,
DF, and VASC. For example, the correct classification improved from 1020 to 1239 for the
NV class and from 133 to 168 for the BKL class, as shown in Figure 4a,b. Even for the BCC
class, the number of correctly classified images slightly increased, from 83 to 84. This was
due to the hybrid model, which improved the classification performance. However, the
model also misclassified some MEL lesions from the normal class as belonging to other
classes (note that the number of correctly classified MEL lesions decreased from 175 to 155).
The correct prediction of each related diagnostic category is given on the main diagonal of
each matrix. It can be concluded that ViT models did a poor job on MEL classification. In
the same manner, FL models did much better on the class of AKIEC than CE loss. Overall,
hybrid model ViT with FL has achieved the best results. Specifically, the OA was improved
from 74% to 89%, as stated in Table 2.

Table 3 presents a comparison of our proposed hybrid model with state-of-the-art
methods on the ISIC 2018 dataset or HAM10000 [50], both of which datasets consist of seven
different skin lesion classes. Accuracy is considered an important performance metric for
classification tasks, and our model outperformed other state-of-the-art methods. Mporas
et al. [51] used traditional machine learning with image preprocessing for hair removal
and image segmentation followed by AdaBoost with random forest. Performance didn’t
improve much. Milton et al. [52], Majtner et al. [53] and Gessert et al. [54] all employed
ensemble models, but there are big differences in their performances. Milton [52] proposed
the PNASNet-5-Large model. Chaturvedi et al. [55] utilized a MobileNet model. They were
using single models. Therefore, using single models is not necessarily worse than ensemble
models. Mobiny et al. [39] boosted the diagnostic performance of the standard DenseNet-
169 model from 81.35% to 83.59% by Bayesian deep networks. In our model improvement,
we only used a hybrid model and focused on dealing with the problem of data imbalance.
Our model accuracy increased from 74.21% to 89.48%. All these experiments have a unified
comparison standard, so it can also explain our work is meaningful.

Figure 5 provides an additional representation of the results for more clarity. The left
column is the AUC value for each class, and the right column is the average of the seven
classes. From the average AUC value on the right, we can see that when using different
loss functions, the micro-average ROC outperforms slightly, but the macro-average has a
significant improvement. In particular, we used the ViT model, which increased from 0.72
in Figure 5b to 0.84 in Figure 5h with macro-average ROC curve. While Figure 5k presents
the AUC of the proposed hybrid model for different skin cancer classes, in which MEL
achieves the highest AUC of 93.3 among the six models. Figure 5l reported a mean AUC
for all classes, where it reached 0.96 with micro averaging and 0.90 with macro averaging,
respectively(an improvement of %7 and 18%). Figure 5 demonstrates that the hybrid model
with the FL classifier helps in skin lesion classification with dermoscopic images.

Table 2. Performance comparison of six proposed models on the International Skin Imaging Collabo-
ration (ISIC) 2018 skin lesion classification dataset using different standard metrics.

Model
Micro Average(%) Weighted Average(%)

OA*

Precision Recall F1 Score Precision Recall F1 Score

ResNet-50
CE 62.87 71.17 65.39 82.00 74.21 76.38 74.21± 1.91
WCE 69.09 66.67 67.75 81.93 82.34 82.09 82.34± 1.67
FL 69.90 69.14 69.36 83.28 83.74 83.46 83.74± 1.62

Hybrid
CE 70.75 80.63 74.21 87.73 86.78 87.11 86.78± 1.48
WCE 80.91 77.85 78.20 88.29 88.13 87.37 88.13± 1.42
FL 82.12 81.53 81.10 89.61 89.48 89.09 89.48± 1.34

CE = cross-entropy; FL = focal loss; OA = overall accuracy; WCE = weighted cross-entropy. * 95% confidence
intervals (CI) are included here.
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(a) Cross-entropy (CE). (b) Cross-entropy (CE), mean.

(c) Weighted cross-entropy (WCE). (d) Weighted cross-entropy (WCE), mean.

(e) Focal area under the curve (AUC). (f) Focal area under the curve (AUC), mean.

Figure 5. Cont.



Diagnostics 2023, 13, 72 14 of 18

(g) Vision transformer (ViT) cross-entropy (CE). (h) Vision transformer (ViT) cross-entropy (CE), mean.

(i) Vision transformer (ViT) weighted area under the curve (AUC). (j) Vision transformer (ViT) weighted area under the curve (AUC),
mean.

(k) Vision transformer (ViT) focal area under the curve (AUC). (l) Vision transformer (ViT) focal area under the curve (AUC), mean.

Figure 5. (a–l) Area under the receiver operating characteristic (ROC) curve (AUC) comparison
between the proposed model for classification of the International Skin Imaging Collaboration
(ISIC) 2018 dataset. The different classes (AKIEC = actinic keratosis; BCC = basal cell carcinoma;
BKL = benign keratosis lesion; DF = dermatofibroma; MEL = melanoma; NV = melanocytic nevus;
VASC = vascular lesion) are presented on the left and the mean on the right.
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Table 3. the International Skin Imaging Collaboration (ISIC) 2018 and Human Against Machine
with 10,000 training images (HAM10000) datasets. The asterisk (∗) sign on some models shows that
auxiliary processing stages and methods were exploited to improve the performance. Our models
are given in bold. ANN = artificial neural network; CNN = convolutional neural network; FL = focal
loss; ML = machine learning; SVM = Support Vector Machine.

Source Method Accuracy (%)

[51] AdaBoost + random forest 73.08
[51] RGB+HSV+YIQ color model ∗ 74.26
[52] Ensemble 73.00
[52] PNASNet ∗ 76.00
[56] ResNet-50 + Forest 80.04
[53] VGG16 + GoogLeNet Ensemble 81.50
[54] Densenet121 with SVM 82.20
[54] Ensemble of CNN ∗ 85.10
[55] MobileNet 83.10
[39] DenseNet-169 81.35
[39] Bayesian DenseNet169 ∗ 83.59
[20] DL + Random Forest 85.70
Our baseline ResNet-50 74.21
Our best model Hybrid+FL 89.48

5. Conclusions and Future Work

In this paper, there six experiments on the ISIC 2018 dataset were conducted on
dermoscopic images. Our results show an improvement in the accuracy of classification
results from 74% to 89%. The six different models were proposed to automatically classify
skin cancer into seven categories.

The FL approach reduces the impact of imbalanced classes of skin lesions by focusing
the loss on minority classes. The results have validated the hybrid model including the FL
algorithm which improves the training performance in skin cancer classification.

The severe class imbalance of real-world datasets is still a major point that needs to be
addressed. Experimental results indicate that the FL function provides a significant boost
to the performance of commonly used CE loss functions for training CNNs on the ISIC
2018 datasets. Our methods offer useful guidelines for researchers working in domains
with skin cancer classification.

In future work, the validity of the proposed model can be extended to other databases,
such as the ISIC 2019 [57] and ISIC 2020 [58]. In addition, more backbones, such as
EfficientNet [59], can be investigated for training models and improving the classification
performance. We also consider using Bayesian methods, combined with traditional machine
learning methods, to try more techniques to address the data imbalance problem.
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Abbreviations

The following abbreviations are used in this paper:

AI artificial intelligence
AKIEC actinic keratosis
ANN artificial neural network
AUC area under the receiver operating characteristic (ROC) curve
BCC basal cell carcinoma
BKL benign keratosis lesion
CAD computer-aided diagnosis
CE cross-entropy
CNN convolutional neural network
CT computed tomography
DCNN deep convolutional neural network
DF dermatofibroma
DNA deoxyribonucleic acid
FC fully connected
FL focal loss
FN false negative
FP false positive
GELU Gaussian error linear unit
GPU graphics processing unit
HAM10000 human against machine with 10,000 training images
IARC international agency of research on cancer
ISIC international skin imaging collaboration
LN layer norm
MEL melanoma
MHA multi-head attention
ML machine learning
MLP multi-layer perceptron
MRI magnetic resonance imaging
NLP natural language processing
NV melanocytic nevus
OA overall accuracy
RF random forest
RNN recurrent neural network
ROC receiver operating characteristic
SVM Support Vector Machine
TP true positive
UV ultraviolet
VASC vascular lesion
ViT vision transformer
WCE weighted cross-entropy
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