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Abstract

Objective The outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) has caused more than 26 million

cases of Corona virus disease (COVID-19) in the world so far. To control the spread of the disease, screening large numbers of

suspected cases for appropriate quarantine and treatment are a priority. Pathogenic laboratory testing is typically the gold

standard, but it bears the burden of significant false negativity, adding to the urgent need of alternative diagnostic methods to

combat the disease. Based on COVID-19 radiographic changes in CT images, this study hypothesized that artificial intelligence

methods might be able to extract specific graphical features of COVID-19 and provide a clinical diagnosis ahead of the

pathogenic test, thus saving critical time for disease control.

Methods We collected 1065 CT images of pathogen-confirmed COVID-19 cases along with those previously diagnosed with

typical viral pneumonia. We modified the inception transfer-learning model to establish the algorithm, followed by internal and

external validation.

Results The internal validation achieved a total accuracy of 89.5%with a specificity of 0.88 and sensitivity of 0.87. The external testing

dataset showed a total accuracy of 79.3%with a specificity of 0.83 and sensitivity of 0.67. In addition, in 54 COVID-19 images, the first

two nucleic acid test results were negative, and 46 were predicted as COVID-19 positive by the algorithm, with an accuracy of 85.2%.

Conclusion These results demonstrate the proof-of-principle for using artificial intelligence to extract radiological features for

timely and accurate COVID-19 diagnosis.

Key Points

• The study evaluated the diagnostic performance of a deep learning algorithm using CT images to screen for COVID-19 during

the influenza season.

• As a screening method, our model achieved a relatively high sensitivity on internal and external CT image datasets.

• The model was used to distinguish between COVID-19 and other typical viral pneumonia, both of which have quite similar

radiologic characteristics.
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Abbreviations

AI Artificial intelligence

AUC Area under the curve

CI Confidence interval

CNN Convolutional neural network

COVID-19 Corona virus disease

CT Computed tomography

CV Computer vision

DCNN Deep convolutional neural network

DL Deep learning

FP False positive

GGO Ground-glass opacity

IRB Institutional review board

M-inception Modified inception

NPV Negative predictive value

PPV Positive predictive value

PUI Person under investigation

RGB Red green blue

ROI Region of interest

RT-PCR Reverse transcription-polymerase chain

reaction

SARS Severe acute respiratory syndrome

SARS-COV-2 Severe acute respiratory syndrome

coronavirus 2

TP True positive

Introduction

The outbreak of atypical and person-to-person transmissible

pneumonia caused by the severe acute respiratory syndrome

corona virus 2 (SARS-COV-2, also known as 2019-nCov) has

caused a global pandemic. There have been more than 6.1

million confirmed cases of the Corona virus disease

(COVID-19) in the world, as of the 1st of June 2020. About

16–21% of people with the virus in China have become se-

verely ill with a 2–3% mortality rate. With the most recent

estimated viral reproduction number (R0), in a completely

non-immune population, the average number of other people

that an infected individual will transmit the virus to stands at

about 3.77 [1, 2], indicating that a rapid spread of the disease

is imminent. It is crucial to identify infected individuals as

early as possible for quarantine and treatment procedures.

The diagnosis of COVID-19 relies on the following

criteria: clinical symptoms, epidemiological history and

positive CT images, and positive pathogenic testing. The

clinical characteristics of COVID-19 include respiratory

symptoms, fever, cough, dyspnea, and pneumonia [3–6].

However, these symptoms are nonspecific, as there are

isolated cases wherein, for example, in an asymptomatic-

infected family, a chest CT scan revealed pneumonia and

the pathogenic test for the virus reported a positive result.

Once someone is identified as a person under investigation

(PUI), lower respiratory specimens, such as bronchoalveo-

lar lavage, tracheal aspirate, or sputum, will be collected

for pathogenic testing. This laboratory technology is based

on real-time RT-PCR and sequencing of nucleic acids from

the virus [7, 8]. Since the outbreak of COVID-19, the ef-

ficiency of nucleic acid testing has been dependent on sev-

eral rate-limiting factors, including the availability and

quantity of the testing kits in the affected areas.

Moreover, the quality, stability, and reproducibility of the

detection kits are questionable. The impact of methodolo-

gy, disease stages, specimen collection methods, nucleic

acid extraction methods, and the amplification system are

all determinant factors for the accuracy of the test results.

Conservative estimates of the detection rate of nucleic acid

are low (30–50%) [9], and the tests must be repeated sev-

eral times in many cases before the results are confirmed.

Another major diagnostic tool for COVID-19 is radiologi-

cal imaging. The majority of COVID-19 cases have similar

features on CT images including ground-glass opacities in the

early stage and pulmonary consolidation in the later stage.

Occasionally, a rounded morphology and a peripheral lung

distribution can also be observed [4, 10]. Although typical

CT images may help early screening of suspected cases, the

images of various viral pneumonia are similar, and they over-

lap with other infectious and inflammatory lung diseases.

Therefore, it is difficult for radiologists to distinguish

COVID-19 from other viral pneumonia.

AI involving medical imaging-based deep learning sys-

tems has been developed in image feature extraction, in-

cluding shape and spatial relation features. Specifically,

the convolutional neural network (CNN) has shown prom-

ising results in feature extraction and learning. CNN has

been used to enhance low-light images from high-speed

video endoscopy, with limited training data from just 55

videos [11]. In addition, CNN has been applied to identify

the nature of pulmonary nodules via CT images, the di-

agnosis of pediatric pneumonia via chest X-ray images,

for precise automation and labelling of polyps during co-

lonoscopy videos, and cystoscopy image recognition ex-

traction from videos [12–15].

There are several features for identifying viral pathogens

on the basis of imaging patterns, which are associated with

their specific pathogenesis [16]. The hallmarks of COVID-19

patterns are bilateral distributions of patchy shadows and

ground-glass opacity in the early stages. As the disease pro-

gresses, multiple ground glass and infiltrates appear in both

lungs [6]. These features are quite similar to typical viral
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pneumonia with only slight differences, which are difficult for

radiologists to distinguish. Based on this, we believe that

CNN might help us identify unique features that might be

difficult using visual recognition.

Hence, our study evaluates the diagnostic performance of a

deep learning algorithm using CT images to screen for

COVID-19 during the influenza season. To test this hypothe-

sis, we retrospectively enrolled 1065 CT images of pathogen-

confirmed COVID-19 cases along with previously diagnosed

typical viral pneumonia. Our results demonstrate the proof-of-

principle using the deep learning method to extract radiolog-

ical graphical features for COVID-19 diagnosis.

Methods and materials

Retrospective collection of datasets

We retrospectively collected CT images from 259 patients, in

which the cohort included 180 cases of typical viral pneumo-

nia and the other 79 cases from three hospitals with confirmed

nucleic acid testing of SARS-COV-2. In addition, we enrolled

15 additional COVID cases, in which the first two nucleic acid

tests were negative in initial diagnoses. The hospitals provid-

ing the images were the Xi’an Jiaotong University First

Affiliated Hospital (center 1), Nanchang University First

Hospital (center 2), and Xi’an No.8 Hospital of Xi’an

Medical College (center 3). All CT images were reconfirmed

before sending for analysis. This study is in compliance with

the institutional review board of each participating institute.

Informed consent was exempted by the IRB because of the

retrospective nature of this study.

Delineation of ROIs

To establish a binary model for distinguishing COVID-19 and

typical pneumonia, we drew the region of interest (ROI) as the

input images for the training and validation cohorts.We sketched

the ROI from the CT images based on the features of COVID-

19, such as small patchy shadows and interstitial changes in the

early stage, multiple ground glass and infiltrates in both lungs in

the progression stage, and delineated the ROIs on the CT images

of other typical viral pneumonia, such as pseudo cavity, enlarged

lymph nodes, and multifocal GGO as the control. We manually

delineated the ROI based on the typical features of pneumonia

and all the lesion layers were determined to be the input into the

model. The ROIs were divided into three cohorts: one training

cohort (n= 320 from center 1), one internal validation cohort (n=

455 from center 1), and one external validation cohort (n = 290

from centers 2 and 3). For an ROI, it was sized approximately

from 395 × 223 to 636 × 533 pixels.

Overview of the proposed architecture

Our systematic pipeline for the prediction architecture is

depicted in Fig. 1. The architecture consists of three main

processes: (1) preprocessing of input images; (2) feature ex-

traction of ROI images and training; and (3) classificationwith

two fully connected layers and prediction of binary classifiers.

We performed transfer learning, which involved training with

a predefined model using the well-known GoogleNet

Inception v3 CNN [16]. The network was already trained on

1.2 million color images from ImageNet that consisted of

1000 categories before learning from the lung radiographs in

this study [17]. The entire neural network can be roughly

divided into two parts: the first part used a pre-trained incep-

tion network to convert image data into one-dimensional fea-

ture vectors, and the second part used a fully connected net-

work, mainly for classification prediction. The ROI images

from each case were preprocessed and input into the model

for training. The number of various types of pictures in the

training set is equal, with a total of 320 images. The remaining

CT images of each case were used for internal validation. In

each iteration of the training process, we fetched a batch of

images from the training dataset. The following parameters

were used for training: we trained for 15,000 epochs, the ini-

tial learning rate of the pre-trained model was 0.01, and it was

automatically adjusted with training; furthermore, we used

adaptive moment estimation gradient descent for

optimization.

Image preprocessing and feature extraction

Based on the characteristic signs of pneumonia, ROI images

were defined as inflammatory lesions and extracted by our

computer vision (CV) model as per the following steps:

Fig. 1 ROI images extraction and deep learning (DL) algorithm framework. ROI images were extracted by the CV model and then trained using a

modified inception network to extract features. The full connection layer then performs classification and prediction
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(1) The image was converted to grayscale.

(2) Grayscale binarization: As using theOSTUmethod directly

causes the threshold selection failure in the case of multi-

peaks, the selection of the binarization threshold in this

study was based on the statistics of all pixel frequency

histograms of the gray color values Vmin (80) and Vmax

(200). The minimum frequency was selected in the selec-

tion interval as a threshold, and the interval of frequency

statistics was five.

(3) Background area filling: The flood filling method was

used to expand the image by one black pixel, and the

black pixels near the border were filled with white.

(4) Reverse color: All the contour areas of the image were

determined, and the two largest contour areas were con-

sidered as the two lung areas.

(5) The smallest bounding rectangle of the lung area was

considered the ROI frame, and the original image was

cropped to obtain the ROI images.

To obtain more reproducible CT features, the pixel

spacing of each CT image acquired from different hospi-

tals and scanners was set to 299 × 299 pixels. The size

was not unified. To improve the reliability of the model,

the ROI images were processed to a fixed 299 × 299 pixel

size, and then the lung contour was precisely delineated to

ensure the practicality of the model. The delineated ROIs

were obtained for the classification model building. We

modified the typical inception network and fine-tuned the

modified inception (M-inception) model with pre-trained

weights. The size of the input layer of M-inception was

299 × 299 × 3, compatible with the ImageNet. We

mapped the gray mode (one channel) to this dimension

(299 × 299 × 3, where each channel value of RGB is

equal to the gray mode value) to form a virtual RGB

format image in the first layer. During the training phase,

the original inception part was not trained, and we only

trained only the modified part. The architecture of the M-

inception is shown in Table 1. The difference between the

inception and M-inception model is found in the last of

the fully connected layers. We reduced the dimension of

the features before it was sent to the final classification

layer. The training dataset consisted of all the aforemen-

tioned patches. The inception network is shown in

Table 1.

Prediction

After generating the features, the final step was to classify

the pneumonia based on those features. An ensemble of

classifiers was used to improve the classification accuracy.

In this study, we adopted end-to-end learning to ensure

model convergence.

Performance evaluation metrics

We compared the classification performance using several

metrics, such as accuracy, sensitivity, specificity, area un-

der the curve (AUC), positive predictive value (PPV),

negative predictive value (NPV), F1 score, and Youden

index [18, 19]. TP and TN represent the number of true-

positive and true-negative samples, respectively. FP and

FN represented the number of false-positive and false-

negative samples, respectively. Sensitivity measures the

ratio of positives that are correctly discriminated.

Specificity measures the ratio of negatives that are cor-

rectly discriminated. AUC is an index used to measure

the performance of the classifier. NPV was used to eval-

uate the algorithm for screening, and PPV represents the

probability of developing a disease when the diagnostic

index is positive. The Youden index is the determining

exponent of the optimal bound. The F1 score was a mea-

sure of the accuracy of a binary model. Additionally, the

performance was evaluated with F-measure (F1) to com-

pare the similarity and diversity of performance. The

Kappa value measures the agreement between the CNN

model prediction and the clinical report [20].

Results

Algorithm development

To develop a deep learning algorithm for the identification

of viral pneumonia images, we initially enrolled 259 pa-

tients, out of which the cohort included 180 cases of typical

viral pneumonia, diagnosed before the COVID-19 out-

break. These patients were termed COVID-19 negative in

the cohort. The other 79 cases were from the three hospitals

Table 1 The architecture of M-inception

Inception part Layer Patch size/stride or remarks

Conv 3 × 3/2

Conv 3 × 3/1

Conv padded 3 × 3/1

Pool 3 × 3/2

Conv 3 × 3/1

Conv 3 × 3/2

Conv 3 × 3/1

Inception 3x, 5x, 2x

Pool 8 × 8

Linear Logits

Softmax Classifier

Modified part Fc1 Batchnorm½ dropout 0:5ð Þ 512d Linear�

Fc2 Batchnorm½ dropout 0:5ð Þ 2d Linear�
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with confirmed nucleic acid testing of SARS-COV-2,

termed COVID-19 positive. Two radiologists were asked

to review the images and sketched 1065 representative im-

ages (740 for COVID-19 negative and 325 for COVID-19

positive) for analysis (Fig. 2 is shown as an example). These

images were randomly divided into training set and valida-

tion set. The model training was iterated for 15,000 epochs

with an initial learning rate of 0.01. A total of 320 images

(160 images fromCOVID-19 negative and 160 images from

COVID-19 positive) were obtained to construct the model.

To test the stability and generalization of the model, 455

images (COVID-19 negative 360 images and COVID-19

positive 95 images) were obtained for internal validation

from center 1 and 290 images (COVID-19 negative 220

images and COVID-19 positive 70 images) were obtained

from centers 2 and 3 for external validation. The training

loss curve and accuracy are shown in Fig. 3. The model was

constructed and the validated accuracy was measured for

every 100 steps to adjust the super parameter during the

training process. Both the accuracy and loss curves tended

to be stable.

Deep learning performance

The algorithm yielded an AUC of 0.93 (95% CI, 0.90 to 0.96)

in internal validation and 0.81 (95% CI, 0.71 to 0.84) in the

external validation based on the certain CT images (Fig. 4).

Using the maximized Youden index threshold probability, the

sensitivity was 0.88 and 0.83, specificity was 0.87 and 0.67,

accuracy was 89.5% and 79.3%, negative prediction values

were 0.95 and 0.90, the Youden indexes were 0.75 and 0.48,

and the F1 scores were 0.77 and 0.63 for the internal and ex-

ternal datasets, respectively (Table 2). The kappa values were

0.69 and 0.48 for internal and external validation in certain CT

images, respectively, indicating that the prediction of COVID-

19 from the CNN model is a highly consistent with the patho-

genic testing results. Furthermore, we performed an external

validation based on multiple images from each patient. The

accuracy was 82.5%, the sensitivity 0.75, the specificity 0.86,

the PPV 0.69, the NPV 0.89, and the kappa value was 0.59.

Comparison of AI with radiologist prediction

At the same time, we asked two skilled radiologists to

assess the 745 images for a prediction. Radiologist 1

achieved an accuracy of 55.8% with a sensitivity of 0.71

and specificity of 0.51, and radiologist 2 achieved a sim-

ilar accuracy of 55.4% with a sensitivity of 0.73 and spec-

ificity of 0.50 (Table 3). These results indicate that it was

difficult for radiologists to make predictions of COVID-

19 with eye recognition, further demonstrating the advan-

tage of the algorithm proposed in this study.

Prediction of COVID-19 on CT images from
pathogenic-negative patients

Because high false-negative results were frequently reported

from nucleic acid testing, we aimed to test whether the algorithm

Fig. 3 Training loss curves and

accuracy of the model. The loss

curve and accuracy tend to be

stable after descending, indicating

that the training process

converges

Fig. 2 An example of COVID-19 pneumonia features. The blue arrow

points to ground-glass opacity, and the orange arrow indicates the pleural

indentation sign
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could detect COVID-19 when the pathogenic test was negative.

To achieve this goal, we enrolled an additional 15 COVID-19

cases, in which the initial two nucleic acid tests were negative,

and for the third test, they became positive. These CT results

were taken on the same day as the nucleic acid tests (Fig. 5).

Interestingly, we found that 46 out of the 54 images, when

nucleic acid test results were negative, were predicted as

COVID-19 positive by the algorithm, with an accuracy of

85.2%. These results indicate that the algorithm has high value

serving as a screening method for COVID-19.

Discussion

Monitoring and timely identification of PUIs is essential to en-

sure appropriate triaging of staff for duty, further evaluation, and

Fig. 4 Receiver operating

characteristic plots for COVID-19

identification for the deep learn-

ing (inception) algorithm. a

Internal validation. b External

validation
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follow-up. Owing to the limitations of nucleic acid–based labo-

ratory testing, there has been a critical need for faster alternatives

that can be used by front-line health care personnel for quickly

and accurately diagnosing the disease. In this study, we devel-

oped an AI program by analyzing representative CT images

using a deep learningmethod. This is a retrospective,multicenter,

diagnostic study using our modified inception migration neuro

network, which has achieved an overall accuracy of 89.5%.

Moreover, the high performance of the deep learning model we

developed in this study was tested using external samples with

79.3% accuracy. More importantly, as a screening method, our

model achieved a relatively high sensitivity of 0.88 and 0.83 on

internal and external CT image datasets, respectively.

Furthermore, the model achieved better performance for certain

people, with an accuracy of up to 82.5%. Notably, our model

was used to distinguish between COVID-19 and other typical

viral pneumonia, both of which have quite similar radiological

characteristics. During the current COVID-19 global pandemic,

the CNN model can, therefore, potentially serve as a powerful

tool for COVID-19 screening.

It is important to note that our model aims to distinguish

between COVID-19 and other typical viral pneumonia, both of

which have similar radiological characteristics.We compared the

performance of our model with that of two skilled radiologists,

and our model showed much higher accuracy and sensitivity.

These findings demonstrate the proof-of-principle that deep

learning can extract CT image features of COVID-19 for diag-

nostic purposes. Using the supercomputer system, each case took

only approximately 10 s, and it can be performed remotely via a

shared public platform. Therefore, further development of this

system can significantly shorten the diagnosis time for disease

control. Our study represents the first study to apply AI technol-

ogies to CT images for effective screening of COVID-19.

The gold standard for COVID-19 diagnosis has been nucleic

acid–based detection for the existence of specific sequences of

the SARS-COV-2 gene. While we still value the importance of

nucleic acid detection in the diagnosis of SARS-COV-2 infec-

tion, it must be noted that the high number of false negatives due

to several factors such as methodological disadvantages, disease

stages, and methods for specimen collection might delay diag-

nosis and disease control. Recent data have suggested that the

accuracy of nucleic acid testing is about 30–50%, approximately

[4, 7, 8]. Using CT imaging feature extraction, we were able to

achieve more than 89.5% accuracy, significantly outplaying

nucleic acid testing. More interestingly, in testing CT images

from COVID-19 patients when initial pathogenic testing was

negative, our model achieved an accuracy of 85.2% for correctly

predicting COVID-19. According to a study authored by Xia

et al, 75% of patients with negative RT-PCR results demonstrat-

ed positive CT findings [21]. The study recommended chest CT

as a primary tool for current COVID-19 detection.

Deep learning methods have been used to solve data-rich

biology and medicine problems. A large amount of labelled

data are required for training [22]. Although we are satisfied

with the initial results, we believe that higher accuracy can be

achieved by including more CT images in the training.

Therefore, further optimization and testing of this system are

warranted. To achieve this, we generated a webpage that li-

censed healthcare personnel can access, to upload CT images

for testing and validation. The webpage can be accessed using

https://ai.nscc-tj.cn/thai/deploy/public/pneumonia_ct.

Table 3 Performance metrics for

the CNN model versus skilled

radiologists

Performance metric Internal External (based on ROI) External (based on patients) R1 R2

Accuracy, % 89.5 79.3 82.5 55.8 55.4

Sensitivity 0.88 0.83 0.75 0.71 0.73

Specificity 0.87 0.67 0.86 0.51 0.5

PPV* 0.71 0.55 0.69 0.29 0.29

NPVǂ 0.95 0.90 0.89 0.86 0.86

F1 score 0.77 0.63 0.72 0.41 0.42

Kappa 0.69 0.48 0.59 0.15 0.15

Youden index 0.75 0.50 0.61 0.22 0.23

*Positive predictive value; ǂNegative predictive value

Table 2 Deep learning algorithm performance

Performance metric Internal External

AUC (95% CI) 0.93 (0.86 to 0.94) 0.81 (0.71 to 0.84)

Accuracy, % 89.5 79.3

Sensitivity 0.88 0.83

Specificity 0.87 0.67

PPV 0.71 0.55

NPV 0.95 0.90

Kappa* 0.69 0.48

Youden index 0.75 0.50

F1 scoreǂ 0.77 0.63

*Measures the agreement between the CNN model prediction and the

clinical diagnosis. ǂMeasures the accuracy of the CNN model
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Since the COVID-19 outbreak, several CNN models

based on conventional feature extraction have been studied

for COVID-19 screening from CT images. For example,

Yang and colleagues used CNN and analyzed 152 manually

annotated CT images and obtained an accuracy of 0.89 in

COVID-19 diagnosis; however, data from this study were

acquired from embedded figures on PDF files of preprints,

and the validation sets were relatively small [23]. Khater and

colleagues reported an accuracy of 96% using a composite

hybrid feature extraction and a stack hybrid classification

system in distinguishing between severe acute respiratory

syndrome (SARS) and COVID-19 from 51 CT images, and

this method showed a better performance than using the

DCNN algorithm alone [24]. Nuriel also constructed a

DCNNmodel based onMobileNetV2 to evaluate the ability

of deep learning to detect COVID-19 from chest CT images

and achieved an accuracy of 0.84 [25]. Moreover, Halgurd

proposed a novel AI-enabled framework to diagnose

COVID-19 based on smartphone embedded sensors, which

can be used by doctors conveniently [26]. We compared the

four published models and discussed the differences in each

model. Evidently, the accuracies obtained varied, but the

advantage of our model is that it distinguishes COVID-19

from other typical viral pneumonia. For example, despite

the high accuracy of the model from Khater, it could only

distinguish SARS and COVID-19. The two models from

Yang et al and Nuriel et al obtained similar accuracies; how-

ever, they compared COVID-19 and other lung diseases.

Accurately distinguishing between COVID-19 and other

typical viral pneumonia, both of which have similar radio-

logic characteristics, is critical whenCOVID-19 and season-

al viral pneumonias co-exist. Moreover, our model showed

continuous improvement as well as optimization.

However, our study has some limitations. Although DL

was used to represent and learn predictable relationships in

many diverse forms of data, and it is promising for applica-

tions in precision medicine, many factors such as low signal-

to-noise ratio and complex data integration have challenged its

efficacy [27]. CT images represent a difficult classification

task due to the relatively large number of variable objects,

specifically the imaged areas outside the lungs that are irrele-

vant to the diagnosis of pneumonia [12]. In addition, the train-

ing dataset is relatively small. The performance of this system

is expected to increase when the training volume is increased.

Notably, the features of the CT images we analyzed were from

patients with severe lung lesions at later stages of disease

development. Although we enrolled 15 patients with

COVID for assessing the value of the algorithm for early

diagnosis, a larger number of databases to associate this with

the disease progress and all pathologic stages of COVID-19

are necessary to optimize the diagnostic system.

In the future, we intend to link the hierarchical features of

CT images to features of other factors such as genetic, epide-

miological, and clinical information for multi-modelling anal-

ysis to facilitate enhanced diagnosis. The artificial intelligence

developed in our study can significantly contribute to

COVID-19 disease control by reducing the number of PUIs

to aid timely quarantine and treatment.
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