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A deep explainable artificial 
intelligent framework 
for neurological disorders 
discrimination
Soroosh Shahtalebi1, S. Farokh Atashzar2,3, Rajni V. Patel4,5, Mandar S. Jog4,5 & 
Arash Mohammadi1*

Pathological hand tremor (PHT) is a common symptom of Parkinson’s disease (PD) and essential 
tremor (ET), which affects manual targeting, motor coordination, and movement kinetics. Effective 
treatment and management of the symptoms relies on the correct and in-time diagnosis of the 
affected individuals, where the characteristics of PHT serve as an imperative metric for this purpose. 
Due to the overlapping features of the corresponding symptoms, however, a high level of expertise 
and specialized diagnostic methodologies are required to correctly distinguish PD from ET. In this 
work, we propose the data-driven NeurDNet model, which processes the kinematics of the hand in 
the affected individuals and classifies the patients into PD or ET. NeurDNet is trained over 90 hours of 
hand motion signals consisting of 250 tremor assessments from 81 patients, recorded at the London 
Movement Disorders Centre, ON, Canada. The NeurDNet outperforms its state-of-the-art counterparts 
achieving exceptional differential diagnosis accuracy of 95.55% . In addition, using the explainability 
and interpretability measures for machine learning models, clinically viable and statistically significant 
insights on how the data-driven model discriminates between the two groups of patients are achieved.

�e population of seniors (aged 60 and above) is estimated to rise from 962 million in 2017 to 2.1 billion by 2050, 
and 3.1 billion by  21001, which proportionally increases the population of the individuals a�ected by neurological 
movement  disorders2. To better manage the growing population of patients, specialized and advanced technolo-
gies are required to prevent, control, and cure neurological diseases. Parkinson’s disease (PD) and essential tremor 
(ET) are among the common neurological movement disorders, which respectively occur at the prevalence rate 
of ∼ 2% and ∼ 4.5% for individuals over 65 years of  age3,4. PD and ET share some common symptoms, includ-
ing pathological hand tremor (PHT), which a�ects coordination, targeting, and speed of voluntary  motions5 by 
the involuntary and pseudo-rhythmic movement of  limbs6. �ere are various categorizations of PHT but two 
types are very common, namely “Rest Tremor” and “Action Tremor”, where the latter is further classi�ed into 
three subcategories of postural, kinetic, and isometric  tremors7,8. Rest tremor occurs when a limb is in a resting 
state and is supported against gravity, while action tremor occurs in case of voluntary contraction of muscles in 
a limb. Postural, kinetic, and isometric tremors are respectively observed when a patient maintains a position 
against gravity (such as stretched-out arms), performing a voluntary action, and contraction of muscles against 
a rigid object. While both PD and ET patients develop tremors, there are characteristic di�erences, potentially 
allowing di�erentiation of these two diseases. More speci�cally, PD is typically characterized by unilateral rest 
tremor in the spectral range of 4–6  Hz9, whereas ET patients commonly show symmetric postural and kinetic 
tremor in the range of 4–8  Hz9.

Although PD and ET could be characterized by the type of their tremor, they also share overlapping features, 
especially in the early stages of the  diseases10. For instance, both rest and action tremors are observed in PD 
and ET patients to the extent that 46% of ET population show rest  tremors11 and up to 90% of PD patients have 
action  tremor8,12,13. In addition, a considerable number of ET patients show asymmetric hand  tremors8,13,14, given 
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the fact that asymmetry of PHT is sometimes seen as a key signature of PD. In addition, the age range in which 
patients start to develop symptoms of PD or ET is not signi�cantly di�erent, further complicating the di�erential 
discrimination of the two  diseases15,16.

�e aforementioned overlapping features of PD and ET makes it signi�cantly challenging to conduct di�eren-
tial  diagnosis10,15,17,18, to the extent that 37% of ET patients are misdiagnosed and most of them are diagnosed as 
PD. Several  studies17,18 have shown that 15–35% of patients with other movement disorders are also misdiagnosed 
as PD. Misdiagnosis of PD and ET can adversely a�ect the outcome of clinical trials and results in suboptimal 
treatment and faulty  prognosis10,15. Consequently, it is of paramount importance to develop and devise advanced 
diagnosis techniques to signi�cantly avoid such misdiagnosis of PD and ET.

In order to decrease the misdiagnosis rate, in the literature, some sophisticated technological solutions have 
been proposed to monitor symptoms of patients and track the correlated physiological phenomena. In this regard, 
recently, Positron emission tomography (PET) has been employed to study brain functions in the case of neuro-
degenerative disorders, including PD. Scanning dopamine transporters (DAT) with  PET19,20 or single photon 
emission tomography (SPECT) have been recently considered as the gold standard (according to  references21,22) 
for di�erential diagnosis of PD from ET, especially for ambiguous  cases23. However, due to the expensive and 
time-consuming nature of PET and SPECT technologies and the need for injecting radioactive-labeled tracers, 
they are not widely  employed24 and thus investigating alternative diagnostic procedures is of high importance. 
In this regard, basic time-series analyses of tremorous motion of the limbs, and electrical activity of muscles are 
suggested as potential biomarkers that can help with the  diagnosis12,24. �e frequency contents of such record-
ings are known to reveal useful information for discrimination of PD and  ET7. �us, signal processing (SP) and 
machine learning (ML) techniques are investigated for such analysis of hand motion recordings of patients to 
better identify and discriminate the underlying characteristics, and assess the associated severity index.

To use time-series recordings for di�erentiating PD patients from those with similar symptoms but with dif-
ferent diagnosis, several classi�cation schemes are developed over recent years in the  literature25–34, including 
statistical signal  processing35, support vector machines (SVM)36, Naive Bayes classi�ers, nearest centroid classi�er 
(NCC), random forest (RF)37, decision tree (DT), and linear discriminant analysis (LDA)38,39. More recently, deep 
learning (DL) methods, which are considered as a subcategory of ML techniques and present methodologies to 
design multi-layer arti�cial neural networks (ANN) are employed to analyze the tremor  signals40,41. �e main 
bene�t of DL methods compared to classical approaches is their independence from expert-de�ned features to 
grasp the underlying patterns of data. A meaningful representation of the signals is formed by a DL model when 
numerous training examples are being observed by the network to minimize a prede�ned cost function (e.g., 
classi�cation error). Carefully cra�ed DL frameworks have shown superior performance in several practical 
applications and have ignited a great surge of interest in applying them to many di�erent problems. However, 
the data-hungry nature of the DL techniques demands large datasets, which can represent a broad and clear 
image of the studied phenomenon and can help the network grasp a generic image of the characteristics of the 
two diseases from the tremor recordings. In fact, large datasets are required to grant an acceptable degree of 
the generalization to a neural  network42 to be securely deployed in real-world applications. Table 1 summarizes 
the research works on analysis of time-series recordings of tremorous limbs for diagnostic purposes, along with 
their achieved accuracy.

A growing surge of interest is observed in deploying DL methods, more speci�cally convolutional neural 
networks (CNN), in analyzing time-series recordings of tremorous limbs. In CNNs, a number of initially-ran-
domized kernels (�lters) are designed and convolved with raw data to capture the underlying  patterns43. Com-
monly, several �lter layers (hence the term deep learning) are stacked to derive a new informative representation. 
Technically, CNNs have outperformed computer-level and human-level performance in  image44 and speech 

Table 1.  Literature review of the recent works in ET/PD classi�cation.

References Goal Dataset Method Results

Hossen et al.23 ET/PD classi�cation
Accelerometer data, [19 PD, 21 ET] for 
training and [20 PD, 20 ET] for testing

Statistical Signal Characterization 
performed on the spectral domain of 
tremor signals

Accuracy = 90%

Ghassemi et al.31 ET/PD classi�cation
Electromyogram and accelerometer 
data, [13 PD, 11 ET] for training and 
testing

Classi�cation of Wavelet features with 
Support Vector Machines (SVM)

Accuracy = 83%

Brzan et al.49 ET/PD Classi�cclassi�cationation
Electromyogram data [27 PD, 27 ET] 
for training and testing

A set of statistical and physiological 
features classi�ed with decision tree

Accuracy = 94%

DiBiase et al.15 ET/PD classi�cation
Accelerometer data, [16 PD, 20 ET] for 
training and [55] for testing

Analysis in spectral domain
Accuracy = 92%, Sensitivity = 95%, 
Speci�city = 95%

Barrantes et al.50 ET/PD/Healthy classi�cation
Accelerometer data, [17 PD, 16 ET, 12 
healthy, 7 unknown]

Spectral analysis of the signals Accuracy=84.38%

Molparia et al.51 ET/PD classi�cation
Accelerometer data and genetic pro�les, 
[40 PD, 27 ET] for training and testing

Statistical properties of signal along 
with genomics data

Sensitivity = 76%, Speci�city = 65%

Locatelli et al.52 ET/PD classi�cation
Low power wearable device, [17 PD, 7 
ET] for training and testing

Various machine learning techniques Accuracy=95.8%

Moon et al.53 ET/PD classi�cation
Gain and balance characteristics, [524 
PD, 43 ET] for training and testing

Hand-cra�ed features and classical ML Accuracy = 92%

Dugue et al.54 ET/PD classi�cation
Accelerometer data, [17 PD, 16 ET, 12 
Healthy, 7 inconclusive]

Spectral features and various ML 
techniques

Accuracy = 84.4%
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 recognition45, justifying the growing trend of their application in other �elds, e.g., tremor  assessment25,40,41,46–48. 
�e superior performance of CNN in the analysis of tremor recordings could be contributed to the fact that 
CNNs, as a subcategory of data-driven ML algorithms, do not require hand-cra�ed and expert-de�ned features 
to understand the studied phenomena and the inference is made by observing a considerable number of training 
examples and optimizing the parameters of neural network based on minimizing a prede�ned cost function. One 
of the main challenges of data-hungry deep neural networks is the interpretability of the results. Although high 
performance can be achieved, sometimes the network may focus on hidden biases in the dataset. For example, 
if the signals of the two conditions are recorded using two di�erent machines (with particular spectrotemporal 
characteristics), a black box neural network may learn how to di�erentiate between the recording of the two 
machines, instead of the characteristics of the two conditions. To avoid that, researchers constantly evaluate 
all possible biases in the dataset, but without an interpretable solution this is always a concern. To address this 
issue and to encode a degree of transparency and interpretability in the machine learning models, a new set of 
techniques, referred to as explainable AI or XAI for short, are developed.

In this work, inspired by the signi�cant potentials of XAI and interpretable DL techniques, we propose an 
innovative DL-based data driven model, referred to as NeurDNet , for accurate and e�cient di�erentiation of 
Parkinsonian tremor from essential tremor via hand motion recordings. NeurDNet takes advantage of a 2-stage 
classi�cation paradigm incorporating a DL core and a classical ML core, to accurately distinguish and classify the 
recording of patients with PD and ET. NeurDNet is developed based on a unique, large, and inclusive dataset of 
hand kinematics, that we clinically collected in this study, which includes 250 tremor assessments of 81 patients. 
Each tremor assessment consists of recordings in 3 channels from 7 tasks, each recorded in 3 trials. As will be 
discussed later in “Methods”, the recordings of only six tasks are employed to develop NeurDNet. �e collec-
tion of recordings from 6 tasks in 3 channels and in 3 trials add up to 54 single-channel tremor signals for each 
tremor assessment. It is worth highlighting that the 3 trials of data collection during each of the patient visits to 
the clinic, are mandated by the data collection protocol, and do not imply any sort of decomposition applied to 
the signals. �e utilized dataset was collected at the London Movement Disorders Centre laboratory over a time 
span of 4 years. �e comprehensive employed dataset of hand motion recordings has provided NeurDNet with 
the unique capability of perfectly magnifying and mastering the overlapping features of the two disorders (i.e., 
PD and ET), hence, decreasing the misdiagnosis error and maximizing the classi�cation accuracy. �e exception-
ally large and inclusive dataset enables NeurDNet to reliably capture the underlying and overlapping features 
of the two diseases and provides an acceptable degree of generalization to the network. A�er publication of this 
article, we will release the trained NeurDNet as an open-source library that can be used by other researchers and 
clinicians. In summary, the paper makes the following key contributions:

• A novel data-driven architecture, i.e., NeurDNet is developed and trained over a large and comprehensive 
dataset of hand kinematics collected over a time span of 4 years and consisting of about 90 h of recordings 
from 81 patients. �is dataset has captured the acceleration of hand motion in PD and ET patients in 3-axes, 
while performing 7 di�erent tasks in 3 trials, by mounting a triaxial accelerometer on the dorsum of their 
hand.

• �e processing pipeline of NeurDNet is a sequential architecture of a CNN core and a classical ML core, 
which together form a two-stage classi�cation paradigm for di�erential diagnosis. �is novel architecture 
further boosts the reliability and accuracy of the system in di�erentiating Parkinsonian tremor from ET.

• To maximize the amount of extracted information from the dataset with the ultimate goal of maximizing 
the overall classi�cation accuracy, in addition to the raw accelerometer signals, we introduced shortcut bits 
to the deep neural architecture of NeurDNet to convey some information about the task associated with the 
tremor recording. �is is critical, since di�erent tasks would stimulate di�erent characteristics of tremor in 
PD and ET patients. In other words, we have embedded the label of the tasks performed by each patient as a 
hint vector in the �nal classi�cation layer of the neural network to further boost the classi�cation accuracy 
of NeurDNet in distinguishing the two diseases. As a result, patients should conduct a particular series of 
motion tasks (explained later) to activate di�erent PHT patterns, which can be decoded into di�erential 
diagnosis using NeurDNet.

• Another major novelty of NeurDNet is employment of specialized and sophisticated methods in interpreting 
its decisions by explaining the clues in the input signals that lead to a particular class label. Such compre-
hensive analysis provides statistically signi�cant and clinically viable knowledge for classi�cation of PD and 
ET and relaxes the concerns on learning structural and unwanted biases in the input data that can lead to 
proper discrimination of the two diseases.

�e above-mentioned contributions of NeurDNet collectively have resulted in the state-of-the-art mean classi�-
cation accuracy of 95.55% . Please note that in this paper, by the term“classifying/di�erentiating PD from ET” we 
are referring to di�erentiating between the dynamical behavior of tremor in PD patients with that of ET patients, 
which can be potentially used as an assistive tool for clinical diagnosis or tremor management.

Methods
In this section, the data collection procedure for the employed dataset as well as the architecture of the NeurDNet 
framework and the rationales behind its design are discussed. Lastly, the evaluation metrics and the algorithmic 
work�ow of NeurDNet are explained.
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Dataset. �e dataset employed in this work was collected from 81 PD and ET patients under a single-centre, 
pilot study approved by the Western University’s Health Sciences Research Ethics Board (HS REB#: 104584 and 
107433) at the London Movement Disorders Centre in London, Ontario, Canada. �e study protocol is regis-
tered with the “www. clini caltr ials. gov” registry (Identi�cation numbers: NCT02551848 and NCT02668497). 
It is worth highlighting that the NCT02551848 study concerns the data collection from ET patients and the 
NCT02668497 study examines the characteristics of PHT in PD patients. �e data collection procedure and the 
experiments were performed in compliance with the WMA Declaration of Helsinki, as well as the Tri-Council 
Policy Statement of Ethical Conduct for research Involving Humans in Canada. �e study protocol has received 
full board approval of the ethics committee and the consent procedure is con�rmed as required in the documen-
tation checklist. All the participants in this study were recruited by the Movement Disorder Centre, at the Uni-
versity Hospital, London, Ontario, Canada. �ey entirely matched the inclusion/exclusion criteria as discussed 
in  References55,56, and provided written informed consent for their participation. �e �rst patient’s �rst tremor 
assessment was recorded in March 2014, and the last recording occurred in January 2018.

A convenience sampling of 119 PD and 131 ET upper-limb tremor assessments, collectively recorded from 81 
patients (47 PD and 34 ET), were employed to develop the NeurDNet framework. In the PD group, 8 females and 
39 males, with the average age of 71.51 ± 7.63 years old were recorded, where 14 of them provided bilateral and 
33 provided unilateral recordings. In addition, 26 PD patients were de novo, 45 patients have participated twice 
with a time interval of 6 weeks and only 2 of them have participated once. �e ET group contained 34 patients, 
13 females and 21 males, with an average age of 69.8 ± 6.12 years old. �e ET group included 22 de novo patients, 
where only 3 patients participated for one time and the rest participated for two times with a time interval of 6 
weeks. All the ET patients were recorded bilaterally. �e analysis of upper-limb kinematics was performed on 
tremor assessments recorded from patients based on 7 scripted tasks where each one is performed for 20 seconds 
and the whole process was repeated for 3 times. As previously detailed in  References55,56 and shown in Fig. 1a, the 
7 scripted tasks included two rest positions with the forearm supported on lap (“Rest-1”) or on a table (“Rest-2”), 
two postural positions with outstretched arms and hands facing the ground (“Posture-1”) or facing each other 
(“Posture-2”), two weight-bearing tasks with participants holding an empty cup (“Load-1”) or a cup with a 1-lb 
weight (“Load-2”), and one kinetic task where participants repetitively performed the �nger-to-nose action. �us, 
6 of the 7 tasks recorded the PHT in a static position (denoted as “static tremor”) and the �nger-to-nose task 
provided “action tremor” data. As shown in Fig. 1b, an inline 3D accelerometer sensor (#317A Noraxon U.S.A. 
Inc.) was placed on the dorsum of the hand to capture the PHT in real-time using TeleMyoTM G2 at 1500 Hz 
and transmit it to a computer running MyoResearch XP Version 1.08.0951.62 so�ware. It is worth noting that 
the TeleMyoTM G2 device, which is a wireless telemetry system for EMG and inertial sensors, can only provide 
recordings at either 1500 or 3000 samples/s/channel. �e recorded signals include 3 channels of data representing 
acceleration in the x,y and z axes. In total, 87.5 h of data was employed in this work which were collected from 
81 patients (3 channels for each patient, 7 minutes per tremor assessment, and 250 tremor assessments in total).

Data preparation. Prior to utilizing the recordings for training and evaluation stages, the entire tremor 
signals were downsampled to 100 Hz to minimize the computational burden on the system as well as the com-
plexity of the network. It should be noted that as the informative spectral region in the tremor signals spans the 
range up to 20 Hz, and according to the Nyquist theorem that sampling a signal with at least twice the rate of its 
maximum informative frequency is enough to fully reconstruct it, we believe that 100 Hz is low enough to avoid 
excessive computational costs on the system and high enough not to distort the spectral contents of interest in 

Figure 1.  (a) Illustration of the 7 scripted tasks performed by PD and ET patients for each tremor assessment. 
(1) Rest-1; (2) Rest-2; (3) Posture-1; (4) Posture-2; (5) action tremor (repetitive �nger to nose motion); (6) 
Load-1 (empty cup); (7) Load-2 (1-lb weight in the cup). (b) Placement of the 3-axis accelerometer sensor 
on the dorsum of hand. Please note that this �gure is reproduced from the Figure 1 of the work by Shahtalebi 
et al.25.

http://www.clinicaltrials.gov
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the signal. A�erwards, the mean of each signal is subtracted from itself to eliminate the e�ect of calibration and 
the bias associated with the posture of each task.

As discussed earlier, the introduced large and inclusive dataset for development of the NeurDNet framework 
consists of 250 tremor assessments, where each includes PHT recordings in 3 trials, 7 tasks, and 3 channels. It 
should be highlighted that to develop and evaluate NeurDNet framework, we omitted the action tremor record-
ings associated with the “�nger-to-nose” task from the dataset. As the action tremor recordings contain dynamic 
features from both the person’s voluntary movement and the tremorous movements, we believe that the wide 
range of characteristics and dynamic properties of the voluntary component misleads NeurDNet in the classi�ca-
tion tasks and degrades its accuracy. �ere is a general consensus in the literature of PHT processing  works25,57,58 
that the recorded PHT signals can be modeled as the summation of a voluntary and an involuntary component. 
A major bottleneck in distinguishing between the two components is that no ground truth can be assumed for 
either of the two components. Since the collected data from the �nger-to-nose task represent action tremor 
signals (voluntary plus involuntary components) where no ground truth can be assumed for their underlying 
components, we have omitted the recordings of this task from the dataset to mainly focus on the information 
conveyed through other tasks ,which represent static tremor (i.e., no voluntary motion is present). In other words, 
by removing this task from our dataset (using 6 tasks to develop the NeurDNet), we have minimized the e�ect 
of unknown and untraceable factors on the NeurDNet inference from the recordings.

After removing the recordings of the “finger-to-nose” task, a large collection of 13,  500 
( 250 × 3 × 6 × 3 = 13,500 ) tremor signals constitute the available number of tremor signals for the develop-
ment of NeurDNet . Finally, for each tremor signal, which is of 20 s length, its spectrogram is calculated according 
to the Welch method, by sliding a Hamming window of length 100 points, the overlap size of 90 points, and the 
FFT resolution of 256 points over the tremor signal, which results in a 2-dimensional representation of each 
signal with the size of [129 × 191] . As shown in Fig. 2, the obtained spectrograms of the tremor signals are then 
fed to NeurDNet to be processed by the convolutional layers of the �rst-stage classi�er.

To develop the �rst-stage classi�er and identify the hyper-parameters of neural network, we split the dataset 
based on [75–25%] portions for training and testing, where the 5-fold cross-validation is performed using the 
samples in the training set. It is worth noting that the two sets are formed based on subjects and the recordings 
of one subject only contribute to one set, as an attempt to eliminate any direct or indirect leakage of information 
from the training set into the test set. Once the hyper-parameters of the �rst-stage classi�er were determined, the 
second-stage classi�er was added to the system and the whole pipeline was trained and evaluated for di�erent 
training/test proportions. In other words, we have employed [61, 20], [54, 27], [46, 35], [38, 43], [30, 51], and 
[22, 59] number of patients respectively to form [training, test] sets in 25% , 35% , 45% , 55% , 65% , and 75% cases. 
It is also worth mentioning that the whole process of �ne-tuning the hyper-parameters of the �rst-stage classi�er 
is based on the average accuracy of classi�cation in the cross-validation process, and the test set is only employed 
to perform the �nal evaluation of NeurDNet , as shown in the results reported in Tables 2 and 3.

It is worth highlighting that due to the balance of data in the two classes of our dataset, the classi�cation 
accuracy is utilized as a reliable metric to conclude and compare the performance of NeurDNet across di�erent 
scenarios. Here, the classi�cation accuracy is derived by dividing the number of correctly classi�ed patients over 
the total number of patients in the test set. In addition, to obtain the best hyper-parameters for NeurDNet in 
order to achieve the highest classi�cation accuracy, statistical signi�cance tests are employed to statistically verify 
the e�ect of each hyper-parameter on the �nal classi�cation accuracy. Please note that this process is employed 
to �ne-tune the type of output for the �rst-stage classi�er and the classi�cation paradigm in the second-stage 
classi�er. It should be noted that this process is di�erent from the 10-fold cross validation strategy employed for 
�ne-tuning the hyper-parameters of the �rst-stage classi�er.

Hyper-parameter optimization of NeurDNet. In the validation process, all of the parameters and 
hyper-parameters of NeurDNet are �ne-tuned to maximize the classi�cation accuracy. To �ne-tune the hyper-
parameters of the �rst-stage classi�er, which is a CNN-based deep neural model, the hand motion dataset is 
strictly split into 2 sets, 75% for training and 25% for testing. To avoid the leakage of information from the train-
ing set to the test set, the formation of datasets is based on tremor assessments from patients and the recordings 
of each patient are only participated in one set. �is strategy is used to impose harsh evaluation conditions on 
NeurDNet to better investigate its capability in extracting the generic underlying patterns of each disease from 
the hand motion recordings. To identify the optimum hyper-parameters of the network and validate its per-

129 X 191

To the
first-stage
classifier

Spectrogram

Sampling freq = 100 Hz
FFT resolution = 256 points
Window type = Hamming

Window length = 100
Window overlap = 90

1 X 2000

Figure 2.  �e preprocessing step to convert time-series tremor recordings into 2D spectrotemporal 
representations of the signals to be processed with the �rst-stage classi�er of NeurDNet.
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formance over di�erent hyper-parameters, we employed a 5-fold cross-validation procedure over the samples 
in the training set. In fact, each round of training is performed over 4/5 of the training set and the rest of the 
samples are utilized for validation and this process is repeated for 5 times with completely exclusive validation 
samples. Finally, the mean performance over the 5 runs is reported as the accuracy of network for the selected 
hyper-parameters. In addition, cross-validation enables us to decide if the model is over�tted to training samples 
or not and investigate if the network generalizes well over the wide and overlapping range of hand motion char-
acteristics for the two diseases. It is worth highlighting that the classi�cation accuracy of the �rst-stage classi�er 
refers to correct classi�cation rate over the input spectrograms (formation of the training and validation sets is 
based on patients so that tremor signals of one patient only contribute in either the training or the validation set). 
A rigorous grid-search strategy is adopted to try di�erent potential hyper-parameters for the CNN and they are 
compared based on the 5-fold cross validation classi�cation accuracy. �e pool of hyper-parameters includes the 
number of convolutional layers, kernel size, the number of dense layers, width of dense layers, optimizer, and the 
learning rate. To summarize, 75% of data (10, 125 samples) is used for training, 25% (3375 samples) is reserved 

Table 2.  Classi�cation accuracy of NeurDNet in the two cases of employing binary and probabilistic features. 
�e classi�cation accuracy is measured across di�erent choices of the second-stage classi�er, including random 
forests (RF), support vector machines (SVM), Naive Bayes Classi�er (NB), logistic regression (LR), AdaBoost 
classi�er (AB), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), decision trees 
(DT), and multi layer perceptron (MLP).

Classi�er

Binary features Probabilistic features

25% 35% 45% 55% 65% 75% 25% 35% 45% 55% 65% 75%

RF (entropy) 85.69 84.24 82.91 81.94 82.43 78.68 86.18 85.43 83.79 82.66 82.20 78.21

RF (gini) 85.43 84.59 83.43 82.35 81.97 78.28 86.49 84.81 84.27 82.63 82.57 78.29

SVM (rbf) 85.68 84.65 84.24 82.19 83.10 79.46 86.33 85.83 85.38 82.09 82.68 79.01

SVM (linear) 84.26 82.69 82.08 81.34 80.78 78.02 85.83 84.77 83.60 82.36 82.02 78.57

NB 83.70 83.55 80.23 81.44 81.67 77.31 85.98 86.42 84.94 83.94 84.15 81.48

LR 85.76 84.41 84.09 83.10 82.83 79.49 87.29 86.10 85.28 83.65 83.38 79.74

AdaBoost 83.97 81.61 80.99 79.95 79.30 75.80 85.03 82.97 81.53 80.01 78.12 73.32

LDA (svd) 79.54 76.25 75.83 73.79 66.21 67.44 77.81 76.41 76.56 72.31 65.12 63.62

LDA (lsqr) 79.54 76.25 75.80 73.77 63.40 49.57 77.81 76.41 76.56 72.31 65.12 49.50

QDA 81.85 83.18 78.69 72.08 63.26 58.62  95.55 93.89 81.73 73.48 56.29 53.13

DT (entropy) 81.21 78.45 77.66 77.63 76.02 74.75 80.40 79.01 77.11 77.57 75.06 71.73

DT (gini) 80.45 80.16 78.51 77.25 77.32 75.25 77.99 78.29 76.89 76.35 74.29 71.84

MLP (10) 85.01 82.40 82.05 81.25 79.79 77.53 84.33 83.03 81.64 80.25 80.04 77.04

MLP (30) 84.64 82.84 82.02 80.85 79.63 77.49 84.53 82.80 81.79 80.50 80.33 77.45

Table 3.  Classi�cation accuracy of NeurDNet when only the �rst-visit tremor assessments are included in the 
test set. �e classi�cation accuracy is measured across di�erent choices of second-stage classi�er, including 
random forests (RF), support vector machines (SVM), Naive Bayes Classi�er(NB), logistic regression (LR), 
AdaBoost classi�er (AB), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), decision 
trees (DT), and multi layer perceptron (MLP).

Classi�er

Binary features Probabilistic features

25% 35% 45% 55% 65% 75% 25% 35% 45% 55% 65% 75%

RF (entropy) 87.31 85.30 83.66 81.90 81.43 79.60 86.78 86.13 84.78 82.36 81.53 81.05

RF (gini) 87.59 85.80 83.50 82.03 80.96 79.77 86.66 85.63 84.83 82.23 81.38 80.83

SVM (rbf) 87.05 85.89 84.51 82.07 81.45 78.66 88.26 86.50 86.13 82.81 82.22 79.85

SVM (linear) 85.85 82.56 82.47 81.15 79.81 77.90 86.82 84.86 83.83 82.39 81.34 80.14

NB 84.99 83.93 79.95 81.65 77.07 75.61 87.60 86.44 85.11 84.54 82.57 81.09

LR 87.43 85.26 84.05 81.88 80.92 78.78 88.08 86.62 86.30 83.52 82.74 80.94

AdaBoost 86.26 82.53 82.70 80.21 77.69 76.46 85.79 83.59 82.32 80.78 78.63 75.06

LDA (svd) 81.13 78.10 76.10 70.13 67.04 67.82 79.12 77.02 76.49 71.58 66.14 62.99

LDA (lsqr) 81.13 78.10 76.04 70.13 62.49 49.41 79.12 77.02 76.49 71.58 66.14 51.06

QDA 79.18 80.77 77.65 70.20 62.15 60.04 93.05 89.66 77.59 71.63 59.92 54.01

DT (entropy) 80.85 79.04 78.25 76.60 76.42 74.96 79.76 79.14 78.44 77.39 75.61 73.82

DT (gini) 81.78 80.40 78.63 76.86 75.54 73.97 80.35 77.90 78.09 77.47 76.28 74.15

MLP (10) 85.41 83.33 82.54 78.90 78.09 77.60 83.31 81.84 81.50 79.72 78.15 77.83

MLP (30) 85.74 82.76 81.48 79.00 78.42 77.23 83.80 82.24 81.87 79.70 78.22 77.55
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for evaluation. �e best classi�cation accuracy of the �rst-stage classi�er over the validation data is 75.55% . It 
should be noted that each tremor assessment consists of 54 tremor signals ( 6 tasks × 3 trials × 3 channels ) and 
the above-mentioned accuracy is achieved for classi�cation of each tremor signal, therefore, the achieved per-
formance does not re�ect the accuracy of the NeurDNet on classifying the “patients” or “tremor assessments” 
into PD or ET.

Upon �ne-tuning the best hyper-parameters for the �rst-stage classi�er through a rigorous grid-search pro-
cedure, a similar strategy is followed to identify the best hyper-parameters for the second-stage classi�er. To 
develop the second-stage classi�er, the �rst-stage is kept intact based on the best derived hyper-parameters and 
the second-stage classi�er is updated to achieve the best performance, i.e., highest classi�cation accuracy. �e 
second-stage classi�er can be characterized by two main hyper-parameters, i.e., the type of input features and the 
classi�cation methodology. As the second-stage classi�er is fed with the output of the �rst-stage block, the output 
of the �rst-stage classi�er could be obtained either in binary format (class labels) or numeric format (probability 
associated with each class). �e classi�cation scheme of the second classi�er is another hyper-parameter that its 
e�ect is investigated on the overall performance of NeurDNet . To this aim, we have employed a set of classi�ers 
with di�erent settings to be coupled with the �rst-stage classi�er. �e evaluated paradigms include RF, SVM, 
NB, LR, AB, LDA, QDA, DT, and MLP. Please note that the parameters de�ned in the parentheses of the �rst 
column of Table 2, indicate the option in which the classi�cation algorithm is employed; “Entropy” and “Gini” 
de�ne the clustering criteria for RF or DT, “Radial Basis Function (RBF)” and “Linear” de�ne the type of kernel 
used by SVM, “Singular Value Decomposition (SVD)” and “Least Squares Error (LSQR)” indicate the eigenvalue 
solver for LDA, and “MLP(N)” de�nes a one layer neural network with N nodes.

Finally, to check the sensitivity of NeurDNet to the amount of available training data and its capability to 
infer the underlying characteristics of the two diseases from the recordings, we have trained and evaluated the 
performance of network across di�erent choices for test set population, which are 25%, 35%, 45%, 55%, 65%, 
and 75% of the whole dataset. Please note that the aforementioned ratio indicates the portion of dataset to form 
the test set. In addition, it should be noted that to decrease the e�ect of randomness in selecting the train/test 
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Figure 3.  �e overall processing framework of NeurDNet to perform di�erential diagnosis between PD and 
ET. (a) �is part depicts the processing pipeline for the �rst-stage classi�er, which is based on convolutional 
neural networks. In this stage, a preliminary decision (PD or ET) is made on a single signal of tremor 
assessment, which is previously passed through the pre-processing block. �is signal could be the acceleration 
of hand motion in any axis, from any task of any trial. (b) �is �gure shows the second stage of the classi�cation 
process for each tremor assessment. In fact, each tremor assessment contains 54 tremor signals, where all of 
them are passed through the �rst-stage classi�er. �en, the decision on each signal is aggregated in a vector of 
length 54 which forms the feature vector for the second-stage classi�er.
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subjects, we have performed each evaluation for 30 times and the mean accuracy of this comprehensive per-
formance evaluation is reported in Table 2. As it is observed, the maximum classi�cation accuracy is obtained 
when QDA classi�er is coupled with the �rst-stage classi�er, 75% of dataset is employed for training purposes, 
and probabilistic feature vectors are fed to the second-stage classi�er. �e second best accuracy is also obtained 
in similar settings, except for the case that 65% of dataset is employed for training. It is worth mentioning that 
the accuracy of the second-stage classi�er is actually the accuracy of NeurDNet in classifying the two diseases 
and is obtained by processing the whole tremor assessment of a subject, i.e., 54 tremor recordings from 6 tasks, 
in 3 trials, and in 3 channels.

Architecture of NeurDNet. To di�erentiate between patients based on the type of their PHT, NeurDNet 
takes advantage of a two-stage classi�cation paradigm, which is designed to collectively employ the informa-
tion stored in the time-series recordings of each patient, as well as their behavioral patterns in di�erent tasks. 
Each tremor assessment consists of recordings in 3 channels from 6 tasks in 3 trials, which together add up to 
54 single-channel tremor recordings. �e �rst-stage classi�er is designed to vote for each of the single-channel 
recordings, whether they are PD or ET. When 54 votes for a tremor assessment are collected, the class labels or 
probabilities associated with each class are fed to the second-stage classi�er. We believe that the two stage clas-
si�cation paradigm enables us to extract the underlying and discriminating patterns of tremor signals as well as 
the discriminating behavioral patterns of patients in case of performing di�erent tasks.

�e �rst-stage classi�er takes advantage of convolutional neural architectures to process the spectrogram 
representations of the single-channel recordings. As shown in Fig. 3a, 2 convolutional layers followed by 3 dense 
layers build up the �rst-stage classi�er. �e details of the convolutional layers are given in the �gure. �e �rst 
dense layer employs ReLu activation functions and the second one employs Leaky–ReLu with the parameter of 
0.1 as its activation function. A crucially important and novel characteristic of the designed �rst-stage classi�er 
is employing shortcut bits for the second dense layer to introduce the origin of the input signal to the network. 
In other words, along with the spectrogram of a tremor signal, a binary vector of 6 bits is directly concatenated 
with the output of the �rst dense layer to form the input to the second dense layer. �is vector encodes each 
clinical task with a binary vector and provides the network with extra information to conclude the label of a 
tremor signal. To train the network, the mean so�max cross entropy between the output of network and the true 
labels is minimized by employing Adam Optimizer with the learning rate of 0.0001. Performance monitoring 
over the validation set revealed that 44 epochs of training reach an optimal point in the learning curve and thus, 
we stop the training process a�er 44 epochs. �e maximum accuracy achieved only on the �rst-stage classi�er 
is 75.55% over the validation set. It is worth noting that it is good practice to evaluate the framework only when 
the development phase is �nalized and the whole processing framework ( NeurDNet ) is ready to be assessed 
on the test set. As such, for the �rst-stage classi�er there is no choice other than reporting its performance over 
the validation set.

�e second-stage classi�er, on the other hand, is developed based on classical classi�cation techniques and the 
maximum accuracy of 95.55% is achieved when Quadratic Discriminant Analysis (QDA) technique is applied 
on the outputs of the �rst-stage classi�er. As shown in Fig. 3b, the votes of the �rst-stage classi�er for one tremor 
assessment (54 votes for each tremor assessment) are collected in terms of probabilities for each class and a feature 
vector of length 54 is formed to train/evaluate the QDA classi�er. To classify an unlabeled tremor assessment, 
the 54 features associated with it are derived to form the feature vector f  . �e classi�cation is based on the prior 
probability of the classes given the feature vector, i.e., p(y = class|f ) , as such, according to the Bayes’ theorem, 
the posterior probability of p(f |y) needs to be calculated. In QDA classi�er, the posterior probability is modeled 
as a multivariate Gaussian distribution, and thus, a likelihood ratio for the two classes given the feature vector 
and the information from training samples is calculated as

where µ and � respectively represent the mean and covariance matrix of features for the PD and ET classes.

Results
In this section, the NeurDNet framework is evaluated based on several di�erent test paradigms and the results 
are presented. As thoroughly discussed in “Methods” section, the best classi�cation accuracy of NeurDNet is 
achieved when a CNN architecture, as shown in Fig. 3a, is used as the �rst-stage classi�er and the outputs of 
the CNN model for each tremor assessment are fed to a quadratic discriminant analysis (QDA) model as the 
second-stage classi�er, as shown in Fig. 3b. Each tremor assessment constitutes of 54 single-channel tremor sig-
nals and the role of the �rst-stage classi�er is to classify each of these signals into PD or ET. �en, the collection 
of 54 predictions is fed to the QDA classi�er as a feature vector, and the �nal vote for each tremor assessment is 
obtained by the second-stage classi�er. It should be noted that the best classi�cation accuracy, which according to 
Table 2 is 95.55% , is achieved when the training/test ratio of 3 : 1 ( 75% of data is reserved for training) is followed.

�e results presented in Table 2 clearly suggest that the maximum classi�cation accuracy is achieved when 
QDA classi�er with probabilistic features are employed and the whole system is trained over 75% of the dataset. 
In addition, it is worth highlighting that the consistency of results for di�erent training/test ratios is also an 
important measure for robustness of a framework and reveals the capability of the NeurDNet framework in gen-
eralizing over the underlying patterns of the studied phenomenon. Based on this argument, we can also nominate 
the Naive Bayes classi�er as a successful classi�cation method to be coupled with the �rst-stage classi�er. �e 

(1)Likelihood ratio =

√
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consistency of results for the NB classi�er with probabilistic features across di�erent training/test ratios, even 
for the minimum value of 25% for training ( 75% for evaluation), reveals the superior capability of this classi�er 
in grasping the overall distribution of features for the two PD and ET classes. �e observed behaviour of the 
NB classi�er in this work is also consistent with its renowned capability in extracting strong classi�cation rules 
based on minimum amount of training data.

To statistically compare the performance of NeurDNet across di�erent scenarios, for each train/test ratio, we 
have performed a one-way analysis of variance (ANOVA) on the classi�cation accuracy of the 30 random states 
obtained through di�erent second-stage classi�ers and for probabilistic/binary features. In other words, for each 
train/test ratio, the results of 28 scenarios (14 classi�ers × 2 set of probabilistic/binary features) are statistically 
compared with each other through the ANOVA test. It is worth noting that prior to applying the ANOVA test, 
the normality of the obtained accuracies for each scenario is veri�ed through Lilliefors test of  normality59 with 
the con�dence level of 5% . A�erward, the results are interpreted based on 95% con�dence criteria by multiple 
comparison plots, as shown in Fig. 4. It is worth highlighting that in the comparisons plotted in Fig. 4, the 
circle denotes the average of classi�cation accuracies in each scenario, and the lines denote the range for which 
the con�dence interval is de�ned. In other words, if two cases have overlapping lines, it is understood that the 
classi�cation accuracies for the two cases are not statistically ( 95% con�dence) di�erent. �e opposite of this 
statement also holds for non-overlapping lines, which indicates statistically di�erent accuracies for two sce-
narios. It is worth highlighting that in the multiple comparison plots shown in Fig. 4, the vertical axis denotes 
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Figure 4.  Results of the multiple comparison tests for the classi�cation accuracy of NeurDNet across di�erent 
scenarios. �e term “Prob” in the vertical axis refers to the probabilistic features extracted from the �rst-
stage classi�er. �e vertical axis represents di�erent testing scenarios and the horizontal one represents the 
classi�cation accuracy. Also note that the circles denote the mean classi�cation accuracy and the lines de�ne 
the range of the 95% con�dence interval. Please note that in all of the plots, the performance of Prob QDA (in 
blue) is compared with other scenarios. Any overlap between the lines of two scenarios corroborates that the 
performance of NeurDNet is not signi�cantly altered by changing one hyper-parameter to another. �e plots 
include signi�cance tests for [portion of test set—patients’ visits accounted]: (a) 25%—all visits; (b) 35%—all 
visits; (c) 25%—�rst visits; (d) 35%—�rst visits.
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the 28 di�erent evaluation scenarios, while the horizontal axis represents the classi�cation accuracy. As can be 
understood from Fig. 4a,b, the �rst-stage classi�er coupled with the QDA classi�er and with probabilistic fea-
tures o�ers statistically signi�cant better results compared to its counterparts, when 25% and 35% of the dataset 
populate the test set, respectively.

To further investigate the performance of NeurDNet , we derived the confusion matrix and the receiver operat-
ing characteristics (ROC) curve for the winning frameworks of NeurDNet . ROC curve helps us understand the 
diagnostic capability of a binary classi�er by measuring the sensitivity and speci�city of classi�cation for di�erent 
thresholds of distinguishing the two diseases. To de�ne the meaning of sensitivity and speci�city in this context, 
we �rst need to de�ne the terms of “positive” and “negative” diagnosis. Basically, the term “negative” stands for 
healthy diagnosis of an individual and the term “positive” stands for the opposite. However, as in this work we are 
not dealing with a healthy/patient problem and our goal is to distinguish between the two diseases, we rede�ne 
the terms “positive” and “negative” as being classi�ed as PD and ET, respectively. �us, the sensitivity (speci�c-
ity) of NeurDNet is the ratio of the correct PD (ET) classi�cations over the total number of PD (ET) cases. ROC 
curve illustrates sensitivity against (1 − specificity) and helps physicians to choose a proper threshold to attain 
a certain degree of sensitivity or speci�city. In addition to determining the classi�cation threshold, another 
important classi�cation measure that is derived based on the ROC curve is the “area under the curve (AUC)” 
criteria. AUC indicates how well a classi�er distinguishes two classes and its value in the range between 0.5 to 1 
re�ects the performance of the classi�er from “no discrimination capacity” to “perfect discrimination capacity”, 
respectively. To obtain the confusion matrix and ROC curves for NeurDNet , the two most accurate classi�cation 
paradigms in Table 2 are selected and the results are shown in Fig. 5a,b. It is worth mentioning that to generate the 
plots in Fig. 5, we need to analyze the output of a complete classi�cation pipeline with �xed training and testing 
set, however, the reported values in Table 2 are obtained by averaging over 30 trials, thus the mean value is not 
necessarily associated with any of the 30 random runs. To generate the plots in Fig. 5a,b, we used the training 
set that leads to maximum classi�cation accuracy among the 30 random formations of the train and test sets.

Since some of the patients a�ected by either PD or ET show bilateral PHT, and due to the need imposed by the 
data collection protocol that the hands showing PHT must be evaluated and recorded, this dataset includes both 
unilateral and bilateral recordings from di�erent patients. It is worth discussing that the existence of unilateral 
and bilateral recordings in one dataset might raise some questions on the leakage of information from training 
set to test set, i.e., in bilateral cases, splitting the recordings of two hands into the training set and the test set. 
However, we would like to highlight the fact that in this work, the formation of train and test sets is solely based 
on the patients, rendering zero chance for the leakage of information from training set to the test set. For the 
bilateral cases that exist in the test set, the �nal decision for each patient is obtained by performing a logical 
AND on the decision of the NeurDNet on the tremor assessments from the two hands, meaning that the patient 
is correctly classi�ed if and only if the two decisions are correct.

Explainability of NeurDNet. Generally speaking, the capability to identify and explain the internal pro-
cess that leads to a certain outcome is referred to as the explainability of machine learning models (XAI), which 
plays an important role in approving the applicability of model and reliability of its results. When it comes to 
employing deep neural networks in biomedical domain, due to the sensitivity of application and the risk of fatal 
errors, the explainability of the model becomes of much greater importance. In this subsection, we investigate 
the explainability of NeurDNet by extracting clues in the tremor signals that are important and noticeable in 
concluding the label of an unseen tremor assessment. In other words, we discover the regions in the spectrotem-
poral representation of tremor recordings, which motivate the network to select one class over the other. To this 
aim, the “Gradient-weighted Class Activation Mapping (Grad-CAM)60” methodology is employed to discover 
the parts of the input spectrogram to the CNN, which contribute to assignment of a label to the input. To obtain 
the Grad-CAM representations of NeurDNet , as shown in Fig. 6, all the output nodes of the �rst-stage classi�er 
are set equal to zero except the one that corresponds to the correct label. �en, the gradients of this output are 
backpropagated to the network and a heatmap mask for the input signal is obtained. �e mask assigns a weight 
to each pixel of the input signal to determine its importance in concluding the �nal label. To implement this 
process, we have employed the “keras-visualizations”  library61 in Python language.

(a) (b)

Figure 5.  Confusion matrix and the ROC diagrams associated with the 2 winning frameworks for PD/ET 
classi�cation. Please note that AUC stands for area under curve. Two winning paradigms of NeurDNet are 
when QDA classi�ers is coupled with the �rst-stage classi�er and (a) 75% and (b) 65% of the dataset is used for 
training process, respectively.
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Although the Grad-CAM plots in Fig. 6 clearly represent the important regions for NeurDNet to distinguish 
PD from ET and provide some interpretable insights on the valuable spectral contents for each of the two diseases, 
we need to statistically validate our observations over the whole dataset and investigate if the observed di�er-
ences are meaningfully valid for all of the samples in the dataset. To this aim, we statistically and in a pixel-wise 
fashion compare the heatmaps for the two classes to check if any pixel takes signi�cantly di�erent values for the 
two classes. In this regard, �rst, we derived the Grad-CAM representation of NeurDNet for all of the PD and ET 
tremor assessments that are correctly classi�ed. Due to the large population of instances for each group (3788 
and 2473 for ET and PD, respectively), the “ z − test ” needs to be employed to check if the mean of the Grad-
CAM analysis for each pixel and of the two groups is signi�cantly di�erent. As the z − test procedure is based 
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Figure 6.  Analysis of explainability for NeurDNet . It should be highlighted to convert the values y-axis scale to 
frequency in Hz, the values need to be multiplied by 100/256.
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on normal distribution of data, we �rst performed the D’Agostino and Pearson’s  test62 to verify the normality 
of data. Once this condition was relaxed, which was expected due to the large number of instances and insights 
from the central limit theorem, we derived the element-wise z score across the whole dataset and between the 
two groups as follows

where ḡET , ḡPD , σ
2
ET , σ

2
PD , nET , and nPD are the mean value of Grad-CAM pixel for ET group, mean value of 

Grad-CAM pixel for PD group, variance of the pixel across ET group, variance of the pixel across PD group, 
population of ET samples, and population of PD samples, respectively. Please note that z score is calculated for 
each pixel across the two groups and the p value is respectively obtained for each pixel. According to the for-
mulation of z score in Eq. (2), positive z score corresponds to higher attention of NeurDNet to ET features and 
the opposite stands for the PD group. �us, to derive the masks associated with each group, we obtain the area 
under a standard normal distribution, auc(z0) , given by

where Z ∼N(0, 1) or in other words pZ(z) =
1
2π exp(−z2/2) . For the ET group, the mask is of the same dimen-

sion as the input spectrogram and is a zero matrix, except for the pixels that auc(z) > 0.99 . Conversely, for the 
PD group, the mask is obtained by selecting the pixels for which the auc(z) < 0.01 . In fact, this process is equal 
to selecting the pixels where the Grad-CAM analysis of NeurDNet shows signi�cantly di�erent means for the 
two groups by setting α = 0.02 ( p value < 0.02 ). A�erwards, the masks are applied on the mean Grad-CAM 
representation of NeurDNet for PD and ET groups to reveal the important temporal and spectral regions for 
classi�cation of each group. �e results of this analysis are shown in Fig. 7.

�e plots in Fig. 7 clearly represent the informative regions in the spectrotemporal plots of tremor signals, 
which are insightful for the di�erentiation of Parkinsonian tremor from ET. As it is observed, PD is mainly char-
acterized by occurrence of low frequency vibrations on the hand motion, whereas ET is mainly characterized by 
high spectral activity in the hand motion signals. �e highlighted regions for each disease are also compatible 
with their physiological characteristic, where ET is known to occur in a wider spectral range than PD. It should 
be noted that the highlighted regions in the mean spectrotemporal maps of ET and PD populations in Fig. 7 do 
not imply that the spectral contents of each disease are only stored in those areas. On the contrary, the highlighted 
regions identify statistically signi�cant regions in the spectrotemporal map of signals, which provide informative 
and strong clues for the network and potentially for the physicians to discriminate the two diseases.

Analysis of the dominant features of the second-stage classifier. Similar to the previous subsec-
tion where we investigated the learned features of the �rst-stage classi�er through the Grad-CAM analysis, in 
this subsection, we identify the importance of task-speci�c features to classify the tremor assessments in the sec-
ond-stage classi�er. �e results presented in this subsection are obtained by analyzing the winning architecture 
of NeurDNet , which is trained over 75% of the dataset and employs probabilistic features with QDA classi�er. 
To identify the role of each feature in forming the �nal decision of NeurDNet for an input signal, a sequential 
and iterative feature selection approach, referred to as the wrapper method, is employed. In this technique, the 
classi�cation accuracy for di�erent subsets of features is calculated and the subset with the highest classi�cation 
accuracy contains the most in�uential features. In addition, the wrapper method does not utilize similarity or 
scoring criteria to compare the features with labels; instead, the dominant features are selected based on their 
e�ect in the �nal classi�cation accuracy. In this work, to discover the e�cacy of each feature, the best feature 

(2)
z =

ḡET − ḡPD
√

σ
2
ET

nET
+

σ
2
PD

nPD

,

(3)auc(z0) =

∫ z0

− inf

pZ(z)dz,

Figure 7.  Results of the statistical test over the Grad-CAM analysis of NeurDNet for the two diseases. �e 
intensity of di�erent parts in the spectrogram determines the importance of the region for NeurDNet to 
conclude the class of the tremor assessment.
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through the discussed sequential process is selected, then it is removed from the pool of features, and then again 
the best feature in the pool is selected. �is process continues until all of the features are drawn from the pool 
and all of the features are sorted based on their role in forming the �nal decision of the classi�er. �e results of 
this process are shown in Fig. 8.

�e plot in Fig. 8 determines the e�cacy of each tremor assessment task in providing useful information for 
di�erentiating of PD from ET, and reveals that the features obtained from the “Rest1” and “Rest2” tasks convey 
exceptionally valuable information to the classi�er to discriminate between the two diseases. In fact, the plot 
shows the achieved classi�cation accuracy when only one of the features is utilized to form the classi�er. As we 
have a pool of 54 features for each tremor assessment, investigating the e�cacy of all possible subsets of features 
on the classi�cation accuracy of NeurDNet would have imposed high computational burdens on the development 
phase (assessment of 254 cases) and thus, we have examined the e�ect of features based on a naive assumption 
where features are considered independently.

Accuracy of the first-visit diagnosis. Another characteristic of NeurDNet , which is crucially important 
from a clinical point of view, is the accuracy of NeurDNet in classifying patients during their �rst visit to the 
clinic. As discussed earlier, the majority of patients in this study (45 out of 47 in the PD group and 31 out of 
34 in the ET group) have participated twice in the data collection phase, where there is an interval of 6 weeks 
between the two visits. Until now, the reported performances of NeurDNet are based on collectively processing 
the tremor assessments from the �rst and the second visits, which might be biased due to presence of any identi-
�able or unidenti�able role playing factor between the two visits. In other words, some factors like the familiarity 
of patients with the tasks, and the e�ect of any potentially received medication within the 6 weeks period can 
change the distribution of input data between the two visits, and may leave a positive or negative impact on the 
performance of NeurDNet . �e ability to di�erentiate the PHT caused by PD from the one caused by ET, when 
the di�erences are subtle, as early as possible in disease progress (ideally the �rst visit), can provide imperative 
assistive information for tremor management and potentially evaluating the type and severity of the condition. 
In addition, the response of patients to tremor management strategies (e.g., medication) should be considered 
as part of this di�erentiation. �e results of this analysis are provided in Table 3. �e presented results con�rm 
that the NeurDNet framework achieves a high classi�cation accuracy over the tremor assessments recorded 
during the �rst visit of patients to the clinic. As it is understood from the results, the maximum classi�cation 
accuracy of 93.05% is achieved when QDA classi�er is coupled with the �rst-stage classi�er and 25% of dataset is 
reserved for evaluation. It is worth reiterating that the formation of the training and evaluation sets is based on 
the subjects and all of the tremor assessments from one subject contribute only to one set, even if the patient has 
revisited the clinic in 6 weeks. Another point with regards to Table 3 is that the reported classi�cation accuracies 
are obtained via a Monte Carlo simulation technique, i.e., averaging the classi�cation accuracy of NeurDNet 
over 30 random formations of the training/evaluation sets. By revisiting the plots in Fig. 4c,d, it is understood 
that despite the fact that employing the QDA classi�er with probabilistic features as the second-stage classi�er 
partially beats all of the other scenarios, it still o�ers the best mean classi�cation accuracy among others, which 
approves the superior performance of NeurDNet, when QDA classi�er is coupled with the �rst-stage classi�er 
through probabilistic features.

Discussion
One important aspect of the growing literature on the problem of PD-ET classi�cation is the role that di�erent 
machine learning techniques play in structuring the processing pipelines. Broadly speaking, the utilization of 
DL techniques can be seen as a major game changing aspect of the research work published on this topic. �e 
works based on classical ML (non-DL) techniques mainly includes a feature extraction/generation block that 
requires researchers to come up with informative features to discriminate PD from ET. Engineering such features 

Figure 8.  Results of sequential feature selection for the features that are fed to the second-stage classi�er. 
Please note that these results are obtained through a 5-fold cross-validation process, when 75% of dataset is 
used for training. It should be highlighted that in this analysis, the probabilistic features due to their superior 
performance over binary features are employed, and the label of each feature is formed as [TrialNumber-
TaskName-RecordingChannel].
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o�en requires some assumptions on the characteristics of the two diseases, which may limit the generalization 
of the model. Despite the drawbacks mentioned with the feature generation phase, such techniques require less 
amount of training/evaluation data, which is a crucially important feature for medical datasets with limited 
sizes. On the other hand, the DL-based methods bypass the manual feature extraction/generation phase by 
automatically inferring discriminating clues in the input data through observing numerous training examples. 
Although this approach requires extensive datasets to train and evaluate the model, they o�en lead to higher 
classi�cation accuracy and better generalization over the diverse range of characteristics in and among patients. 
�is comparison can also be partially observed in NeurDNet, where the �rst-stage classi�er takes advantage 
of a DL-based pipeline and the second-stage classi�er is a classical ML technique (QDA classi�er). In fact, to 
develop the �rst-stage classi�er, an abundance of training samples (250 tremor assessments × 54 tremor signals 
= 13, 500) is available, which enables us to employ DL methods. However, for the second-stage classi�er, since 
only 81 patients are studied, a classical ML technique is utilized. It is worth highlighting that both of the clas-
si�ers in the two stages are properly backed with statistical signi�cance tests and validation results for their 
generalization over the problem in hand.

Next, we provide detailed discussions on the novelties of the NeurDNet , comparisons with prior works, and 
its advantages and disadvantages:

• Novel features of the NeurDNet framework:

– NeurDNet produces a novel and accurate machine intelligence pipeline designed on a particular collec-
tion of hand tremor to conduct a di�erential diagnosis between PD and ET.

– Using the state-of-the-art Grad-CAM analysis, this paper, for the �rst time, highlights segments of the 
spectrotemporal behavior of hand tremors, which have the most discriminative power for di�erentiating 
PD from ET using advanced recurrent neural network approaches. �is makes the proposed information 
processing pipeline an explainable model (under XAI), which is the new generation of machine intel-
ligence, tangential to the conventional black-box implementation, which does not provide any insight 
on the decisions made and was susceptible to biases in the datasets. �is major novelty of the proposed 
NeurDNet is highlighted as the comprehensive study and analysis over the explainability of network and 
the corresponding statistical analysis conducted in the paper over the clues in the input signals leading 
to certain labels (PD or ET). �e results of this analysis not only provide clinically viable information 
on the clues to discriminate PD from ET, but also relax the concerns on learning the structural and 
unwanted biases in the input data that can take part in discriminating the two diseases.

– NeurDNet introduces a sequential processing pipeline based on a CNN core and a QDA classi�er, which 
o�ers a multi-stage classi�cation paradigm for di�erentiation of PD from ET. �is unique architecture 
enhances the reliability of the system in determining if the unseen patients are PD or ET by analyzing 
the dynamics of hand in a hierarchical format.

– �e processing framework of NeurDNet is intelligently designed to maximize the amount of information 
exploited from the dataset by not only processing the signals representing the dynamics of hand motion 
but also incorporating the task labels to further assist the framework in interpreting the signals. �is 
novelty in the architecture of the neural network catalyzes the classi�cation accuracy of NeurDNet.

– �e NeurDNet framework is developed over a substantially large dataset of hand dynamics containing 
87.5 h of PHT recordings from 81 PD and ET patients. In this unique dataset, the dynamics of hand 
motion are examined in 7 di�erent scenarios, which further increase the amount of information obtained 
from limb movement in patients with PD or ET.

• Comparison with prior works: By revisiting the list of recent research works with potentially relevant objec-
tives as NeurDNet in Table 1, it is readily understood that NeurDNet outperforms the state-of-the-art 
accuracy in discriminating PD from ET. It also o�ers a novel machine intelligence pipeline which can be 
interpreted from the clinical point of view. Considering the predecessors of NeurDNet with the highest clas-
si�cation accuracies (before the invention of NeurDNET in this paper), i.e.,  References15,49,52–54,63, it is under-
stood that NeurDNet not only excels the classi�cation accuracy of the research that is based on accelerometer 
data but also outperforms the one based on Electromyogram (EMG) signals recorded from a tremorous hand 
(which was supposed to have richer neurophysiological content in the signal). To be more speci�c, here we 
provide an itemized comparison with recent research publications, leading the state-of-the-art classi�cation 
accuracy for discriminating PD from ET.

– �e work by Di et al.15 has collected accelerometer data and o�ers a classi�cation accuracy of 92% . �is 
work uses a tremor stability index as the feature for classi�cation of PD from ET, which is derived by 
performing spectral analysis over a signal of length 100 s. �rough their experiments, a certain threshold 
value for the stability index is determined for classi�cation. On the contrary, the classi�cation strategy of 
the NeurDNet assigns a probability to the �nal label of an unseen patient by analyzing the acceleration 
of hand motion in di�erent axes, di�erent tasks, and di�erent trials, which o�ers a higher classi�cation 
accuracy and a much more robust diagnostic framework. In fact, the proposed strategy enhances the 
reliability of the system in classifying patients and grants it a great degree of generalization over the 
characteristics of hand tremor. Besides the fact that our proposed NeurDNet framework achieves a 
higher classi�cation accuracy, we believe that our analysis over 87.5 h of tremor recordings (compared 
to 2.527 h in  reference15) achieves a better generalization over the wide and overlapping range of features 
in hand tremor among PD and ET patients, and provides a more robust classi�cation paradigm.
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– Another counterpart to the NeurDNet that achieved the state-of-the-art classi�cation accuracy of 94%
49 employs a combination of EMG recordings from tremorous hand and a set of physiological features 
collected from 54 patients and introduces a classi�cation framework based on decision trees. Comparing 
the devices, it can be mentioned that EMG studies are typically more complex, requires more rigorous 
calibration, and is more expensive, all of which would a�ect the scalability of the machine intelligence 
in clinics, especially for those who are not sophisticated. Our proposed NeurDNet framework not only 
has recruited more number of patients for its analysis, which leads to better generalization over the inter 
and intra-personal variance of features in the hand tremor but also only employs an accelerometer to 
collect the required signals, which is a more cost-e�ective, more scalable, and portable solution, and 
requires a very each calibration process when compared with EMG studies.

– Technically speaking, the framework proposed by Locatelli et al.52 is developed based on several features 
extracted from the Power Spectral Density (PSD) of the tremor signals by �tting a bell-shaped function 
to their PSD. However, one of the main sources of ambiguity in di�erentiating between PD and ET is the 
overlap in their spectral contents. Moreover, it is known that fatigue in the tremorous muscles and the 
emotional state of the patient can potentially in�uence the characteristics (spectral contents) of tremor. 
On the other hand, the decisions in NeurDNet are derived by evaluating the patient in 6 tasks (di�erent 
postures) and 3 trials (e�ect of fatigue), and fusing the information extracted from the spectrograms of 
tremor signals with the type of tasks from which the signals are recorded. In other words, NeurDNet 
can potentially o�er better generalization and robustness in decision making by incorporating several 
sources of information. Moreover, the framework proposed in  reference52 is developed based on a data-
set recorded from 24 patients including 7 ET cases and 17 PD patients. NeurDNet, on the other hand, 
employs a dataset of 81 patients for training and evaluation purposes. �e generalization of an AI-based 
model over a problem is proportionally tied to the size of the dataset, and thus, a better generalization 
is expected for NeurDNet. In addition, the employed dataset in  reference52 results in an imbalance 
of data for the PD and ET classes. More speci�cally, the proportion of PD and ET patients to the size 
of dataset in this work is 58% and 42% respectively, while in  reference52, the proportions are 71% and 
29% . �e imbalance of the dataset, especially towards the ET group, can potentially introduce biases to 
the system, which reduces the reliability of the decisions. To be more speci�c, the performance of the 
framework introduced in the  reference52 is measured based on 5-fold cross validation, which according 
to the number of ET patients (7 cases), means that in 2, folds there are 2 ET patients in the test set, and 
in 3 folds, there is only 1 ET patient in the test set. Based on this argument, we believe that the reported 
accuracy of the framework in  reference52 ( 95.8% ), although numerically comparable with the one for 
NeurDNet, falls far behind NeurDNet in terms of reliability and generalization.

– �e work by Moon et al.53 presents a set of processing techniques to address the problem of PD-ET clas-
si�cation based on several hand-cra�ed features extracted from motion signals recorded from patients 
with PD and ET. Although the size of the employed dataset is much larger than the one for NeurDNet 
(567 patients compared to 81 patients), there is a tremendous imbalance between the PD cases ( n = 524 ) 
and ET cases ( n = 43 ) in the article. To tackle this imbalance, the authors have employed a synthetic 
minority oversampling technique (SMOTE), which produces synthetic data for the class with fewer 
instances (ET class in this paper). Since the synthetic samples will represent the same characteristics 
of the original ET samples, it is doubtful there is any added value in terms of generalization over the 
characteristics of the essential tremor. In fact, we believe that using synthesized samples is somehow 
equivalent to leakage of information from the training set into the test set, which eventually may result 
in providing misleading information about performance for the model. Besides, the proposed methodol-
ogy in  reference53 requires several inertial units to be mounted on the body of patients, which requires 
medical-grade acquisition devices. However, NeurDNet is developed based on inertial measurements 
from on accelerometer mounted on the dorsum of hand. In other words, NeurDNet o�ers a more 
cost-e�ective solution, which paves the way for utilization of wearable and commercial sensors for 
the purpose of diagnosis. Finally, it is worth highlighting that the overall classi�cation accuracy of the 
NeurDNet ( 95.55% ) is higher than the best accuracy reported in  reference53 ( 92%).

– �e work by Duque et al.54 introduces a processing framework to di�erentiate between PD from ET 
based spectral features manually extracted from accelerometer data. Spectral-based features are prone 
to large variations in and across di�erent patients due to in�uencing factors such as fatigue in tremorous 
muscles, and the emotional state of the patient. In comparison, NeurDNet obtains a �nal decision on 
a patient by processing 54 spectrograms (temporal and spectral features) of tremor signals derived by 
evaluating the patient in 3 trials (di�erent levels of fatigue), 6 tasks (di�erent postures), and 3 di�erent 
axes. Moreover, although the data collection in  reference54 is performed by the built-in accelerometer of 
a mobile phone, which can potentially o�er a cost-e�ective and accessible solution, there are potential 
issues regarding generalization of the introduced model over the wide range of characteristics in Par-
kinsonian and Essential tremor. To be more speci�c, by considering the tabulated performance results 
in this article, a huge variation between the average performance and the best performance is observed 
( ≥ 20% ), which does not assure a robust and reliable generalization over the training set. Besides, the 
best classi�cation accuracy between PD and ET in this work is 84.4% , while for NeurDNet, it is 95.55%.

– Although the work by Nanda et al.63 aims at discriminating between PD from ET based on acceler-
ometer signals, the approach employed is fundamentally di�erent from NeurDNet, and we do not 
think that these two approaches can be considered under the same category. In fact, the dataset of this 
work includes accelerometer recordings from only 2 patients (1 PD and 1 ET), and the classi�cation is 
actually the process of learning from some segments, and labeling some other segments of the signals. 
However, the NeurDNet is developed to classify di�erent patients into the PD and ET classes. Tech-
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nically speaking,  reference63 employs Wavelet transformations to decompose the tremor signals into 
several spectra-temporal components for subsequent feature engineering processing blocks. Since the 
sampling frequency of the signals in  reference63 is 1000 Hz, the components extracted through Wavelet 
transforms are speci�c to certain frequency bands, i.e., [500–250] Hz, [250–125] Hz, [125–62.5] Hz, . . . 
. Decomposition components in these coarse ranges might not be able to fully detect and distinguish 
the speci�c spectral contents of PD and ET. In addition, the analysis of explainability over the wavelet 
components might not fully correspond to the physiological background of PD and ET.

• Advantages and disadvantages of NeurDNet : Besides the fact that our proposed NeurDNet framework 
achieves a higher classi�cation accuracy, we believe that our analysis over 87.5 h of tremor recordings (com-
pared to 2.527 h in  reference15) achieves a better generalization over the wide and overlapping range of 
features in hand tremor among PD and ET patients, and provides a more robust classi�cation paradigm. 
Also, our employed dataset examines the dynamics of hand in 6 di�erent static positions, which further 
reveals the behavioral patterns of the hand tremor and minimizes the risk of over�tting in the framework. 
In addition, the NeurDNet is grounded on analyzing the accelerometer signals, representing the dynamics 
of hand motion in di�erent axes, which compared to a considerable number of research works focused on 
di�erentiating PD from ET by means of EMG signals, o�ers a more cost-e�ective, accessible, and portable 
solution. It is worth highlighting that although the proposed NeurDNet requires a larger data collection from 
each patient, which might be tedious or boring for some patients, given the importance of correct diagnosis 
and the consequences associated with misdiagnosis of patients, we believe that NeurDNet is a more robust 
and reliable classi�cation paradigm for the PD vs. ET problem. Above all, the NeurDNet , for the �rst time 
in this domain, presents a unique and comprehensive study of the explainability of the classi�cation model, 
which is supported by a thorough statistical analysis of the results. �is important feature, not only provides 
viable and statistically signi�cant information for clinicians to discriminate PD from ET but also relaxes the 
concerns on the curse of over�tting to biases in the analyzed signals.

As a �nal note to our discussion, it is worth comparing the NeurDNet with our previously developed PHTNet 
 framework25. Below, we provide a point-by-point comparison between the two works:

• Rationale: It should be noted that the objectives and rationales for the two works are completely di�erent 
and distinct from each other. �e PHTNet is a tremor estimation designed to be used for mechanical com-
pensation using robotic rehabilitation systems; however, the submitted NeurDNet is a diagnosis framework 
designed to conduct di�erentiative diagnosis between PD and ET. �e output of the PHTNet is “a signal 
representing the involuntary component of hand motion” in patients with pathological hand tremors, while 
the output of the NeurDNet is a diagnostic label denoting whether the studied patient has developed Parkin-
sonian tremor or ET. �e working hypothesis of the PHTNET was that using denoising advanced machine 
learning approaches, the future episodes of hand tremors can be estimated and separated from the voluntary 
(though high-frequency) component of hand motion, minimizing the time latency, which is a major concern 
when robotic systems are used to compensate for the hand tremor. In the PHTNet, the data gathered from 
two groups of patients are collectively processed to generate a Recurrent Neural Network (RNN) approach as 
an intelligent �lter. �e working hypothesis of the submitted NeurDNet is that machine learning approaches 
can be used to di�erentiate PD from ET when the tremor is collected from a particular systematic study 
protocol stimulating di�erent synergistic muscle contraction, as suggested in this paper. �e NeurDNet is 
a diagnostic procedure, a data-driven framework based on Convolutional Neural Networks (CNN) to dis-
criminate between the two groups of PD and ET patients. In other words, in the submitted work, PD and ET 
patients are compared with respect to each other to highlight their di�erences.

• Datasets, device, and patients: Both NeurDNet and PHTNET are under the umbrella of a very larger clinical 
study and project; thus, the two papers partially share the dataset from a larger poll of patients collected by 
the very accurate technology available at Prof. Jog’s clinic. It should also be noted that the larger study has 
other angles and clinical measurements that have not been included/studied in these two works.

• Analysis paradigms: As pointed out earlier, PHTNet addresses the problem of estimating and predicting the 
involuntary component of hand motion in patients with PD and ET by means of RNNs as part of our robotic 
project, which aims to cancel out hand tremor using active robots which require very low latency of tremor 
estimation. NeurDNet , on the other hand, proposes a hybrid architecture based on CNNs and Quadratic 
Discriminant Analysis (QDA) to classify patients into PD or ET and conduct an intelligent di�erentiation. 
It is worth highlighting that not only the processing (analysis) paradigm of the two studies are completely 
di�erent but also nature, type, implementation, validation, and outputs are di�erent.

Data availability
�e datasets generated and/or analyzed during the current study are not publicly available due to the con�den-
tiality restrictions imposed by the approved ethics of study but are available from the corresponding author on 
reasonable request.
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