
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104357, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Deep-Learned Embedding Technique
for Categorical Features Encoding

MWAMBA KASONGO DAHOUDA, INWHEE JOE
Department of Computer Science, Hanyang University, Seoul 04763, South Korea

Corresponding author: Inwhee Joe (iwjoe@hanyang.ac.kr)

This work was supported by the Institute for Information and Communication Technology promotion (IITP) grant funded by the Korea

government (MSIP) (Development of the technology to automate the recommendations for big data analytic models that define data

characteristics and problems), under Grant 2020-0-00107.

ABSTRACT Many machine learning algorithms and almost all deep learning architectures are incapable

of processing plain texts in their raw form. This means that their input to the algorithms must be numerical

in order to solve classification or regression problems. Hence, it is necessary to encode these categorical

variables into numerical values using encoding techniques. Categorical features are common and often

of high cardinality. One-hot encoding in such circumstances leads to very high dimensional vector

representations, raising memory and computability concerns for machine learning models. This paper

proposes a deep-learned embedding technique for categorical features encoding on categorical datasets.

Our technique is a distributed representation for categorical features where each category is mapped to

a distinct vector, and the properties of the vector are learned while training a neural network. First,

we create a data vocabulary that includes only categorical data, and then we use word tokenization to

make each categorical data a single word. After that, feature learning is introduced to map all of the

categorical data from the vocabulary to word vectors. Three different datasets provided by the University

of California Irvine (UCI) are used for training. The experimental results show that the proposed deep-

learned embedding technique for categorical data provides a higher F1 score of 89% than 71% of one-

hot encoding, in the case of the Long short-term memory (LSTM) model. Moreover, the deep-learned

embedding technique uses less memory and generates fewer features than one-hot encoding.

INDEX TERMS Data Preprocessing, Categorical Variables, Natural Language Processing, Machine

Learning.

I. INTRODUCTION

M
ANY machine learning algorithms require that their

input is numerical; therefore, categorical features

must be transformed into numerical features before fitting

them into an algorithm [1]. Natural language processing

(NLP) is a field of artificial intelligence that studies the

interactions between computers and human languages, in

particular how to program computers to process and analyze

large amounts of natural language data. Many modern

NLP systems and approaches regard words as atomic

units, with no concept of word similarity since indices

in a vocabulary are used to represent them [2]. Text

classification is the problem of assigning categories to

text data according to its content. Categorical data are

commonplace in many data science and machine learning

problems but are usually more challenging to deal with than

numerical data. Preprocessing categorical variables becomes

important since most machine learning models only consider

numerical variables; therefore, we must transform these

categorical variables to numbers in order for the model

to comprehend and retrieve useful information. There are

many ways to encode categorical variables for modeling,

and one of the most commonly used encoding techniques

[3] is one-hot encoding. This is where each level of the

categorical variable is compared to a specified reference

level, especially when there is no natural ordering between

the categories, e.g., a feature ‘City’ with names of cities

such as ‘Seoul’,‘Paris’, ‘Kinshasa’. Categorical features are

prevalent and frequently have a high degree of cardinality.

Some categorical encoding approaches have been studied

in the statistical-learning field in [4]. In [5], the issue of

encoding in the presence of errors and how to encode

categories that are not present in the training set have been

ignored. However, one-hot encoding produces extremely

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104357, IEEE Access

high-dimensional vector representations in such situations,

posing memory and computability issues for machine

learning models. Furthermore, the word representations

produced by one-hot encoding or hashing are sparse, high-

dimensional, and hardcoded [6].

A good understanding of data is essential for accurate

analysis. Before proceeding to the actual analysis, the data is

processed to aid algorithms and to improve efficiency. There

are other ways of classifying variables that are common

in statistics as described in Fig. 1. On one side, we have

the qualitative variables which are descriptive/categorical;

many statistics such as mean and standard deviation, do

not make sense to compute with qualitative variables, and

on the other side we have the quantitative variables that

have numeric meaning; therefore, statistics like means and

standard deviations make sense.

FIGURE 1. Variables: Quantitative (Numerical) vs Qualitative (Categorical).

Data variables generally fall into one of the four

categories: nominal scale, ordinal scale, discrete, and

continuous [7]. In this study we are going to focus on two

of them, thus using the deep-learned embedding technique,

we can easily encode nominal or ordinal variables.

FIGURE 2. Categorical data: Nominal vs ordinal scale.

Categorical data can be divided into two groups, as

described in Fig. 2, which are nominal (no particular order)

and ordinal (with some particular order) [8].
Typical examples of nominal variables include genotype,

blood type, zip code, gender, race, eye color.
A nominal scale describes a variable with categories that

do not have a natural order or ranking. You can encode

nominal variables with numbers if you want but the order

is arbitrary and any calculations such as computing a mean,

median, or standard deviation would be meaningless.
An ordinal scale is one where the order matters but not

the difference between values. Typical examples of ordinal

variables include satisfaction rating (“extremely dislike”,

“dislike”, “neutral”, “like”, “extremely like”) [9].

A. CATEGORICAL VARIABLE ENCODING TECHNIQUES

1) Label Encoding or Ordinal Encoding

We use this categorical data encoding technique when the

categorical feature is ordinal. In this case, retaining the order

is important. Hence, encoding should reflect the sequence. In

Label encoding, each label is converted into an integer value.

For example, create a variable that contains the categories

representing the education qualification of a person [10].

2) One-hot Encoding

We use this categorical data encoding technique when the

features are nominal (do not have any order). In one-hot

encoding, for each level of a categorical feature, we create

a new variable, and each category is mapped with a binary

variable containing either 0 or 1. Here, 0 represents the

absence, and 1 represents the presence of that category [10].

3) Dummy Encoding

Dummy coding scheme is similar to one-hot encoding. This

categorical data encoding method transforms the categorical

variable into a set of binary variables (also known as dummy

variables). In the case of one-hot encoding, for N categories

in a variable, it uses N binary variables.

4) Effect Encoding

This encoding technique is also known as Deviation

Encoding or Sum Encoding. Effect encoding is almost

similar to dummy encoding, with a little difference. In

dummy coding, we use 0 and 1 to represent the data but

in effect encoding, we use three values i.e. 1, 0, and -1.

5) Hash Encoder

To understand Hash encoding it is necessary to know about

hashing. Hashing is the transformation of arbitrary size input

in the form of a fixed-size value. We use hashing algorithms

to perform hashing operations i.e to generate the hash value

of an input.

6) Binary Encoding

Binary encoding is a combination of Hash encoding and

one-hot encoding. In this encoding scheme, the categorical

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104357, IEEE Access

feature is first converted into numerical using an ordinal

encoder. Then the numbers are transformed in the binary

number. After that binary value is split into different

columns.

7) Base N Encoding

For binary encoding, the base is 2 which means it converts

the numerical values of a category into its respective binary

form. If you want to change the base of the encoding scheme

you may use the base N encoder. In the case when categories

are more and binary encoding is not able to handle the

dimensionality then we can use a larger base such as 4 or

8.

8) Target Encoding

Target encoding is a Baysian encoding technique. In target

encoding, we calculate the mean of the target variable for

each category and replace the category variable with the

mean value. In the case of the categorical target variables,

the posterior probability of the target replaces each category.

B. ARTIFICIAL NEURAL NETWORKS

An artificial neural network (ANN) is the piece of a

computing system designed to simulate the way the

human brain analyzes and processes information. It is the

foundation of artificial intelligence (AI) and solves problems

that would prove impossible or difficult by human or

statistical standards. ANNs have self-learning capabilities

that enable them to produce better results as more data

becomes available. The neural network gains the experience

initially by training the system to correctly identify pre-

selected examples of the problem. The response of the

neural network is reviewed and the configuration of the

system is refined until the neural networks analysis of the

training data reaches a satisfactory level.

FIGURE 3. Basic artificial neural networks.

In addition to the initial training period, the neural

network also gains experience over time as it conducts

analyses on data related to the problem. Classification using

ANN is one of the most dynamic research and application

areas; and as shown in Fig. 3, ANN is widely used for

classification purposes because of its ability to generalize

and map input-output relations based on existing data [11].

Deep neural network architectures have recently gained a lot

of traction in the NLP community [12] due to their ability

to allow researchers to build and train deep neural networks,

implement vectorized neural networks [13], and identify

architecture parameters [14]. Moreover, it allows building

recurrent neural networks (RNN) and its variants (Gated

recurrent units: GRUs, Long short-term memory: LSTMs)

in a variety of NLP applications [15] such as character-level

language modeling, word segmentation [16], [17], and word

embedding [18].
Machine learning is a type of artificial intelligence (AI)

that provides computers with the ability to learn without

being explicitly programmed; it focuses on the development

of computer programs that can change when exposed to

new data. In both, regression and classification analysis,

categorical variables are widely used; however, machine

learning algorithms accept only numeric values as input.

Whenever we want to use categorical data for machine

learning purposes; the data needs to be encoded into numeric

values such that each categorical feature is represented

with a number [19]. Additionally, categorical data can be

considered as a word; therefore, it can be embedded on

the basis of word embedding techniques where each word

in a particular language is allocated to a high-dimensional

vector in word embedding models, with the geometry of the

vectors capturing semantic relationships between the words

[20]. Many researchers have investigated word embedding

[21]–[23]; and the emergence of artificial neural networks

in natural language processing is mostly based on word

embedding [24], when compared to one-hot encoding, this

method brings words with similar meanings closer together

in word space, improving word continuity.
In this paper, a deep-learned embedding technique for

categorical data encoding on a categorical dataset is

presented. Our technique is based on word embedding which

is also a part of a deep learning model. Here, we consider

each categorical variable as a single word, or as a token

so that the distributed word representations can be applied.

Therefore, the idea is to represent words as feature vectors or

word vectors; and then each entry in vector stands for one

hidden feature inside the word meaning. Using the Keras

model, we build our model with an embedding layer that

can be used for neural networks on text data. We have used

three different datasets from the University of California

Irvine (UCI) for experimentation.
The results show that the data encoded with the

embedding technique give the highest accuracy as compared

to the other techniques and can support nominal and

ordinal categorical variables, and also our technique is used

where there is vector similarity or not. We compare our

technique with one-hot encoding; and finally, our deep-

learned embedding technique generated fewer features and

used less memory than one-hot encoding. Our contributions

can be summarized as follows:

• We propose a new technique, deep-learned embedding,

to encode categorical variables that can be ordinal or

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104357, IEEE Access

nominal. It encodes all words, regardless of how similar

they are.

• We create a corpus by separating categorical data

from numerical to precisely have the vocabulary, and

then we embed all the categorical data to words

vectors at a time, which makes the deep-learned

embedding technique achieve high performance with

low computation cost and less memory usage.

• In experiments, we demonstrate the effectiveness of

our method by encoding the categorical data of three

different datasets: bank marketing dataset (BMD),

adult income dataset (AID), and in-vehicle coupon

recommendation dataset (I-VCRD); and building

different machine learning models. Importantly, for

the long-short term memory model, it achieves a

better accuracy of 64% and a better F1 score of 0.86

compared to when we use one-hot encoding on the in-

vehicle coupon recommendation dataset.

• Furthermore, the deep-learned embedding technique

uses less memory and also generates fewer features

than one-hot encoding. For instance, when using the

in-vehicle coupon recommendation dataset, our method

generates 80 features and uses 6.494 MB compare to

the one-hot encoding that generates 100 features and

uses 10.174 MB.

The paper is organized as follows: Section 2 presents related

work, and section 3 describes our proposed method, and the

following section 4 the experimental results. In section 5,

we present the limitations of the study, and then we give

our conclusion in the last section.

II. RELATED WORK

Most of the literature on encoding categorical variables

relies on the idea that the set of categories is finite,

known a priori, and composed of mutually exclusive

elements [25]. In [26], the author presents a comparative

study of categorical variable encoding techniques for

neural network classifiers by covering seven techniques

for encoding categorical variables; on the other hand, the

authors evaluate each technique on the UCI Cars dataset

with one neural network architecture. Beyond one-hot

encoding, the statistical-learning literature has considered

other categorical encoding methods in previous work [27]–

[29]. In [30], Data representation learning was presented,

and this approach was used to evaluate both classic feature

learning methods and state-of-the-art deep learning models.

One-hot encoding is the most widely used coding scheme;

it compares each level of the categorical variable to a fixed

reference level, and also it transforms a single variable with

n observations and d distinct values to d binary variables

with n observations each. Each observation indicating the

presence (1) or absence (0) of the dichotomous binary

variable [31]. With ordinal encoding, an integer is assigned

to each category; therefore, the provided number of existing

categories is known. It does not add any new columns

to the data; however, it implies an order to the variable

that may not actually exist [32]. Compare to all the above

categorical variable encodings, our technique is based on

word embeddings where each categorical variable will be

represented as a multidimensional array or feature vector

or word vector. A table of a comparison of random forest

accuracy for various encoding techniques shown that the

one-hot encoding has a higher dimensionality than other

encoding schemes [33]. Word embedding has also been

considered as entity embedding in [34], this research has

shown that a neural network can learn the mapping during

a typical supervised training phase; therefore, with the

development of entity embeddings, there has been a recent

advance in categorical variable representation [35]–[38].

Moreover, when compared to the frequently used one-hot

encoding, the introduction of word embeddings not only

lowered memory use but also enhanced the machine learning

algorithms learning ability from data [39]. In our work,

we demonstrated that encoding categorical variables based

on word embedding use not only less memory but also

generates fewer features.

III. PROPOSED METHOD

It is more important to know what coding scheme we should

use having into consideration the dataset we are working on,

and the model we are going to use. The current research was

developed in three stages: (1) preprocess the data, (2) build

the neural network, (3) and finally, analyze the metrics and

compare them between different encoding techniques.

1) Preprocessing the data

The first stage is very important because preprocessing the

data is one of the major steps when we are dealing with

any kind of text model. This step never has one hot rule,

and totally depends on the problem statement. During this

stage, we have to look at the distribution of our data, what

techniques are needed and how deep we should clean. We

first start by splitting the data into two subsets, numerical

data and categorical data that allows us to create a corpus

that contains only categorical data, and then we convert to

lowercase all the data and our label into a numeric form.

Thus, according to the description of datasets, all three

datasets are used for classification problems; therefore, their

outcome is a binary output (yes: 1 or no: 0). We say if

a client can subscribe for a deposit then set it equal to

one otherwise, set it equal to zero, using for instance the

bank marketing dataset. The bag-of-words model is simple,

it builds a vocabulary from a corpus of documents and

counts how many times the words appear in each document;

we use the word2vec in order to produce a vector space,

typically of several hundred dimensions, with each unique

categorical variable in the corpus such that variable that

shares common contexts in the corpus are located close

to one another in the space. Therefore, we used the term

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104357, IEEE Access

frequency-inverse document frequency (TFIDF) as score for

term i in document j as shown in Equation (1), in order to

discover how many times a categorical variable appears in

our corpus.

TFIDF = TF (i, j) ∗ IDF (i) (1)

where

IDF = Inverse Document Frequency

TF = Term Frequency

i = Term or categorical variable

j = Document or corpus or a subset that contains only

categorical variable.

TF (i, j) =
Term i frequency in documentj

Total words in document
(2)

IDF (i) = log
2
(

Total documents

document with term i
) (3)

The above Equation (2) and (3) can be generalized into

one component. The actual mathematical formula become :

wi,j = tfi,j ∗ log(
N

dfi
) (4)

tfi,j = number of occurrences of i in j

dfi = number of documents containing i

N = total number of documents

As shown in Fig. 4, we used the vector space models

to discover relationships between categorical variables and

visualize those relationships in the corpus. The figure below

shows us the categorical data into in two-dimensions space

(2D space) where we can see categorical data such as "feb",

"oct", "jan", "yes", "no", "nov", "retired". As we mentioned

above, on Fig. 4, we can see that variable that shares

common contexts in the corpus are located close to one

another in the space.

FIGURE 4. Categorical data from Bank marketing dataset embedded in 2D

vector space.

There is some similarity between words. In natural

language processing, useless words such as "the", "me",

"yes" and "no", are referred to as stop words. Therefore,

it is a common practice to remove the stopwords while

preprocessing the text data because they take up space in

the dataset and take up valuable processing time that could

have an impact while training the model.

FIGURE 5. Categorical data from Adult Income dataset embedded in 2D

vector space.

Figure 5 depicts categorical data from the adult income

dataset in two-dimensions space; similarly to Fig. 4, we can

observe that variables with similar contexts in the corpus are

clustered together in the space. Categorical data from the In-

FIGURE 6. Categorical data from In-vehicle coupon recommendation dataset

embedded in 2D vector space.

vehicle coupon recommendation dataset can also be seen in

two-dimensions space as shown in Fig. 6. Importantly, we

have to consider each categorical variable as a single word

in order to tokenize correctly the categorical data.

2) Deep-learned embedding technique

In this part, we are going to describe how our technique

works. In natural language processing (NLP), tokenization

plays a significant role in dealing with text data; therefore,

it is a way of separating a piece of text into smaller

units called tokens. Here, tokens can be either word,

characters, or subwords. Hence, tokenization can be broadly

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104357, IEEE Access

classified into 3 types: word, character, and subword (n-

gram characters) tokenization. Representing strings as n-

grams at the character level is similar to vectorizing

text as tokens or words [40]; therefore, in our case, we

have used the word tokenization (1-gram sequence or

unigram) in order to have each categorical data as a single

word. First, we create the tokenizer object, providing the

maximum number of data to keep in our vocabulary, after

the tokenization process, every categorical data will be

considered as a token in our corpus as shown in Fig.

7. Considering the bank marketing dataset, this dataset

contains many "yes" and "no", and we cannot remove

them because they represent useful information in terms of

making a decision whether the client can subscribe for a

deposit or not based on the description of the dataset.

FIGURE 7. Categorical data tokenized: Bank marketing dataset.

During the preprocessing stage, all categorical data

have been tokenized in the created corpus. As shown

in Fig. 7, we did not remove stopwords because they

contain important information for this specific classification

problem. The stopwords are considered as noise for the

model; consequently, they can slow down the training

process that could also give a lower accuracy. Therefore,

to cope with this problem, we have built different machine

learning models with hyperparameter optimization tuning in

order to have higher accuracy and a good model.

FIGURE 8. Categorical data tokenized: Adult income dataset.

The categorical data from the Adult income and In-

vehicle coupon recommendation datasets have also been

tokenized as illustrated in Fig. 8 and 9.

FIGURE 9. Categorical data tokenized: In-vehicle coupon recommendation

dataset.

After tokenizing our data, we split the subset into training

and testing data. Accordingly, 80% were allocated to the

training set and 20 % were allocated to the test set, and we

saved the training and test sets into a CSV file to ensure we

are using the same data for each machine learning model.

Now We have the vocabulary of all the data, the training

and testing set, and we apply a vectorizer to the training and

testing set separately; therefore, all the tokenized data can

be learned from the vocabulary where tokens are terms and

values are indices in the feature matrix; resultantly, we have

the TF-IDF-weighted document-term matrix or the feature

matrix which is a sparse matrix. This process can also be

called feature learning techniques where categorical data

tokenized from the vocabulary are mapped to word vectors

of real numbers. We have finished encoding our categorical

data into embedding matrix; before further process; firstly,

we have to convert the sparse matrix into a dataframe;

secondly, we reshape the numerical subset, and finally

concatenate the encoded categorical data with the numerical

data subset.

3) Model description

We use different machine learning models such as Logistic

Regression (LR), Multi-Layer Perceptron (MLP), Random

Forest (RF), Gradient Boosting (GB), and Deep Learning

Model (DL), and we train and evaluate these models using

the training and testing data encoded with deep-learned

embedding technique.

It is a good idea to build a deep learning model with the

Keras model because embeddings can be used in Keras via

the embedding layer. Therefore, we built powerful recurrent

neural architectures [41] using deep neural networks; and

we have used the sequential Keras model to build neural

networks for classification tasks on three different datasets.

We use the embedding matrix in the first embedding layer

of the neural network. Each id in the input sequence will

be used as the index to access the embedding matrix.

Our neural network model is a three built-in recurrent

neural network (RNN) layers in Keras; this sequential model

processes sequences of integers, embeds each integer into a

dimensional vector, then processes the sequence of vectors

using a LSTM layer.

We apply a grid search by setting up a model generator

function, setting up a parameter grid and doing a grid search

with cross-validation, and after the training, the outcomes of

our grid search can be reported where we can see different

models with its parameters; therefore, we can pick the best

model. The scikit-learn have been used, a toolkit often used

with Keras and other machine learning software in order to

perform the grid search and obtain the classification report,

which will tell us about our best model. Then, we have

to import Keras’s KerasClassifier wrapper, which makes it

compatible with scikit-learn. We apply grid search for deep

learning models for hyperparameter optimization so that the

model can grid search the epochs, the activation function,

and the optimizer; hence, it will give the best model along

with its parameters. Now, we set up our KerasClassifier,

handing it the model-building function, set verbose to 0 to

hide the progress bars of each Keras run, we also set up

a grid search with cross-validation. For its estimator, we

give it our model, which is our KerasClassifier wrapper,

and our grid parameter; then we say cv=5, meaning cut

the data (the training data) into five different segments and

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104357, IEEE Access

then cross-validate. Train on 4, and use one fifth to validate

and iteratively repeat this in order to search for the best

hyperparameter values. we call the fit function going from

our x training data (again, those are our input training data)

to our y training data (these are the labels from the label

encoded) and then print out our best results.

IV. EXPERIMENTAL RESULTS

A. DATASET DESCRIPTION

1) The Bank Marketing Dataset

The Bank Marketing dataset1 used for this study was

obtained from the UCI Machine Learning Repository. The

data is related to direct marketing campaigns (phone calls)

of a Portuguese banking institution. The classification goal

is to predict if the client will subscribe to a term deposit

(variable y). The data includes information of 45211 clients.

Each record has 17 attributes. This dataset contains 10

columns of categorical data and 7 columns of numerical

data.

2) Adult Income Dataset

The Adult Income Dataset2 contains 48842 samples of

income data from the census bureau database for individuals

in the United States. Also known as "Census Income"

dataset. The aim is to determine whether a person’s salary

exceeds $50,000 USD. The data includes information of

48842 person. Each record has 14 attributes composed of

8 columns of categorical data and 6 columns of numerical

data.

3) In-vehicle Coupon Recommendation Dataset

The In-vehicle Coupon dataset3 contains 12684 samples of

coupon recommended. This data studies whether a person

will accept the coupon recommended to him in different

driving scenarios. Each record has 26 attributes composed of

16 columns of categorical data and 10 columns of numerical

data.

B. PERFORMANCE RESULTS

Classification accuracy of different models was measured,

and the results from the experiments performed on the

Bank Marketing Dataset are illustrated in the different tables

below. Using a one-hot and ordinal encoding technique

for the same dataset shows low accuracy compared to

our deep-learned embedding technique. The deep-learned

embedding technique gives better accuracy of 73% than

one-hot encoding which gives 71% of accuracy as shown

in table 3. Besides the Bank Marketing dataset, we also

use 2 more categorical datasets: Adult Income and In-

vehicle coupon datasets. In view of the In-vehicle coupon

recommendation dataset, our approach generates 80 features

1https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
2https://archive.ics.uci.edu/ml/datasets/adult
3https://archive.ics.uci.edu/ml/datasets/in-

vehicle+coupon+recommendation

and uses 6.494 MB compared to 100 features and 10.174

MB for one-hot encoding as shown in Table 7. The use

of embeddings reduced the memory usage [39] compared

with commonly used one-hot encoding. More importantly,

evaluating a machine learning algorithm is an essential

part of any deep learning project; since our model may

give us satisfying results when evaluated using a metric

like accuracy but may give poor results when evaluated

against other metrics such as mean square error or any other

metric. Most of the time we use classification accuracy to

measure the performance of our model; however, it is not

enough to truly judge our model. Therefore, we evaluate the

performance of different machine learning models by using

the following metrics:

Accuracy =
Number of Correct predictions

Total numbers of predictions made
(5)

Accuracy: It is the ratio of number of correct predictions to

the total number of input samples.

Precision =
True Positives

True Positives+ False Positives
(6)

Precision : It is the number of correct positive results divided

by the number of positive results predicted by the classifier.

Recall =
True Positives

True Positives+ False Negatives
(7)

Recall: It is the number of correct positive results divided by

the number of all relevant samples (all samples that should

have been identified as positive). There is also another

metric that we can use if we want to seek a balance between

Precision and Recall which F1 Score. It is also called the

F-score or the F-measure. It might be a better measure to

use if we need to convey a balance between Precision and

Recall, and it is calculated as follows:

F1 Score = 2 ∗
Precision ∗Recall

Precision+Recall
(8)

Area Under Curve (AUC) is one of the most widely used

metrics for evaluation. It is used for binary classification

problems. The area under the curve (AUC) indicates the

probability that the classifier will rank a randomly chosen

positive observation higher than a randomly chosen negative

one.

Mean Square Error =
1

N

N∑

j=1

(yj − ŷi)
2 (9)

Mean Squared Error (MSE) is quite similar to Mean

Absolute Error, the only difference being that MSE takes the

average of the square of the difference between the original

values and the predicted values.

There are many ways to encode categorical variables

as numbers and fit them into an algorithm. Therefore,

we have used different metrics together with different

encoding techniques including the deep-learned embedding

techniques in order to evaluate different machine learning

algorithms. The results presented in Table 1 show that when

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104357, IEEE Access

encoding categorical data with target encoding, the gradient

boosting outperforms the other models and give higher

accuracy along with the precision. Using binary encoding,

TABLE 1. Comparison between Target and Binary Encoding

Bank Marketing dataset
Encoding Model Accuracy Precision Recall

Target

LR 0.69 0.71 0.63
MLP 0.69 0.71 0.62
RF 0.69 0.76 0.53
GB 0.71 0.78 0.52

Binary

LR 0.62 0.61 0.63
MLP 0.68 0.70 0.56
RF 0.70 0.73 0.58
GB 0.70 0.75 0.53

we also built different machine learning models, and the

result shows that when compared to target encoding, binary

encoding gives a low accuracy and low precision as shown

in Table 1. The experiment results, as shown in Table 2

TABLE 2. Comparison between Target and Binary Encoding

Bank Marketing dataset
Encoding Model AUC MSE

Target

Logistic Regression 0.694 0.302
Multi-Layer Perceptron 0.696 0.300

Random Forest 0.689 0.303
Gradient Boosting 0.692 0.299

Binary

Logistic Regression 0.621 0.371
Multi-Layer Perceptro 0.678 0.323

Random Forest 0.694 0.305
Gradient Boosting 0.682 0.300

show that values of the AUC and MSE are almost the same

for both target and binary encoding. One-hot encoding is

the most used encoding technique in many projects when it

comes to encode categorical variables; this technique maps

each category to a vector that contains 1 and 0 denoting the

presence or absence of the feature. The number of vectors

depends on the number of categorical features. This method

produces a lot of columns that slow down the learning

significantly if the number of the category is very high

[33], and it can also have a higher dimensionality than other

encoding schemes.

For the reason that the one-hot is the most used encoding

technique for categorical data; we made a deep comparison

between one-hot encoding and our deep-learned embedding

technique. Our proposed technique, deep-learned embedding

technique, gives higher accuracy than one-hot encoding, and

further the precision is 0.83 higher than 0.79 for one-hot

encoding as shown in Table 3.

Besides the Bank marketing dataset, we also applied our

technique on the Adult income dataset, and compared the

result to one-hot encoding. Repeatedly, encoding categorical

variable with our proposed technique and fit them into

machine learning model gives almost similar result as when

using one-hot encoding. Here, considering the accuracy, as

TABLE 3. Comparison between One-hot and Deep-learned embedding

Bank Marketing dataset
Encoding Model Accuracy Precision Recall

One-hot

LR 0.69 0.75 0.55
MLP 0.71 0.79 0.56
RF 0.70 0.75 0.58
GB 0.71 0.78 0.56

LSTM 0.71 0.79 0.56

Our technique

LR 0.65 0.62 0.52
MLP 0.68 0.73 0.59
RF 0.70 0.74 0.58
GB 0.70 0.76 0.57

LSTM 0.73 0.83 0.57

TABLE 4. Comparison between One-hot and Deep-learned embedding

Adult Income dataset
Encoding Model Accuracy F1 Score MSE

One-hot

LR 0.78 0.76 0.19
MLP 0.77 0.70 0.22
RF 0.79 0.86 0.133
GB 0.78 0.85 0.135

LSTM 0.77 0.71 0.126

Our technique

LR 0.76 0.86 0.241
MLP 0.76 0.71 0.435
RF 0.76 0.65 0.24
GB 0.75 0.86 0.54

LSTM 0.76 0.89 0.18

shown in Table 4, one-hot encoding surpasses our proposed

technique; however, our proposed technique outperforms a

higher F1 score of 89% than 71% of one-hot encoding, in

consideration of the LSTM model.

The results shown in Table 5 show again that using our

proposed technique to encode categorical variables can help

the machine learning models to have good accuracy and

better F1 score than when using one-hot encoding. For

instance, LSTM outperforms 65% of accuracy compared to

61% of one-hot encoding, and further, the F1 score metric

is 0.86 higher than 0.66 for one-hot encoding as shown in

Table 5.

TABLE 5. Comparison between One-hot and Deep-learned embedding

In-vehicle coupon recommendation dataset
Encoding Model Accuracy F1 Score MSE

One-hot

LR 0.56 0.48 0.43
MLP 0.57 0.43 0.43
RF 0.69 0.73 0.25
GB 0.66 0.69 0.29

LSTM 0.61 0.66 0.23

Our technique

LR 0.60 0.73 0.40
MLP 0.61 0.73 0.41
RF 0.62 0.61 0.37
GB 0.62 0.60 0.37

LSTM 0.64 0.86 0.24

We have used different models and different evaluations

to ensure that our deep-learned embedding technique is

preferable when working on categorical dataset. As shown

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104357, IEEE Access

TABLE 6. Comparison between One-hot and Deep learned embedding

Bank Marketing dataset
Encoding Model AUC MSE

One-hot

Logistic Regression 0.695 0.300
Multi-Layer Perceptron 0.711 0.282

Random Forest 0.700 0.293
Gradient Boosting 0.684 0.298

LSTM 0.682 0.300

Our technique

Logistic Regression 0.614 0.301
Multi-Layer Perceptron 0.662 0.310

Random Forest 0.695 0.300
Gradient Boosting 0.694 0.301

LSTM 0.697 0.293

Table 6, when using one-hot encoding, logistic regression,

multi-layer perceptron, and random forest give a higher

value of AUC than our technique. On the other hand, our

deep-learned embedding technique surpasses the one-hot

when using gradient boosting and the LSTM model. The

AUC is used for binary classification and this is better

for our study because taking into consideration the bank

marketing dataset; we are predicting whether a client can

subscribe for a deposit or not which means it is a binary

classification problem. Moreover, our proposed technique

works well with artificial neural networks such as LSTM

because it is based on word embedding; as shown in Fig.

10, deep-learned has better accuracy than one-hot encoding.

FIGURE 10. Comparison of accuracy between One-hot and Deep-learned

embedding

Another important point while dealing with categorical

variable encoding is the number of features that can be

generated after encoding; usually, after encoding we obtain

a sparse matrix that contains many zero. Besides the number

of generated features after encoding, it is also essential to

know the memory used by the dataframe. In this way, on

one side we have the number of the generated features, and

on the other side we have the capacity memory used by

the data; getting to know how much memory that has been

used by a data frame can be extremely useful when working

with a bigger data frame. Therefore, in order to check

the memory usage (in Megabytes: MB), we first convert

the sparse matrix into a data frame and then calculate the

memory usage. Here, note that before preprocessing data as

shown in Table 8, our data frame had 7.2 MB, 3.91 MB,

and 2.05 MB for the Bank marketing dataset, Adult income

dataset, and In-vehicle coupon dataset respectively.

TABLE 7. Comparison of Generated features between One-hot and

Deep-learned embedding

Bank Marketing dataset
Encoding Before encoding After encoding
One-hot 17 features 53 features

Deep-learned embedding 17 features 46 features

Adult Income dataset
Encoding Before encoding After encoding
One-hot 15 features 106 features

Deep-learned embedding 15 features 105 features

In-vehicle Coupon dataset
Encoding Before encoding After encoding
One-hot 26 features 100 features

Deep-learned embedding 26 features 80 features

The number of the generated features depends on the

number of categorical variable in the original dataset.

Before encoding, our original datasets had 17 columns,

15 columns, and 26 columns for the Bank marketing

dataset, Adult income dataset, and In-vehicle coupon

dataset respectively. Therefore, we have only applied the

deep-learned embedding technique on the categorical data

and after encoding, in view of the the Bank marketing

dataset, the one-hot encoding generated 46 features and

our technique generated 39 feature. Here, note that after

encoding we have to concatenate all the data that means

we have to put together the categorical data encoded and

the numerical data. Accordingly, we had 46 (39 + 7)

features for deep-learned embedding and 53 (46 + 7) for

one-hot encoding as shown in Table 7. Once again our

deep-learned embedding is better than one-hot encoding

because it generates fewer features than one-hot encoding.

Additionally, when using the adult income dataset, our

technique generates 105 features and one-hot encoding 106

features; moreover, it generates 80 features less than 100

for one-hot encoding when using the In-vehicle coupon

dataset. Overall, our deep-learned embedding generated

fewer features than one-hot encoding as described in Table

7. The most important point to keep in mind is that the

number of features created is determined by the dataset we

are working with.

There are two ways to find how pandas dataframe use

the memory, one way is to find the memory usage of each

column in bytes in a dataframe and the other way is to

find the total memory usage of a dataframe. Therefore, as

mentioned earlier, we have to convert the sparse matrix into

a data frame in order to find the memory usage. As shown

in Fig. 11, our technique uses less memory than one-hot

encoding; we can confirm that the memory usage by the

dataframe depends on the number of features generated.

When we use deep-learned embedding, first it takes up

less memory as shown in Table 8. In view of the Bank

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104357, IEEE Access

FIGURE 11. Comparison of Generated features between One-hot and

Deep-learned embedding as well as memory usage.

Marketing dataset, one-hot encoding uses 3.3 MB while

deep-learned embedding uses 2.9 MB. In this paper We also

compare these memory usages. With respect to one-hot, the

absolute difference is 0.4 MB. That means, if deep-learned

embedding needs 2.9 MB to run then one-hot encoding will

need 2.9 MB and more to run (2.9 + 0.4 = 3.3), and we

can say that one-hot need 13% of memory of deep-learned

embedding (0.4 MB equal 13% of 2.9 MB).

TABLE 8. Memory usage

Bank Marketing dataset
Encoding Before encoding After encoding
One-hot 7.2 MB 3.3 MB

Deep-learned embedding 7.2 MB 2.9 MB

Adult Income dataset
Encoding Before encoding After encoding
One-hot 3.91 MB 27.61 MB

Deep-learned embedding 3.91 MB 21.88 MB

In-vehicle Coupon dataset
Encoding Before encoding After encoding
One-hot 2.05 MB 10.174 MB

Deep-learned embedding 2.05 MB 6.494 MB

Furthermore, when using the adult income dataset and

encode the categorical variable using our technique, the

data frame uses 21.88 MB; however, when we encode

with one-hot encoding, it uses 27.61 MB of memory. In

addition, using our technique, the memory usage is 6.494

MB less than 10.174 MB for one-hot encoding when taking

into account the In-vehicle coupon dataset. Importantly, our

deep-learned embedding technique used less memory than

one-hot encoding.

V. LIMITATIONS OF THE STUDY

Our study has some limitations within which our findings

need to be interpreted carefully. Some limitations of the

study should be mentioned. First, as in most empirical

studies, the research presented here was limited by the

datasets used. Because datasets are composed of categorical

values and numerical values. Some categorical values can

be a single word (e.g. high, low) or open compound word

separated by a space (e.g. high school, graduate school)

or hyphenated compound word (e.g. one-half, seventy-two).

Second, we focused on binary classification problems in our

research. Third, our study did not examine the impact of

embedding a compound word. Last but not least, the results

of the study may not be completely generalizable because

the data was restricted to the purely categorical dataset.

VI. CONCLUSION

Many machine learning algorithms can support categorical

values without further manipulation but there are many more

algorithms that do not. Therefore, the analyst is faced with

the challenge of figuring out how to turn these text attributes

into numerical values for further processing. There are many

ways we can encode these categorical variables as numbers

and use them in an algorithm. This paper demonstrated and

compared the classification accuracy and other metrics of

machine learning models applied to categorical data encoded

using different encoding techniques. The study aims to find a

new way to encode categorical variables that can be nominal

or ordinal data based on the word embedding technique. It is

possible to convert a categorical variable into numeric form

even if there is a semantic context or not between categorical

data. The goal of this study was to find out the new encoding

technique for a categorical variable on a categorical dataset

such as the Bank Marketing dataset, Adult Income dataset,

and In-vehicle coupon recommendation dataset. Overall, the

proposed deep-learned embedding techniques outperform

the best results compared to one-hot encoding techniques,

and it can use less memory and generate fewer features than

one-hot encoding. According to prediction results, our deep-

learned embedding technique outperform the best accuracy

of 73% and precision of 0.83 compare to one-hot encoding

technique, in consideration of the Bank Marketing dataset.

This is not an exhaustive study, the deep-learned embedding

technique can be considered more preferable for prediction

tasks involving purely categorical data.

REFERENCES

[1] Dealing with categorical features in machine learning. accessed 2019.

[online]. Available at https://www.kdnuggets.com/2019/07/categorical-

features-machinelearning.html.

[2] Tomas Mikolov, G.s Corrado, Kai Chen, and Jeffrey Dean, “Efficient

estimation of word representations in vector space,” pp 1–12, 01 2013.

[3] Alakh Sethi. One-hot encoding vs. label encoding using scikit-learn.

accessed 2019. [online]. Available at https://www.analyticsvidhya.com/

blog/2020/03/one-hot-encoding-vs-label-encoding-using-scikit-learn/.

[4] Sarinnapakorn K. Kuruppu-Appuhamilage I. Chen S.C. Chang L. Goldring

Shyu, M.L. and T., “Handling nominal features in anomaly intrusion

detection problems,0-8,” 15th International Workshop on Research Issues

in Data Engineering: Stream Data Mining and Applications.

[5] Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, and

Alex Smola, “Feature hashing for large scale multitask learning,” 2010.

[6] François Chollet,“Deep Learning with Python,” Manning Publications, 1st

edition, 2017.

[7] Market Research Guy, Types of data and measurement scales: Nominal,

ordinal, interval and ratio. accessed 2020. [online]. Available at

https://www.mymarketresearchmethods.com/ types-of-data-nominal-

ordinal-interval-ratio.

[8] Baijayanta Roy, All about categorical variable encoding. accessed 2020.

[online]. Available at https://towardsdatascience.com/ all-about-categorical-

variable-encoding-305f3361fd02.

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104357, IEEE Access

[9] What is the difference between ordinal, interval and ratio variables. accessed

2019. [online]. Available at https://www.graphpad.com/support/faq/what-

is-the-difference-between-ordinal-interval-and-ratio-variables-why-should-

i-care/

[10] Baijayanta Roy. Type of categorical encoding. accessed 2020. [online].

Available at https://www.analyticsvidhya.com/blog/2020/08/ types-of-

categoricaldata-encoding/.

[11] Daniele Micci-Barreca, “A preprocessing scheme for high-cardinality

categorical attributes in classification and prediction problems,” SIGKDD

Explorations, 3:27–32, 07 2001.

[12] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria,

“Recent trends in deep learning based natural language processing,” IEEE

Computational Intelligence Magazine, 13(3):55–75, 2018.

[13] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray

Kavukcuoglu, and Pavel P. Kuksa, “Natural language processing (almost)

from scratch,” CoRR, abs/1103.0398, 2011.

[14] Xuezhe Ma and Eduard H. Hovy, “End-to-end sequence labeling via

bidirectional lstm-cnns-crf,” CoRR, abs/1603.01354, 2016.

[15] M. Schuster and K.K. Paliwal, “Bidirectional recurrent neural networks,”

IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997.

[16] Abdulrahman Almuhareb, Waleed Alsanie, and Abdulmohsen AlThubaity,

“Arabic word segmentation with long short-term memory neural networks

and word embedding,” IEEE Access, 7:12879–12887, 2019.

[17] Yan Shao, “Cross-lingual word segmentation and morpheme segmentation

as sequence labelling,” CoRR, abs/1709.03756, 2017.

[18] Jie Yang, Yue Zhang, and Fei Dong, “Neural word segmentation with rich

pretraining,” CoRR, abs/1704.08960, 2017.

[19] Cohen P. West-S.G. Aiken L.S. Cohen, J., “Applied multiple

regression/correlation analysis for the behavioral sciences,” (3rd ed.).

routledge. 2002.

[20] Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou, “Word

embeddings quantify 100 years of gender and ethnic stereotypes,”

Proceedings of the National Academy of Sciences, 115, 11 2017.

[21] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian

Janvin, “A neural probabilistic language model,” J. Mach. Learn. Res.,

3:1137–1155, March 2003.

[22] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás

Mikolov, “Enriching word vectors with subword information,” CoRR,

abs/1607.04606, 2016.

[23] Qian Liu, Heyan Huang, Yang Gao, Xiaochi Wei, Yuxin Tian, and Luyang

Liu, “Task-oriented word embedding for text classification,” In Proceedings

of the 27th International Conference on Computational Linguistics, pages

2023–2032, Santa Fe, New Mexico, USA, August 2018. Association for

Computational Linguistics.

[24] Jeffrey Pennington, Richard Socher, and Christopher D Manning, “Glove:

Global vectors for word representation,” In EMNLP, volume 14, pages

1532–1543, 2014.

[25] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey

Dean, “Distributed representations of words and phrases and their

compositionality,” In Neural and Information Processing System (NIPS),

2013.

[26] Kedar Potdar, Taher S. Pardawala, and Chinmay D. Pai, “A comparative

study of categorical variable encoding techniques for neural network

classifiers,” International Journal of Computer Applications, 175(4):7–9,

Oct 2017.

[27] Wlodzislaw Duch, Karol Grudzinski, and G. Stawski, “Symbolic features

in neural networks,” In In Proceedings of the 5th Conference on Neural

Networks and Their Applications, pages 180–185, 2000.

[28] Krzysztof Grabczewski and Norbert Jankowski, “Transformations of

symbolic data for continuous data oriented models,” In ARTIFICIAL

NEURAL NETWORKS AND NEURAL INFORMATION PROCESSING

– ICANN/ICONIP 2003, pages 359–366. Springer, 2003.

[29] Mei-Ling Shyu, Kanoksri Sarinnapakorn, Indika Kuruppu-Appuhamilage,

Shu Ching Chen, LiWu Chang, and Thomas Goldring, “Handling nominal

features in anomaly intrusion detection problems,” In J. Han and H.

Kawano, editors, Proceedings of the IEEE International Workshop on

Research Issues in Data Engineering, pages 55–62, October 2005.

Conference date: 03-04-2005 Through 04-04-2005.

[30] G. Zhong, Lina Wang, and Junyu Dong, “An overview on data

representation learning: From traditional feature learning to recent deep

learning,” ArXiv, abs/1611.08331, 2016.

[31] Brett Lantz, “Machine Learning with R,” Packt Publishing, 2013.

[32] Alexander von Eye and Clifford C. Clogg, “Categorical Variables in

Developmental Research: Methods of Analysis,” Academic Press; 1st

edition (February 2, 1996), 1996.

[33] Khoshgoftaar T.M. Hancock, J.T., “Survey on categorical data for neural

networks,” J Big Data 7, 28 (2020).

[34] Cheng Guo and Felix Berkhahn, “Entity embeddings of categorical

variables,” CoRR, abs/1604.06737, 2016.

[35] Yixuan Ma and Zhenji Zhang, “Travel mode choice prediction using deep

neural networks with entity embeddings,” IEEE Access, 8:64959–64970,

2020.

[36] Baohua Sun, Lin Yang, Wenhan Zhang, Michael Lin, Patrick Dong,

Charles Young, and Jason Dong, “Supertml: Two-dimensional word

embedding and transfer learning using imagenet pretrained CNN models

for the classifications on tabular data,” CoRR, abs/1903.06246, 2019.

[37] Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou, “Word

embeddings quantify 100 years of gender and ethnic stereotypes,” CoRR,

abs/1711.08412, 2017.

[38] Baohua Sun, Lin Yang, Michael Lin, Charles Young, Patrick Dong,

Wenhan Zhang, and Jason Dong, “Supercaptioning: Image captioning using

two-dimensional word embedding,” CoRR, abs/1905.10515, 2019.

[39] Yoan Russac, Olivier Caelen, and Liyun He-Guelton, “Embeddings

of categorical variables for sequential data in fraud context,” In

International Conference on Advanced Machine Learning Technologies and

Applications, pages 542–552. Springer, 2018.

[40] Patricio Cerda and Gaël Varoquaux, “Encoding high-cardinality string

categorical variables,” CoRR, abs/1907.01860, 2019.

[41] Yushi Yao and Zheng Huang, “Bi-directional LSTM recurrent neural

network for chinese word segmentation,” CoRR, abs/1602.04874, 2016.

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104357, IEEE Access

MWAMBA KASONGO DAHOUDA received

the BS in information system engineering

from University Protestant of Lubumbashi,

Lubumbashi, DR Congo, and the MS in software

engineering from Hanyang University, Seoul,

Korea in 2020. He is currently pursuing the Ph.D.

in software engineering at Hanyang University,

Seoul, Korea. His research interests include

artificial intelligence, deep learning, wireless

powered communication networks, and non-

terrestrial network.

INWHEE JOE received his BS and MS in

electronics engineering from Hanyang University,

Seoul, Korea, and his Ph.D. in electrical and

computer engineering from Georgia Institute of

Technology, Atlanta, GA in 1998. Since 2002, he

has been a faculty member in the Department of

Computer Science at Hanyang University, Seoul,

Korea. His current research interests include

Internet of Things, cellular systems, wireless

powered communication networks, embedded

systems, network security, machine learning, performance evaluation.

12 VOLUME 4, 2016

