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This paper proposes a deep cut version of the ellipsoid algorithm for solving a general class of continuous convex
programming problems. In each step the algorithm does not require more computational effort to construct these
deep cuts than its corresponding central cut version. Rules that prevent some of the numerical instabilities and
theoretical drawbacks usually associated with the algorithm are also provided. Moreover, for a large class of
convex programs a simple proof of its rate of convergence is given and the relation with previously known results
is discussed. Finally some computational results of the deep and central cut version of the algorithm applied to a
min—max stochastic queue location problem are reported.
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1. Introduction

This paper is divided into two parts.

The first part, contained in Section 2, discusses the ellipsoid algorithm. In this part a so-
called deep cut version of this algorithm for solving a class of convex programming problems
is presented. Also, rate of convergence results are given. We emphasize that the convergence
proof of the computationally attractive deep cut version is simple and elementary contrary
to the proof of a similar result for a corresponding central cut version as reported for the
unconstrained case in [16] and [34] and for the constrained case in [24]. Moreover, the
proof unifies results for deep and central cut versions and shows the influence of deep cuts
on the convergence rate. Finally, it can be extended to a large class of quasiconvex programs
(cf. [12]).

The second part, contained in Section 3, presents a min—max model in location theory in
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which the objective function incorporates the waiting time for service of customers. The
objective uses also so-called (convex) disutility functions and for the linear case the
objective function is worked out in detail. To this special convex programming problem we
apply the two versions of the algorithm and report the computational results.

2. The ellipsoid algorithm
Before proposing a deep cut version of the ellipsoid algorithm we present a general overview.
2.1. Overview

Early papers by Shor (cf. [32] and [31]) are considered to be the start of the ellipsoid
algorithm, Later, Yudin and Nemirovsky (cf. [42] and [43]) observed its implications in
convex programming. The explicit statement of this algorithm is due to Shor (cf. [33]).
The algorithm became very well-known by a publication of Khachiyan in 1979 stating that
the ellipsoid algorithm can be used to prove the polynomial time solvability of linear
programming problems (cf. [21]). Later, the ellipsoid algorithm has been used to prove
the polynomial time solvability of a large class of combinatorial optimization problems (cf.
[18] or [19]). For a very well written survey of the early applications of the ellipsoid
algorithm to linear programming we refer to [3]. Recently the connections between the
ellipsoid algorithm and the quasi-Newton algorithm for nonlinear programming and Kar-
markar’s algorithm for linear programming have also been studied (cf. [17] and [41]).
Contrary to its behavior in linear programming it also seems (cf. [8], [7] and [9]) that a
central cut version of the ellipsoid algorithm is robust for general nonlinear programming
problems and, relative to efficiency, competitive with other general purpose algorithms.

For a mathematical description of the ellipsoid algorithm we need to introduce an ellip-
soid. A set ECR” is called an ellipsoid if there exists a vector a €R” and a positive definite
n X n-matrix A such that

E=EA;a)={xeR" (x—a)A "(x—a)<1}.

Moreover, in order to determine whether a given hyperplane in R” with normal ¢ intersects
an ellipsoid E(A; @) we observe (cf. [19]) that

min{c'x: x€E(A;a)}=c'a—Vyc'Ac (D)
and
max{c'x: x€E(A;a)}=ca+Vc'Ac. (2)

This implies that the hyperplane
H(B)={xeR" c'x= B}

with — 1 <a<1 and a:= (c¢'a— B)/Vc'Ac has a nonempty intersection with E(A; a). It
is now possible to construct for —1/n<a <1 a minimum volume ellipsoid E(A; a,)
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containing the intersection E(A; @) NH ™ (B) with H ~ (B) = {x €R": ¢'x < B} the lower
halfspace corresponding to H(S) and this ellipsoid has a strictly smaller volume than
E(A; a). Moreover, its formula is given by (cf. [3] or [19])

o 1+nab 3
=am T (3)
_n? ., __2(1+4na) .
Al—nz_l(l a)(A ETSIYIEn bb), (4)

with
a={(ca—B)/Vc'Ac and b:=Ac/Vc'Ac.

Taking the same matrix @ as described on page 151 of [28] and copying with some
obvious modifications the proof in Proposition 2.7 and 2.8 of [28] one can show thatA, is
positive definite given that o> < 1 and A is positive definite.

This concludes our brief description of the ellipsoid algorithm. Observe that the main
problem in applying this algorithm is to construct in each step a hyperplane in such a way
that the optimal solution of our optimization problem belongs to the intersection of the
current ellipsoid and the constructed lower halfspace. We note here that for =0 (resp.
0 <a<1) the hyperplane is called a valid central cut (resp. valid deep cut).

2.2. Analysis and description of the algorithm

Consider the problem

(P) inf f(x)

xS
where f: R” — R denotes a finite convex function on R* and S CR” some closed convex
set. In this paper we assume that this so-called feasible region S is given by

S={xeR™ g(x)<0,j=1, ..., m}

withg,: R"—>R,j=1, ..., m, a set of finite convex functions on R”. It should be noted here
since each function g;, 1 <j<m, is actually continuous on R” (cf. [1]) that S is indeed a
closed convex set. Moreover, since the maximum of a finite number of finite convex
functions is finite and convex we may take in the definition of S, without loss of generality,
the number of different functions equal to one, i.e. m= 1. For simplicity we will call it g
instead of g,. A similar argument also applies to the objective function fand so optimization
problem (P) also covers min—max problems.

In order to introduce a deep cut version of the ellipsoid algorithm we need to make the
following assumption.

Assumption 2.2.1. An optimal solution x* of (P) exists for which an upper bound r on the
Euclidean norm of x* is known, i.e. [|x*|, <r.
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As observed by one of the referees the technique of generating deep cuts that we are
going to present for both the objective function and for the constraint was first introduced
in [35] and later submitted to extensive computational study in [7].

Letus introduce now the set B(0,r) = {x € R": |x||, < r}. Clearly, following Assumption
2.2.1,

F(x*) =min{ f(x): x €S} =min{f(x): x ESNB(0,r) }
and so we can start the ellipsoid algorithm by taking B(0,r) = {x€R": ||x|,<r} as the
initial ellipsoid E(A; 0) with A, =pl and p:=r2.
Suppose we are at the mth step of the procedure and the current ellipsoid E(A,,; a,,)
contains x*. Let us define the lowest recorded feasible value until iteration m as

L,=min{f(a,): k<m, a,€S}. After observing that clearly [,, > f(x*) for every meN we
may distinguish three different cases.

Case 1. a,,€ SNB(0,r). Since fis finite and convex on R" it follows that for every x € §
the subgradient set df(x) is nonempty (cf. [1]) and hence for every d,, € df(a,,) the so-
called subgradient inequality holds

fx*) >f(a,) +d, (x*~a,). (5)

Observe, ifd,, = 0 then a,, is optimal and therefore there is no need for a cut. For a derivation
of a deep or central valid cut with respect to f observe the following. If
d, (x*—a,)>1,—f(a,) it follows by (5) that

Jx*)y>fa,)+1, —fla,) =1,

and this is not possible by the definition of x*. Hence x* must belong to the lower halfspace
H ™ (B,)={xeR"d, x<B,} with 8,,:=d.,a,,+1,—f(a,). We will now verify whether
the hyperplane H(3,,) corresponds to a valid cut. Observe by the subgradient inequality for
fix*€E(A,;a,) and (1) that

0<fla,) ~1, <fla,) —f(x*) <d,a, —d,x*
<d)a, —min{d.,x.x€E(A,;a,))} (6)

=vd,A,d,

and hence

L, — -1
e o ntn =B f@) =L 7
Vd,A,d, Vd,A,d,

implying that H(8,,) is a valid cut. Clearly this is a valid deep cut whenever /,, <f(a,,) and
it can be derived using only one additional computation. Substituting o= «,,, 8= ,, and
c:=d,, it follows by (3) and (4) that in this case a smaller volume ellipsoid E(A,, . 1;a,, 1)
can be constructed satisfying x* €E(A,,; a,,) "H (B,) CE(A,..; a,,.,) and so we are
finished discussing the construction of a valid cut for f. In the remainder we will refer to
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such a cut as an objective cut. Finally, in order to derive a stopping rule, notice by the
definition of «,, and (6) that

0<l, —f(x*)=1,~fa,) +f(a,) —f(x*) < (1 -a,)Vd,A,d, (8)
holds for every objective cut m > 0 and hence
L, —f(x*) <min{(1 — o) Vd;A,d,: k<m, k is an objective cut}. %

Case 2. a,,€ B°(0,r)." If this subcase holds we construct a valid cut with respect to the
function A(x) = |x||,. We shall refer to such cuts as norm cuts. Observe that 4 is convex
and its gradient Vi(x) exists for every x # 0 and equals x/ || x ||,. Clearly by the subgradient
inequality, Assumption 2.2.1 and (1) it follows that

r>h(x*)=h(a,)+ Vh(a,) (x*—a,)
=Vh(a,,)x*>min{Vh(a,)x: xEE(A,;a,)) (10)

= "am "2 -V Vh(am)[14m Vh(am)

and so we conclude by the second inequality in (10) that x* must belong to the lower
halfspace H ™ (r) = {x €R"™: Vh(a,,)'x <r}. Moreover, applying ( 10) again we obtain

Vh(am)tam —r "am "2 - r

0<a,, = =
VVh(a,)'A,, Vh(a,) VVhia,)A, Vh(a,)

<1 (11)

and this yields that the hyperplane H(r) is a valid cut. Clearly this is a valid deep cut
whenever | a,,|, > r. Substituting «:= a,,, B:=r and ¢ := Vh(a,,) it follows by (3) and (4)
that also in this case a smaller volume ellipsoid E(A,, . 1;a,, ., ;) canbe constructed satisfying
¥*€E(A,;a,)NH ™ (B,) SE(A, 3 8y,.1)-

Finally we consider the last subcase.

Case 3. a,,€S°NB(0,r). If this holds we construct a valid deep cut with respect to the
function g. We shall refer to such cuts as constraint cuts. As in the first subcase we obtain

0>¢(x*) >¢(a,) +d,,(x*~a,) >g(a,) —Vd,A,d, (12)

with some nonzero d,, € 3g(a,,) and hence by the second inequality in (12) x* belongs to
the lower halfspace defined by H ~ (B,,) == {x € R™ d',x < B,,} with 8,,:=d\.a,,—g(a,,).
Moreover, applying (12) again

d;nam - Bm g(am)
0 S am = = =
vd,A,d,  Vd,A,d,

(13)

and this yields that the hyperplane H(f3,,) is a valid cut. Clearly it is a valid deep cut

'A¢ CR" denotes the complement of the set A in R”.
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whenever g(a,,) > 0. Substituting «=a,, B:=p,, and ¢:=d,, it follows by (3) and (4)
that again in this case a smaller volume ellipsoid E(A,,, ;; a,,+,) can be constructed
SatiSfyingx* eE(14m’ am) rWIJ_(Bm) gE(Am-Fl; am+l)‘

This concludes the description of the three disjoint subcases and leads to the determination
of the smaller volume ellipsoid to be used in the (m+ 1)th step.

Before giving a complete description of the algorithm we recall (cf. [3, 19]) that the
ellipsoid E(A,,, ,; a,,+ ) given by

Am+l = 5m(‘4m_0-mbmb:n)9 a, ;| :zam_Tmbm7
with the updating values

n*(1—a?) 2(1+na,,) 1+na,,
8m==—3——, = ———— =, T,= "
n°—1 (n+1)(1+a,) n+1

and

is the smallest volume ellipsoid containing £(A,,; a,,) "H ™ (8,,).
The algorithm consists now of the following steps.

Step 0. let m:=0, Ay:=pl and a,:=0;
Step 1. if a,, is feasible and optimal then goto Step 4

else goto Step 2;
Step 2. if a,, & B(0,r) then apply a norm cut

else if a,, & S then apply a constraint cut

else apply an objective cut;
Step 3. update the ellipsoid, let m:=m+ 1 and return to Step 1;
Step 4. stop.

This algorithm includes both the central and the deep cut versions. For the central cut
just take «,, =0, for the deep cut evaluate «,, according to the subcases discussed in this
subsection.

Except for the first condition in Step 2 this algorithm is similar to the variant V1V3 of
the ellipsoid algorithm studied in [7]. Our contribution to Step 2 is expressed by the first
rule to be evaluated which aims to improve the numerical stability of the algorithm by trying
to keep the centers of the generated ellipsoids inside a bounded region of the space.

Finally we observe for the general case that the above algorithm might be difficult to
implement due to the non-availability of a computationally easy optimality check. Although
in some cases a fast algorithm is available to check for optimality (cf. [11]) this might in
general not be true especially for the nondifferentiable case. This difficulty is caused by the
fact that it is sometimes not possible to derive an easy description of the subgradient sets of
the functions fand g. Therefore we need to introduce a computationally easy stopping rule
to apply in Step 1 of the algorithm. If we are interested in an absolute error of less than a
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given £>0 we observe by (8) that this will be achieved if at step m an objective cut is
performed and the inequality

(1—a,)Vd,A,d,<e

holds. However, if we know additionally that f(x*) > 0 it is sometimes more reasonable to
consider the relative error

(b —f(x*)) 1f(x*).

The algorithm will now be stopped at the mth step if an objective cut is performed at this
step and the inequality

min{(1— ) vVdiA,d,: k<m, k is an objective cut}
<emax{f(a,) —VdiA,d,: k<m, k is an objective cut}

holds. Observe by (6) that f(x*) >f(a,) — VdA,d, for every objective cut k< m. If the
stopping rule is satisfied this yields that

f(x*) zmax{f(a,) — Vd}A,d,: k<m, k is an objective cut} >0
and hence we finally obtain by (9) and the stopping rule that
(b —fe*)) [f(x*) <&

and so we have found a feasible solution within a 1 + grelative error of the optimal solution.
This stopping rule was used in our computational experiments discussed in the last section.
On the other hand, if it turns out that ;= 1 for some k (this is possible only if & is not a
norm cut) then by (1) the intersection of E(A,; a,) and H ™ (8,) consists of one point
which is necessarily the optimal solution since x* € E(A,; a,) "H ™ (3,) holds for every
k=0.

In the next subsection we will provide a simple and elementary convergence proof which
covers both versions of the algorithm.

2.3. Convergence proof

In this subsection we assume that the described algorithm has already performed m steps,
m=1,2, ..., with centers a,, kK <m, and no optimality check or stopping rule was applied.
By the last remark in the previous subsection we may assume without loss of generality
that 0 < o, <1 and d, # 0 for every k< m.

For the proof of Lemma 2.3.2 we now need some well-known results from linear algebra.

Lemma 2.3.1. For every matrix A €R"™" and vectors a, b € R” such that det(A) # 0 and
det(A +ab') +0 we have
A lab'A™!

A+AbY) ' =AT"-
( ) 1+b'A 'a

)

det(A+ab") = (1+b'A" 'a)det(A).
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Proof. The first formula is called the Sherman—Morrison formula and can be found in [23].
For the proof of the second formula we observe by well-known elementary properties of
determinants (cf. [23]) that

det(A + b‘)=det(rl b ])
clara 10 A+ab

-as([ L 5]

=det((1+btA*la Ot])

—-a A

=(1+b'A 'a)det(A)

which finishes the proof. [

In order to prove the next lemma we introduce for every positive definite matrix A, and
llk:/“E 0 the ratio e = Vd;(Akdk/"dk "2 .

Lemma 2.3.2. If the described algorithm has performed m steps without applying the
stopping rule or an optimality check then

with T2} 8=1.

Proof., From Lemma 2.3.1 and the remarks at the beginning of this subsection it is easy to

verify that
d.d,
Al =61(A,;1+ T _Cnfm ) 14
m+1 m l"‘O}ld;ﬁtndm ( )
det(A,, ;1) =6,,(1—0,)det(A,,). (15)

Moreover, if tr(A) denotes the trace of matrix A this yields by (14) that

G, _
o2
1-0,

tr(A, L) =6,"'tr(A,") +6,'

Iterating the previous formula for m > 0 we obtain

W O _
]'—:[81 1)1—016 ek2

=k

tr(A,, ) =tr(A4g 8"+ i (

k=0 k=0

and, since tr(A; ') =n/p, this simplifies to
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(A, L) = ]—[5 +Z(H5') i’ (16)

P r=o k=0 \i=k Ok

If (15) is also iterated for m > 0 it follows that

det(A,, . ;) =det(Ag) [ [(6x(1—0y))
k=0
and this implies using det(A,) = p” and det(A ~ ') =det(A) ' that
det(A,, L) =p "TT(86c"(1—a) ™). (17)

Since tr(A,; L, )=X" | A; and det(A,, L ) =TI/, A; with A,, i=1, ..., n, the positive
eigenvalues of the positive definite matrix A,, .| we obtain by the geometric-arithmetic
mean inequality (cf. [38]) that

n¥det(4,, 1) <tr(A,1,). (18)

Substituting (16) and (17) in (18) we finally obtain

£ (1) 2 e () (1 4 )

and multiplying the last expression by ['T{_, 5, the desired result follows. [

Let us now define the following parameters as functions of the space dimension

a=(n*—1)/n? b=V(n+1)/(n—1),

and note that ab>e¢'/"*> 1 for every n>2.
For each iteration we also define D,,:==min{ (1 — ;) e, k<m}.

Theorem 2.3.1. If the deep cut ellipsoid algorithm, without applying a stopping rule or
optimality check, is executed an infinite number of iterations then
lim D,,=0.

Moreover, the convergence is geometric at a rate of 1/Vab if a,,=0 for every m (central
cut version) and at a possibly higher rate whenever «,, > 0 for some m (deep cut version).

Proof. D, is clearly a nonincreasing and nonnegative sequence. Also, without loss of
generality, we may assume as observed in the beginning of this subsection that 0 < o, <1
and d, # 0 for every k> 0.

Observe that after some rewriting the inequality

2 - - 1 +no, ( "1+ oy )
(l-a})) ——5 = —{p""! — —1
—lkg‘ U p kll

(l"ak)ek 1—a
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follows from Lemma 2.3.2. Since 0 < o < 1 for every &, the inequalities I | j-‘;ol (1- af )<1
and 1+ nay <1+ n are satisfied and hence the above expression implies

(bm+1 1—[ H—_ak _1)' (19)

1_ak

2" Ya*

k=0 (1— ak)ek
By definition D,, < (1 — «;) ¢, for every k<< m and since (1 — ;) < (1 — ) it follows that
D2 < (1—a)e?.

Hence by (19) we obtain that

2"D Z a—+> = (b’”“l_[ —1+ak—l).

23
Now, observing that Y7y a *=(1—a~™*Y)/(1—a '), the last inequality yields

(n+l)2 (a—l)m+1_1
noopm I V(A +a)/(1—a) ~ 1

D2 <92 :=2p

Note that [T}, V(l +a,)/(1—ay) = 1 for every m and so

(n+1) (a—l)m+l
n bm+l 1

D2 <E2 =2p

Hence it follows using 1/(ab) <1 that #% — 0 as m — ® and its geometric convergence
rate is of the order 1/(ab). However, if a; > 0 for some k then 22, might decrease faster,
and so this might also hold for DZ. Finally if D2 —0 at a rate of at least 1/(ab) then
D,,— 0 at a rate of at least 1/\/%. O

Still using elementary techniques we will relate the behavior of the sequence D,,, m >0,
to the behavior of the nonincreasing sequence [,,—f(x*), m>0. In order to do so the
following notation is necessary.

D" :=min{(1—a,)e,: k<m, k is a norm cut},
D¢ ==min{ (1 —a,)e,: k<m, k is a constraint cut},
DY =min{ (1 — a;)e;: k<m, k is an objective cut}.

To avoid ambiguities D},, D¢, and D/, are set equal to infinity if the corresponding sets are
empty. Since at each step the algorithm either performs a norm cut, a constraint cut or an
objective cut is clear that D,,=min{D”* D¢, D/ }.

It is now possible to prove the next result for D%,

Lemma 2.3.3. There exists a positive constant 8> 0 such that Dfn > & for everym> 0.

Proof. Let m>0 be given and suppose there exists some k< m such that the algorithm
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performs a norm cut during step k. If such a k does not exist we are finished since in that
case D" = +c. To continue the analysis of the first case we observe by Assumption 2.2.1
that there exists some 6> 0 such that |x*||, <r— 6 and hence by (10) it follows that

r—8> x|, > |, |, — V Vh(a,)‘4,, Vi(a,,).

This implies by (11) and || VA(a,,) |, =1 that

la,l.~r )\/vmamrAmw(am)

l—a,)e,={1—
(e ( VVh(a,)',,Vh(a,,) IVh(a, ||,

=V Vh(a,)A,,Vh(a,) = @, +r

>6>0

and so the resultis proved. [

By Theorem 2.3.1 and Lemma 2.3.3 it follows that there exists some m, such that
D,,=min{D%,, D7} for m > m,. This means that for m big enough we only have to study
the behavior of the sequences D%, and D”,. Another elementary result useful for the proof
of the main theorem is given by the next lemma.

Lemma 2.34. If L, ={x€R"™ f(x) <f(x*) +nD,, } and I, —f(x*)>nD,, for some
m, €N then S,,, CE(A,; a,) for every k<m, with S,,, =L,, NSOB(0,r).

Proof. The result will be verified by induction. Clearly S,, CB(0,r) = E(Ay; a,). Suppose
now S, CE(A;; a;) for some k<m,— 1 and consider a,. If a; belongs to S°NB(0,r) the
algorithm performs a constraint cut and so d,€dg(a,) and B.=da,—g(a;). By the
subgradient inequality applied to g it follows for every x € S that

di(x—a,)<g(x)—gla,) < —glay)

and hence SCH ™ (B,). This implies S,,, CH ~ () and by the induction hypothesis we
obtainS,, CH™ (B) NE(Aga,) CE(A, ;a,, ). Similarly one can show fora, € B°(0,r)
that B(0,r) CH ~(B,) andso S,, CH ™ (B,) NE(Aa,) CE(A,. ;a,, ). Finally consider
the case that @, belongs to SN B(0,r). If this holds we obtain d, € df(a;) and B, =1, — f(a;)
and by the subgradient inequality and /,,, —f(x*) >nD,, it follows for every x €L, that

K(x—a) <f(x) = fla,) <f(x*) +nD,, —fa,) <l,, —fla,) <l ~flay).

Hence L,,, CH () and as in the previous cases it follows S, CH ™ () NE(A @)
CEAy s as). U
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In order to prove the main theorem and link the behavior of D,, to D/, we need the
following regularity condition. This condition is related to Slater’s condition which shows
up in the proof of strong duality in convex programming (cf. [38]).

Assumption 2.3.1. There exists some x € B(0,r) with g(x) <0.

We may now prove the following convergence theorem.

Theorem 2.3.2. If the deep cut ellipsoid algorithm without applying a stopping rule or an
optimality check is executed an infinite number of iterations and Assumption2.2.1 and 2.3.1
hold then

lim [, =f(x*).

m1 oo

Moreover, it follows that

. Ly —f(x*)
1 <0,
el D,

Proof. Clearly by Theorem 2.3.1 the sequence /,, converges to f(x*) if lim sup, ;e
(1,,—f(x*))/D,, <o, Observe that this also implies that the sequence ,, — f(x*) has at least
the same convergence rate as the sequence D,,,. In order to prove this result we first assume
that there exists an optimal solution x* with g(x*) <0 and fJx* |, <r. If this holds there
exists some 6> 0 such that g(x*) < — 8. Moreover, if during step k a constraint cut is
performed we obtain by (12) that

— 8> g(x*) > g(ay) — VdiAd,
and hence by (13)
(1—a)e, = (1—g(a) /VdiAd)VdiAd,/|d, ],
= (VdiAd, —g(a))/di]» (20)
> 8/ |dy ..

Observe now by the convexity of g on B(0,r) that g is Lipschitz continuous on B(0,r) with
Lipschitz constant L, (cf. [381) and so dg(a,) SB(0,L,) forevery x € B(0,r). This implies
ldill. <L, and by (20) we obtain (1—a;)e,>6/L,>0. Hence D%, > 8/L, >0 for every
m >0 and so by Lemma 2.3.3 and Theorem 2.3.1 there exists some m, such that D,,= D/,
for every m > m,. To conclude the analysis of this case we observe by (9) that

L, —f(x*) <min{ (1 — o )e,|di|.: k<m, k is an objective cut}
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and so since, as for g, the function fis Lipschitz continuous on SN B(0,r) with Lipschitz
constant L, this implies by the previous inequality using ||dy|, < L that

for every m>m, and hence the result is proved for this case. To start the analysis of the
other case suppose that all the optimal solutions with [|x*|, <rsatisfy g(x*) = 0 and assume
by contradiction that

lim sup bn — /%) =00
mro D,
This implies that there exists an increasing sequence {m,},_, with m,To and
L, —f(x*)>nD,, . By Assumption 2.3.1 it follows that g(£)=min{g(x):
x€B(0,r)} = — §for some 5> 0 and so £ € B(0,) can not be optimal. Hence by Theorem
2.3.1 there exists some n, such that £ &S, for every n>n, with the set S,,, defined as in
Lemma 2.3.4. Since f is continuous it follows for every n>n, that there exists some
A,€(0,1) such that x,:=A,£+ (1 —A,)x*€B(0,r) with f(x,) =f(x*) + inD,, . More-
over, by the convexity of g and the definition of £ we obtain

(g(x*) —g(x,))/ |x*—x, > > (g(x*) — g(£)) / |]x* — £,

and this yields using g(x*) =0 and g(£) = —  that

—g(x,) = dx* —x, |/ |l x* —£[. (22)

By the Lipschitz continuity of f on SNB(0,r) with Lipschitz constant L. it follows that
ihD,, =f(x,) —f(x*) <L]x,—x*|, and so by (22),

_g(xn)>n6Dmn/(2"x*_f"2[{f)' (23)

Consider now some arbitrary k<m, and suppose at step k a constraint cut is performed.
Since by (23) and the definition of x, we obtain that x, €S, CE(A;; a,), k<m,, (see
Lemma 2.3.4) it follows by (12) that

g(x,) > g(@) +di(x, —a,) >gla,) —VdiAd,
and so by (13),
(1—apeclde |, = (1 —g(a,) I VdiAd, ) VdiAd,
=VdiAd —g(ay)

>—g(x,).
This implies using ||d,||, <L, with L, the Lipschitz constant of g on B(0,r) that
LD}, > —g(x,)
and hence by (23),
LD, >ndD,, /(2||x*—X|.L,). (24)
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On the other hand, if at step m, an objective cut is performed we obtain by (21) and
Ly, —f(x*)>nD,, that

LD, =1, —f(x*)>nD,, . (25)

Combining now (25) and (24) it follows for n sufficiently large and satisfying

. { noé n 51
miny ———————, —
2|lx* =X LiL, Ly
that

D, =min{D¢ , DY }>min {——LB—— E}D >D,
mn s my J Z A ’ Ny My
2% =& LeL, Ly

This yields a contradiction and so it must follow that

l — *
lim sup by —f(x*) <o

mT o m

completing the proof. [J

Note that Theorem 2.5 of [ 16] gives exactly the same convergence rate as Theorem 2.3.2
(designated by the author as ¢l and equal to 1/ \/(E) but in [16] only the central cut
version applied to unconstrained problems is analyzed, and the convergence proof presented
there is much more complicated. This proof was extended to the constraint case by Luthi
(cf. [24]) but still covering only central cuts. Besides, contrary to our elementary and more
natural approach, a deep resultin convex analysis about volumes of so-called concave arrays
is needed in [24]. This resuit can only be applied if fis convex, while our approach with
some obvious modifications can also be used if fis quasiconvex (cf. [12]). So, on one
hand we prove similar results by easier and elementary techniques, while on the other hand
we extend the above mentioned results to a deep cut version.

We also note that our Step 2 provides a simple way to guarantee the existence of suitable
Lyand L, without imposing f or g to be Lipschitz continuous on the whole space of R".

A final comment concerns open feasible sets. As we will see in the next section some
applications fall into this category. For such problems the condition g(x*) <0 is naturally
satisfied and the convergence of the algorithm is also proved in this case by considering
only the first part of the proof of Theorem 2.3.2.

This finishes our theoretical analysis of the ellipsoid algorithm. The application discussed
in the next section will provide a test problem for it. Observe that the absence of an efficient
algorithm to solve this nondifferentiable location problem was the main motive to derive a
deep cut version of the ellipsoid algorithm. However, in the near future we intend to test
this algorithm on more general problems.
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3. An application

Consider, as an example, the problem of locating an ambulance depot to handle the accidents
in a given district. Whenever an accident occurs a call is generated and one of the available
response or service units at this depot is assigned to it and required to travel to the scene of
the accident. Clearly the assignment of a service unit to a call will result in the non-
availability of this unit during some random period of time. Since the occurrence of accidents
is a random process, this may lead to the non-availability of all the units at the same time
and so an incoming call facing this needs to wait for service. By this example it is clear that
the decision where to locate a depot should take these congestion effects into account. After
specifying the queueing discipline a reasonable objective to consider in this example would
be to minimize the maximum of the average lengths of time between the arrival of a call
from one of the possible accident sites and the arrival of a unit at that site. For simplicity
we assume that the number of accident sites is finite. This objective is clearly of the min-
max type. However, before discussing a simplified and mathematical tractable version of
the above example (only one unit and First Come First Served (FCFS) queueing discipline)
we first review the existing min—max single facility location models in the plane and their
solution procedures. Observe that these models do not incorporate the probabilistic nature
of the arrival process of customers and thereby the possible non-availability of servers at
the facility is ignored by them.

The most studied min—max type location problem in the plane is the classical weighted
Euclidean 1-center problem. This problem can be stated as follows: given n demand points
X, X5, ..., X, belonging to the plane, find a point x‘= (x,, x,) such that the function

max {w;d(x, x;)}

I<i<sn
is minimized, where the distance function d(x, x;) is given by the Euclidean norm, || - [|,. It
is called Rawls problem for general norms (cf. [39]).

Sylvester (cf. [37]) introduced the Euclidean version of this problem in 1857 for equal
weights w;. It is easy to see that its solution is given by the center of the smallest circle
containing all the given demand points. Shamos and Hoey (cf. [30]) presented for this
problem an algorithm which uses the so-called ‘‘farthest point Voronoi diagram’’ which
can be constructed in O(n log n) time. Other solutions for this so-called unweighted case
can be found in Rademacher and Toeplitz (cf. [29]), Courant and Robbins (cf. [5]),
Smallwood (cf. [36]), Nair and Chandrasekeran (cf. [27]) and Elzinga and Hearn (cf.
[10]). Finally, Megiddo (cf. [26]) introduced an algorithm with O(»n) time complexity.
This algorithm is based on the analysis of linear programming problems up to 3 dimensions.
Megiddo’s procedure is theoretically very efficient, but it is not clear how to adapt it for
arbitrary .#,-norms. For general .%,-norms with 1 <p <o the problem is clearly a contin-
uous convex programming problem. It is interesting to note here that locating m centers,
using the Euclidean norm, was proved by Masuyama, Ibaraki and Hasegawa (cf. [25]) to
be NP-hard.

A major difficulty of the above convex objective function is its nondifferentiability in a
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infinite number of points. Therefore it is not possible, at least theoretically, to apply standard
techniques from nonlinear programming and so special purpose algorithms had to be devel-
oped. Unfortunately, these special purpose algorithms cannot be applied to the model
derived in the next subsection. However, this model can be solved by the ellipsoid algorithm.
Observe that the same algorithm can also be applied to the classical min—max problem and
the min-sum version (cf. [ 14]) of the model to be discussed in the next subsection.

3.1. A min—max stochastic queue location model

Letx}= (x;, x;,),i=1,2, ..., n, denote n demand points in the plane and x'= (x;, x,) the
location of a facility containing one server. Assume that each demand point x; generates
demands over time according to a Poisson process {.22,(¢); t =0} with parameter Ah,, where
h,>0,i=1,2,...,n,X"_ h;=1and A> 0. The Poisson processes 2 (1), Z,(t), ..., L (1)
are independent, and hence the overall demand process 2 (1) :=YL7_ |2, (1) is again a
Poisson process with rate A.

Regarding the example, let *‘server’’ designate the response unit at the ambulance depot,
“‘customer’’ designate each accident and ‘‘arrival of a customer’’ designate each call
generated by an accident.

The travel speed of the server is assumed to be a constant v, and the distance d(x, x,)
between the facility at x and the demand point x; is measured by some norm || - || so that
d(x,x;) = ||x —x;||. This implies that the service time of a customer located at demand point
x; equals (2/v) |jx —x;| if it is assumed (without loss of generality) that on-scene and off-
scene service times (i.e. the time spent by the server at the demand point and at the facility,
cf. [2]) are equal to zero. Moreover, each time the server finishes his (or her) service at
some demand point, he (or she) returns to the facility and starts serving the next client in
the queue. A FCFS queueing discipline is assumed.

The following random variables are needed in order to introduce an objective function
for this problem.

® ¢, :=the demand point generating the /th arriving customer;

® w,(x) :=the time between the arrival of the I/th arriving customer and the assignment
of the server to this customer, if the facility is located at x;

® 7;(x) ==the service time of the /th arriving customer, if the facility is located at x;

L ;v,(x) :=the actual waiting time of the /th arriving customer before the arrival of the
server at demand point d; to serve this customer, if the facility is located at x.

It is not difficult to verify, using the independence of the Poisson arrival processes, that
the random variablesd,, > 1, are independent and identically distributed with P{d, =i} = h,,
i=1,2,...,n

Moreover, conditioning on the event {d; =i} it turns out that

7(X) = /) |x—x;l, ifd =i,

and
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5,(x) =w,(x) +57(x).

In order to introduce a customer-oriented objective one possibility is to assume that an
arriving customer, using the framework of utility theory, associates with his (or her) actual
waiting time a certain level of dissatisfaction. This gives rise to the following assumption.

Assumption 3.1.1. If the facility is located at x, and the /th arriving customer is generated
by the demand point x;, then the customer’s random dissatisfaction cost equals f;(s;(x)),
where f; : [0,0) = [0,0), f;(0) =0, is some nondecreasing left-continuous disutility func-
tion, 1 <i<n.

Note that there is no loss of generality to assume that all customers of a given demand
point x; share the same disutility function f;. Indeed, if a fraction p of customers generated
by the demand point x; has different disutilities, this demand point may be divided into two
separate dummy demand points with arrival rates Ak, p and Ak (1 —p) and the desired
property is achieved. However, for notational convenience we assume in the remainder that
the set of demand points consists of distinct points.

Classical location theory distinguishes two major objectives. One possibility is to mini-
mize the average disutilities aggregated over all the customers (min-sum), while the other
is to minimize the maximum of the average disutilities from customers located at demand
point x;, 1 <i<n, (min—max). Only the min-max objective will be discussed here. For a
discussion of the min-sum type objective corresponding to the Stochastic Queue Location
Problem in the plane the reader is referred to [ 14] and [44].

In order to introduce this min—max objective, let us define

® j;:=the index of the /th arriving customer coming from demand point x;;

® ¢, ;(x) :=the total random disutility value of the first m customers from demand point
x; if the facility is located at x.

Clearly

m m 1
Cni(X) =Y filsy(x)) =3 f; (v_vg,(x) + llx —x; |I) ,

I=1 =1

which, taking expectations, yields

m 1
Eleni(X) =Y & [ﬁ (v_v;,(X) + = e—x Il)] : (26)

=1 v

Some observations are needed in order to evaluate for every 1 <i <n the random variable
w;, (x). The underlying queueing model can be seen as a M/G/ 1 queue with FCFS queueing
discipline and n different customer classes (cf. [4]), where a customer belongs to customer
class i if located at demand point x;. Clearly, in this framework, w,(x) represents the waiting
time in the queue of the ith arriving customer and hence the random process {w,(x): > 1}
is the waiting time process (in the queue) of a M/G/1 system with arrival rate A = 2.7 | Ak,
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and service time distribution B(T) equal to the weighted average of the service time
distributions B,( 7) of each customer-class i, i.e.

B(7)=Pl{1(x)<T1}= ZhiBi( T) = Zhil((z/u)}|x—xill<r)a

i=1 i=1

where

| = 1 if A occurs,
4 0 otherwise.

By the above observation and well-known results for the M/G/ 1 queue (cf. chapter 8 of
[22]) it follows that w,(x) converges T almost surely to an almost surely finite random
variable w..(x) if and only if x € {2, where

0:={xeR?> 2A/v)m,(x) <1}

and

my(x) = Zhi [l —x;
i=1
denotes the Weber function (cf. [40]).
Since by definition i,/ and the random variable w;, (x) is completely determined by the
independent service times of customers arriving before customer i, and the independent
arrival times up to customer i, we obtain as in (8.10) and (8.11) of [22] that

wi(x) <w;(x) <w,,, (X) Swa(x)  as. (27)

=1+1

Hence also w;,(x) Tw..(x) almost surely if and only if x € {2. By the monotonicity and
left-continuity of the disutility functions and (27) this implies, using the monotone con-
vergence theorem (cf. [15]) that

2 w0+ Liesa) | 12 [ {0+ L) |

So for every x € {2, the average expected cost ¢, (x) per customer from demand point
x; exists and by (26) this equals

Cn(x) = limw L Elen(x)11& [fi (v_vw(x) + % lx—x; II)] S
Clearly, to avoid pathological cases we have to assume for a given set of disutility
functions f;, 1 <i<n, that &[fi(w..(x) + (1/v) |]x —x,]) ] is finite for every x € £2. Observe,
since the service times 7,(x), /> 1, are uniformly bounded for every x € (2, that this assump-
tion holds for any increasing polynomial f; (cf. [20]).
The above assumption now gives rise to the following proper optimization problem

(PO) min Cmax(x)
xed?
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where

Cmax (X) = max ¢, (x).

I<ign

The next theorem mentions a general property for each function ¢ ;,.

Theorem 3.1.1. The function c;, : 2 R is convex on (2 if the corresponding disutility
Sfunction f; is nondecreasing and convex. Moreover, if f; is only nondecreasing then
¢y - 12— R is quasiconvex on ().

Proof. The proof can be found in [ 14] or [44], and hence it is omitted. [

Remarks. 1. The above theorem also holds if we assume that the overall demand process
is a renewal process and each time a demand occurs this demand is generated by demand
point x; with probability 4;. Moreover, the trials to decide which demand point has generated
the arriving demand are independent tossings. In this case the underlying queueing model
is a GI/G/1 queue (cf. [22]).

2. By Theorem 3.1.1 it follows immediately that ¢, : £2— R is convex on {2 whenever
all disutility functions f;, 1 <i<n, are nondecreasing and convex. Moreover, if at least one
of the disutility functions f; is only nondecreasing we obtain that ¢, : £2— R is quasiconvex
on {2,

Generally, it is not possible to evaluate c;,(x) explicitly. However for polynomials and
in particular the simple case of linear disutility functions, like f;(t) = ¢ for 1 <i<n, and
using a .2Z’,-norm it is possible to derive a closed analytical expression for c(;, (x) (cf. [14]
or [44]). For the linear case this is given by

PV e
( v )2121 j"x fj"p + - "x—xi"p).
1= QAT hllx—x;], v

i (X)=c (
Since linear functions are both convex and concave the optimization problem (P,) given
by

min Cmax(x)
x4

where

M VHL hx —x; |2 1
( ) “j=1 X =0, + ; x—x;,

Cmax(x) = max Ci( 3
L= QA5 ke —x;,»

1gign
and
0:={xcR* 2A/v)m,(x) <1}

is a very special case of the convex programming problem (P) with an open feasible region
(see the discussion at the end of the previous section).
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We note that it is possible in this case to establish conditions for a feasible a,, to be
optimal. In fact, it is necessary and sufficient for optimality that 0 € dc ., (a,,) (cf. [1]).
In spite of being in general difficult to determine the subgradient set of a general convex
function this can be done for this particular case.

First recall the following result due to Dubovitsky and Milyutin (cf. [6]).

Lemma 3.1.1. If f, 1<i<n, are finite continuous convex functions on () and
Srnax "= MAX, ;< [; then the subgradient set of fi., at x € {2 is given by

afmax(x)=00nv( U aﬁ(x))

iel(x)

with I(x) = {i: fi(X) =fina (%) }.
Proof. The proof can be found in [6] and hence it is omitted. [
Considering each function ¢,,(x) it is differentiable everywhere except at the demand

points x;, 1 <I<n.
Suppose that x =x, for a given [. Define, if i # 1/,

- QA E il lx—x; 5 1
Coi x)==ci( : 2P — x—x;], ),
) 1= QM) L, o by |x —x;, ) | Iy
and, fori=|,
2A0DE L lx—x; |2
c_(,)(x)t=c, ( U) ‘j£ j”x xJ”p

1= QMO Lyl =x,
Note that &;,(x) and ¢, (x) are differentiable in x,. and so V¢, (x,) and V&, (x,) exists.

Let also, if i #1,

I = Cn(x) = (ei/v) lx, —x:], Qh
L= QML X - x), v r

and, ifi=1,

E(,)(x,) ZA Cy

L+ 2L
1_(2A/U)Zj:#[hj“xl —xj"P v : v

I

The following lemma fully characterizes the subgradient set of the nondifferentiable
points of ¢, (x).

Lemma 3.1.2. Let | - ||, denote & ,-norm with p> 1, and | - ||, denote the conjugate £ -
norm (1/p+1/g=1), then
dey (x) ={dER? [|d— Vi (x) ||, <17}

forl<i<n.
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Proof. The proof can be found in [44] or [13] and hence it is omitted. O

In order to test if a point x is optimal for c,,,,(x) one need to decide if 0 € dc,,,.(x).

If x is not a demand point, and so dc;, (x) = {V¢;,(x) } for every i, the problem reduces
to the decision problem whether 0 belongs to the convex hull of a set of points in the plane
and hence it can be solved in linear time (cf. [11] or [26]). If x is a demand point an
efficient solution procedure is presented in [11].

A final remark in this subsection concerns the existence of an initial ellipsoid.

Suppose the optimal solution of (P,) exists, and is denoted by x*. Then x* is a feasible
solution of (P,). This means that

Al
— Y hylx*—x, <L
U J=t

By the triangle inequality of a norm we obtain

2N 2 20

= Yo h(x*—x))| < - Yo hillx* —x; ), <1
=1 P i=1

and hence
n v
x*— Z’hjx_,- < e
j=1 P
Since

1
Il > lxle =max{|x, |, |5 |} > —= V% 2+ % ]* =

1
\6 E "x"2

for any x €R? and p > 1 it follows that

<V2
2

12
< —.
V22
From the above inequality we obtain that the optimal point x* must be contained in a
circle with center .7_ i,x; and radius v/ ( V2A). This circle provides an initial ellipsoid for
our algorithm.

x*— ihjxj

j=1

n
* -
x* =3 hx;
i=1

3.2. Computational results

In order to test the algorithm it was completely coded by us in Sun Pascal and no commercial
routines were used except the standard functions and procedures of the language. The
program includes the optimality test discussed in the previous subsection which was applied
to each feasible center. The program was compiled and executed on a Sun Sparc Station
SLC using the default double precision (64-bit IEEE floating point format) real numbers
of the Sun Pascal language. The computational experience was carried over 600 uncorrelated
instances of the problem discussed in the last subsection. Those instances were randomly
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generated in the following way. We start by describing the selection of the problem para-
meters.

For the problems being tested, the number » of demand points belongs to {10, 25, 50,
100, 250, 500}.

The disutility function of each demand point x; is chosen to be a linear function with
coefficient ¢; =250, i.e. fi(t) = ¢;t with ¢;= 250 for every i.

For the .%,-norm being used, we take p< {1.1, 1.5, 2.0, 2.5, 3.0}, while the overall
Poisson arrival rate is set to A =0.001 and the fraction ; of arrivals from the demand point
x; is determined as follows. We uniformly draw numbers from the interval [0,1), say h;,
1 <ign, and set h; equal to h,—=ﬁ,-/(ZJ’»’=lﬁj) forevery 1 <i<n.

Now we describe the procedure to generate the demand points. Al the demand points are
generated within the square [0, 250] X [0, 250], for which a clustered structure is created
using the following procedure. First we draw two integers m, and m, ranging from 1 to 20,
and then we divide the square [0, 250] X [0, 250] into (m, + 1) (m,+ 1) subsquares by
generating randomly m, x-axis coordinates and m, y-axis coordinates in (0, 250) (cf. Figure
1). Then we label these subsquares from 1 to (m; +1)(m,+1).

Subsequently we randomly choose according to these labels some given number of
subsquares. In each chosen subsquare we uniformly draw a given number of demand points.
Finally, the remaining demand points are uniformly drawn from the original square
[0, 250] X [0, 250] and added to the already existing set of demand points, in a total of n
points.

In order to procedure ‘‘constrained’” examples we compute after the generation of each
instance the value of the speed v of the server according to the following procedure. First a
pair of values for v is produced with the property that for the smallest value the feasible set
{2 is empty and for the biggest value the feasible set {2 includes all the demand points.
Subsequently binary search is applied to the corresponding interval until a value of v is
found for which during the first 10 iterations of the algorithm both constraint and objective
cuts are generated.

Y — azis
25
1 2 3
4 5 6
7 8 9
0 10 11 12 T - aris
0 250

Fig. 1. Clustered problem m, =2, m,=3.
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Finally, the tolerance parameter used in the stopping rule is :=5X 10 ° and a relative
error measurement as described in Subsection 2.2 was used.

In Table 1 we summarize the results of our computational experience.

For each pair (n, p) 20 uncorrelated instances of the problem were generated according
to the procedure described above and each of them was solved by both versions of the
algorithm. Hence the entries of Table 1 are averages of the corresponding values.

The columns under deep cut statistics include the percentage of objective cuts generated

Table 1

Results of the ellipsoid algorithm

Problem Central cuts Deep cuts Deep cut statistics % reduction

n P it time it time % o &, % c @, it time

Ri

10 1.1 722 029 586 024 90 0.054 10 0.089 0058 185 17.7
10 15 677 027 569 023 87 0.054 13 0.047 0052 152 13.4
10 20 o614 011 522 0.10 88 0.050 12 0.056 0050 148 13.8
10 25 658 027 539 022 89 0.056 11 0.060 0057 16.7 17.2
10 3.0 66.7 026 545 022 85 0.057 15 0042 0054 172 16.0

25 1.1 755 070  58.1 054 90 0068 10 0070 0068 226 223
25 15 622 057 522 049 85 0.053 15 0.056 0053 16.1 14.0
25 20 624 022 536 020 85 0052 15 0.042 0050 132 9.9
25 25 618 056 529 048 89 0049 11 0059 0049 143 14.7
25 3.0 625 056 528 048 84 0051 16 0050 0049 156 14.9

50 1.1 745 131 588 1.04 88 0.059 12 0.081 0.061 205 20.2
50 15 610 1.09 509 091 87 0055 13 0060 0054 164 16.1
50 20 617 042 515 035 86 0055 14 0060 0055 16.6 16.9
50 25 593 1.09 488 0.89 89 0055 11 0069 0056 17.7 18.5
50 3.0 605 1.10 516 095 83 0046 17 0055 0047 146 13.0

100 1.1 705 252 560 201 89 0064 11 0.063 0063 205 20.0
100 1.5 585 206 509 1.80 88 0045 12 0.058 0.046 12.7 123
100 2.0 615 080 512 067 85 0.051 15 0.061 0052 164 15.9
100 25 601 208 514 178 86 0049 14 0065 0050 142 139
100 30 589 205 510 179 87 0053 13 0053 0052 13.0 12.6

250 1.1 70.0 599 566 486 88 0.058 12 0.064 0.057 19.1 18.8
250 1.5 60.1 515 509 438 86 0055 14 0.056 0054 155 15.0
250 2.0 607 195 517 166 85 0053 15 0051 0052 149 14.8
250 2.5 593 516 492 430 88 0052 12 0066 0054 16.8 16.5
250 3.0 612 528 51.8 448 86 0052 14 0.072 0.053 154 15.0

500 1.1 673 1155 543 934 86 0.063 14 0.052 0.060 193 19.1
500 15 598 1027 503 871 88 0051 12 0060 0052 157 15.1
500 2.0 620 388 519 327 87 0051 13 0069 0052 163 15.9
500 25 609 1036 50.8 8.67 86 0053 14 0070 0055 16.7 16.3
500 3.0 590 1016 503 8.69 88 0052 12 0.055 0052 1438 14.4
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by the deep cut version in column % o and the average depth of the corresponding cut in
column &, . Similar values concerning constraint cuts are listed in columns % ¢ and «.. The
column & shows the total average depth of a cut. In the generated examples no norm cuts
were produced which may be explained by the rather loose determination of the starting
ellipsoid and by the stability and good behavior of our test problem.

Each time column refers to the execution time in seconds of the Sun Station measured
by the available standard clock function of the Sun Pascal compiler. This corresponds to
the elapsed time from the start to the end of the ellipsoid procedure. During the execution
of the ellipsoid procedure no input or output operations are performed. The optimality test
(cf. [11]) is included in these times.

We note that the time values for p=2.0 correspond to a special situation since the
computations of the Euclidean distance and the corresponding derivatives can be simplified.

Comparing the two last columns of percentage reductions one can see that the behavior
of the algorithm reflects that the deep cut version does not imply any significant extra
computational effort. In fact, every reduction in it (iterations) is followed by an approximate
reduction in time.

As a final remark we observe that using deep cuts reduces approximately 16% on both
the computational time and the number of iterations.

Previous experiences where the examples were generated in a way that most of the
iterations corresponded to objective cuts, i.e. almost every center belongs to SNB(0,r),
show averages of 25% reduction which is confirmed in [ 13] where an unconstrained convex
problem (the weighted .2, 1-center or Rawls problem) is solved by the ellipsoid algorithm.

The results obtained in [ 7] agree in general with our results but show a trend of instability
in the deep cut version when applied to some test problems. We believe that our modified
Step 2 may contribute to increase the stability of the algorithm but more extensive compu-
tational tests need to be performed.
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