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ABSTRACT Accurately identifying and categorizing cancer structures/sub-types in histological images is

an important clinical task involving a considerable workload and a specific subspecialty of pathologists.

Digitizing pathology is a current trend that provides large amounts of visual data allowing a faster and more

precise diagnosis through the development of automatic image analysis techniques. Recent studies have

shown promising results for the automatic analysis of cancer tissue by using deep learning strategies that

automatically extract and organize the discriminative information from the data. This paper explores deep

learning methods for the automatic analysis of Hematoxylin and Eosin stained histological images of breast

cancer and lymphoma. In particular, a deep learning approach is proposed for two different use cases: the

detection of invasive ductal carcinoma in breast histological images and the classification of lymphoma sub-

types. Both use cases have been addressed by adopting a residual convolutional neural network that is part of

a convolutional autoencoder network (i.e., FusionNet). The performances have been evaluated on the public

datasets of digital histological images and have been compared with those obtained by using different deep

neural networks (UNet and ResNet). Additionally, comparisons with the state of the art have been considered,

in accordance with different deep learning approaches. The experimental results show an improvement of

5.06% in F-measure score for the detection task and an improvement of 1.09% in the accuracy measure for

the classification task.

INDEX TERMS Histological images, deep learning, multi-classification, detection.

I. INTRODUCTION

The digitalization of histological specimens by using modern

whole-slide digital scanners brings not only the advantage

of an easy storage, visualization, and analysis of the images,

but also affords the possibility of applying automatic image

analysis techniques to digital histological slides to provide

accurate quantifications (e.g., tumor extent and nuclei counts)

and classifications of tumor sub-types with the aim both of

reducing inter- and intra-reader variability among patholo-

gists and of accelerating the diagnosis process. Any automatic

analysis of digital histological images is a very challenging

task, since both the spatial arrangement of the structures,

e.g. nuclei and stroma, and the color distribution can be very

different, also for images belonging to the same tumor class.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yudong Zhang.

Deep learning (DL) approaches are particularly suitable to

address these problems and to perform tasks, such as the

detection of specific areas of the disease or the discrimina-

tion between the tumor classes of interest. Indeed, especially

when a large number of samples are available for training,

a DL system learns representative features automatically and

directly from the digital images of tumor tissue, with the goal

of obtaining a maximum separability between the classes of

structures or tumor sub-types.

In such a context, this paper presents a DL approach

addressing two different use cases: i) the detection of invasive

ductal carcinoma (IDC) of breast cancer, and ii) the lym-

phoma multi-classification in chronic lymphocytic leukemia

(CLL), follicular lymphoma (FL), and matle cell lymphoma

(MCL).

IDC is themost common form of invasive breast cancer and

its precise detection on whole-slide images (WSI) is crucial
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to the diagnosis and sub-sequent estimation of grading the

tumor aggressiveness of breast cancer. Manual IDC detection

is tedious and time-consuming for pathologists and could

be influenced by significant inter- and intra-pathologist vari-

ability in the diagnosis and interpretation of specimens. The

diagnosis of lymphoma is a problematic and difficult process

for pathologists. Lymphoma is a type of cancer affecting the

lymphatic system and it is classified in different sub-types.

In particular, three of these sub-types, CLL, FL and MCL

account for 70% of lymphoma cases. The most important

diagnostic criterium for lymphoma are the morphological

features of the tumor which can interpreted by an experi-

enced hematopathologist, in such a way as to make a further

differentiation between malignancy types to guide treatment

decisions.

Both detection and classification tasks increase the demand

for a reduction of workloads and of inter- and intra-observer

variability, and also imply sub-specialty requirements in

pathology. As a result, there is a great interest in DL net-

works which have the potential to reduce these workloads

and augment the diagnostic capabilities of pathologists. The

choice of a DL network and the training strategy to apply for

a given task, depend on the type of pathological analysis to

be performed.

In this paper, both use cases are addressed by adopting the

residual convolutional autoencoder FusionNet, in relation to

two different scenarios:

• the convolutional autoencoder FusionNet is trained

under a sparsity constraint in an unsupervised manner;

and

• a residual convolutional neural network that is the

encoding part of FusionNet is trained in a supervised

manner.

In both scenarios, the features learned at the end of the

encoding stage are used for the classification, by means

of a softmax classifier. Indeed, also the IDC detection

is addressed as a classification task, by splitting the

WSI into patches and classifying each patch as IDC or

non-IDC.

The performances of each scenario have been evalu-

ated on public datasets [2], containing histological images

acquired by using Hematoxylin and Eosin (H&E) staining

technique and in relation to selected pathological use cases.

We also investigated the performances of different DL net-

works (ResNet and UNet) for both use cases. Moreover,

comparisons with different approaches in literature, working

on the same datasets, have been taken into account. The

performance evaluation of these methods has been given in

terms of F-measure score and Balanced Accuracy (BAC) for

the IDC detection and in terms of Accuracy for the lymphoma

multi-classification. On observing the classification perfor-

mance using overall validation and test accuracies, our second

scenario has produced favorable results for both use cases.

Moreover, our results outperform the state of the art. Our

approach achieved the best quantitative results both for IDC

detection (F-measure and BAC equal to 81.54% and 87.76%,

respectively) and for lymphoma multi-classification (Accu-

racy equal to 97.67%).

The rest of the paper is organized as follows: previous

related works are presented in Section II; a description of the

approach is presented in Section III; the experimental setup,

comparative strategies and results for the two different use

cases are discussed in Section IV; and finally, in Section V

certain conclusions are drawn.

II. RELATED WORK

A large number of papers have been published concerning

the detection and classification of histological images. Some

papers propose methods that use various image processing

and machine learning techniques (e.g. SVM and decision

trees) exploiting low-level hand-crafted features, such as

color, texture, or morphology [6], [18], [22], [25], [29], [30].

Most methods in literature for the analysis of histological

images are based on DL networks (e.g., AlexNet, ResNet

and UNet [11], [15], [21]), that automatically learn features

that optimally represent the data for the problem at hand.

In some cases DL networks are integrated with well-known

classifiers (e.g., SVM,RandomForest andAdaboost), and the

methods adopt appropriate training strategies (e.g., defined

patches, pre-processing, parameter setting and selected loss

function). Additionally, for a specific task, the performance

of the different approaches depends on the adopted network

and the developed training strategy. It is no coincidence that

many teams in international competitions have adopted the

same network architecture on the same dataset with different

training strategies for a specific task, obtaining widely differ-

ent results [3], [17], [24].

Most of these methods are based on the use of Convolu-

tional Neural Networks (CNN) for the detection and classifi-

cation tasks. In the context of the detection task, the method

in [26] won the first place at the ISBI2016 Metastasis Detec-

tion Challenge [17], by adopting a CNNwith 27 layers, while

the method in [8] outperformed in terms of accuracy the other

methods at the ICPR2014 MITOS-ATYPIA Challenge [1]

by using deep cascaded CNN. For the detection of IDC,

the method in [9] yielded the best quantitative results in

comparison with approaches using hand-crafted image fea-

tures on the dataset available for download at [2]. For the

classification task, a CNN based on AlexNet was adopted

in [23] in order to discriminate between benign and malig-

nant breast cancer tumors. This approach outperformed the

previously reported results obtained by other machine learn-

ing models trained with hand-crafted textural descriptors on

the BreaKHis dataset [22]. The authors in [4] proposed a

comparison between two approaches (hand-crafted and CNN

based) for the classification of breast cancer histological

images, showing that their CNN architecture outperforms

the state of the art on BreakHis dataset. Other interesting

experimental results were obtained for the same dataset by

the method proposed in [5] by classifying breast cancer his-

tological images independently of the image magnification

factor. Three different configurations of ResNet were used by
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FIGURE 1. FusionNet architecture.

the authors in [7] for the multi-classification of breast cancer

obtaining a remarkable performance on the images provided

for the ICIAR2018 BACH Challenge [3]. Finally, in [13]

AlexNet, using the same training strategy, was adopted both

for IDC detection and lymphoma multi-classification on the

datasets available for download at [2], outperforming the

method proposed in [9], in relation to IDC detection.

Differently from the methods based on the CNN trained

end-to-end technique for classification, other approaches

have been based on unsupervised networks, mainly autoen-

coders (AE), that do not required labeled samples to detect

the inner structure to be used for the subsequent detection and

classification tasks. Indeed, AEs are commonly used for the

pre-training of different deep neural networks or classifiers.

An AE is optimized to learn the principal components of

the data distribution. However, when a non-linear activation

function is used, AE learns over complete unsupervised rep-

resentations by reconstructing the original input, operating

under several constraints (sparsity or hierarchicality) [19].

The authors in [10] employed sparse AEs to learn an unsu-

pervised representation that feeds a softmax classifier over

this representation identifying the image regions that are

most relevant for the basal cell carcinoma cancer detection.

In [12], a Convolutional Sparse AE for simultaneous nucleus

detection and feature extraction in histological tissue images

was proposed. The foreground image was reconstructed by

certain vectors in feature maps that represent salient objects.

Additionally, a Stacked Sparse AE framework was presented

in [28] for automated nucleus detection on breast cancer his-

tological images.

III. METHODOLOGY

The proposed approach is designed for IDC detection of and

lymphoma multi-classification in H&E histological images.

Differently from the segmentation process, the detection task

does not involve the delineation of accurate boundaries for

the regions of interest, but only the identification of the areas

including such regions. For this reason, the detection of IDC

can be addressed as a classification problem: the WSI is

divided into patches and the final detection is obtained by

marking patches with an IDC or a non-IDC label.

The classification for both tasks is based on the use of

a convolutional autoencoder (CAE), namely FusionNet [20].

Similarly to all CAE networks, the architecture of FusionNet

has a configuration which is completely symmetrical, but

it is also a residual network, due to the presence of skip

connections (see Fig. 1).

FusionNet introduces long skip connections between the

feature maps in the encoder and those located at the same

level in the decoder; moreover, short skip connections are

present in each residual block of the network. With such

a configuration, the information flows within and accross

different levels of the network.

We propose two different scenarios for the classification:

1) Classification by reconstruction - the CAE is trained

under a sparsity constraint in an unsupervised manner;

2) Supervised Classification - only the encoding part of

the CAE is trained and this in a supervised manner.

In both cases, a softmax classifier takes the extracted features

as the input. The output of the softmax classifier produces a

value between 0 and 1 that can be interpreted as the proba-

bility of the input belonging to a given class. The classifier

is trained minimizing the Cross Entropy Loss (CE), used to

measure the divergence between the effective class c and the

predictive class ĉ of n samples:

CE(c, ĉ) = −

n∑

i=1

ci · log(ĉi) (1)

In the first scenario, the network is trained in an unsuper-

vised manner extracting features useful for the reconstruction

of the input image. The obtained representation of the encoder
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FIGURE 2. A graphical representation of SEF.

has a lower dimensionality than the input data. The set of

weights associated with the representation can be interpreted

as the set of feature maps learned by the CAE to be used for

the classification. The Mean Squared Error Loss (MSE) is

used to measure the error between the input image x and the

reconstructed image x̂:

MSE(x, x̂) =

∑n
i=1(xi − x̂)2

n
(2)

Backpropagation is implemented by using the Stochastic

Gradient Descent (SGD) algorithm [16], with a controlled

learning rate. In general, to improve the performance of an

AE and to prevent overfitting, the addition of a sparsity

constraint during the training is suitable [19], [28]. The spar-

sity constraint is imposed on the hidden units, enabling the

AE to discover interesting structures in the data. We have

imposed the sparsity constraint through the introduction of

Kullback-Leibler divergence (KL), that measures the degree

of difference between two distributions with means ρ and

ρ̂j. In detail, ρ refers to the target activation function of the

hidden units and ρ̂j refers to the average activation function of

the hidden unit j. The activation function used for the hidden

units is the sigmoid function.

After the training, a maxpooling layer is applied to the

extracted features and the output is passed to a fully connected

layer that performs the classification by means of a softmax

activation function. In this case, backpropagation is imple-

mented by using the Adaptive Moment Estimation (Adam)

algorithm [14], an extension of the SGD. The algorithm com-

putes adaptive learning rates for each network parameter from

estimates of first and second moments of the gradient.

In the second scenario, only the encoding part of the CAE

is trained in a supervised manner, i.e. the input to the network

is represented by the image and the corresponding class.

The network is trained end-to-end to learn filters and to

combine features with the aim of feeding a fully connected

layer. Also in this scenario, the Adam algorithm is used for

backpropagation and a softmax activation function is used for

the classification.

IV. USE CASES

The proposed approach is based on FusionNet. In particular,

in the ‘‘Supervised Classification’’ scenario only the encod-

ing part of FusionNet is trained, and therefore we refer to this

approach as Supervised Encoder FusionNet (SEF). In Fig. 2,

a graphical representation of SEF is shown. Moreover, both

UNet and ResNet have been considered for comparison in

the experiments. In the ‘‘Supervised Classification’’ scenario,

we will refer to use of UNet as Supervised Encoder UNet

(SEU), while no distinction will be needed for ResNet as it

is not considered in the ‘‘Classification by reconstruction’’

scenario.

The performances have been evaluated on two datasets

available for download at [2]. In the following section,

we will refer to the datasets for IDC detection and for lym-

phoma multi-classification as D-IDC and D-Lymph, respec-

tively. Regarding the implementation details, the framework

has been implemented in Pytorch on a workstation equipped

with 2 Xeon 10-Core E5-2630v4 2,2Ghz 25MB and 4

NVIDIA GEFORCE GTX 1080Ti 11GB PCI-EX.

In the following section, for each use case, details about the

adopted dataset, the training strategy, and the experimental

results compared with other approaches will be given.

A. INVASIVE DUCTAL CARCINOMA DETECTION

The experiments have been performed on the D-IDC dataset,

which includes 162 WSI acquireFFTd at 40×, each parti-

tioned into a set of patches with a size equal to 50×50 pixels.

The number of patches representing IDC and non-IDC is

46, 633 and 124, 011, respectively. An example of invasive

ductal carcinoma is shown in Fig. 3.
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FIGURE 3. Invasive ductal carcinoma: (a) whole slide image; (b) a magnification of the
highlighted box in (a).

TABLE 1. The training parameters for the IDC detection.

TABLE 2. Results of the different approaches for the IDC detection. The best performance is highlighted in bold.

As shown in Fig. 1, the FusionNet encoder is composed

of a set of blocks including downsampling layers. Whenever

downsampling is performed, the input size is halved. This

implies that the input image should have a size allowing for a

scaling of factor 2 for each downsampling and guaranteeing

that the input size of the bridge layer is not too small. In order

to allow a scaling of factor 2, the input of the network is

represented by the central square region of a size of 48 ×

48 pixels, extracted from each patch. Since the encoder is

constituted by 4 downsampling layers, the input size of the

bridge layer is equal to 3 × 3.

Since a large number of images are available, no aug-

mentation operation has been performed. In order to allow

for a comparison with the state of the art, the same training

and testing sets as [9], [13] have been used. In particular,

the training set consists of about 70% of the whole dataset.

The final detection on each WSI will be given in terms of

IDC or non-IDC patches.

The values of the parameters adopted for the training are

given in Table 1. Both scenarios produce 512 feature maps,

subsequently used for the classification step. In the ‘‘Classifi-

cation by reconstruction’’ scenario, a max pooling layer with

a kernel size equal to 2×2 and a stride equal to 2 is applied at

the end of the encoding stage, while in the second scenario the

max pooling layer is substituted by a fully connected layer.

1) EXPERIMENTAL RESULTS AND DISCUSSION

We have compared the performance of the different

approaches in terms of standard metrics, namely Accuracy,

F-Measure, Precision, Sensitivity and Specificity. We eval-

uated the performance also in terms of the Balanced Accu-

racy (BAC) measure, calculated as the average between the

Specificity and Sensitivity. The numerical results of these

experiments are reported in Table 2. Depending on the sce-

nario, the performance has been evaluated by using the

same values as the training parameters for all the consid-

ered approaches with the exception of the number of epochs

for the fine-tuned ResNet that was been reduced to 10 to

prevent the network from overfitting. We have performed

many experiments with different configurations of ResNet
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TABLE 3. Results of the different ResNet configurations for the IDC detection. The best performance is highlighted in bold.

TABLE 4. TP, TN, FP and FN calculated by the different approaches for the IDC detection. The best performance is highlighted in bold.

(i.e. ResNet-18, ResNet-34 and ResNet-50, fine-tuned and

from scratch). The results are shown in Table 3. Indepen-

dently of the configuration, ResNet always outperformed

FusionNet, UNet and SEU, following SEF in the ranking. For

the sake of simplicity, we report in Tables 2 only the results

for the best configuration of ResNet in terms of the F-measure

and BAC (i.e. the fine-tuned ResNet-34).

The SEF method significantly outperformed the other DL

approaches in terms of the accuracy. Indeed, it achieved an

overall increment of 4.86%, 5.52%, 3.7% and 2.33% in accu-

racy as compared to FusionNet, UNet, SEU and ResNet-34,

respectively. Also for the remaining measures, SEF proved

to be the best configuration, followed in the ranking by

ResNet-34, with the exception of the performance in terms of

Specificity, where UNet turns out to be the winning approach.

The numbers of true positive patches (TP), true negative

patches (TN), false positive patches (FP) and false negative

patches (FN) are reported in Table 4.

Figs. 4 and 5 illustrate examples of the IDC detection

result of SEF versus the FusionNet, UNet, SEU and ResNet

methods compared to the ground truth. The true positive

patches are highlighted in green, while the false positive

patches are highlighted in red. All methods showed a rea-

sonable detection performance, but SEF (Figs. 4(d) and 5(d))

revealed much more information compared to the other

images, the result being closer to the ground truth. False

positive patches produced by FusionNet and ResNet-34 tend

to accumulate in specific regions, while those generated by

SEF are sparsely distributed. This suggests that SEF allows

to adopt such a kind of region based decision rules (e.g. the

majority voting), such that a patch is definitely classified as

IDC only when this classification label extends over multiple

adjacent patches.

TABLE 5. The comparisons with the state of the art for the IDC detection
and lymphoma multi-classification. The best performance is highlighted
in bold.

Finally, in the first column of the Table 5 comparisons

between SEF and the other two methods ( [13] and [9]) in the

literature are reported. Methods [13] and [9] were evaluated

using the same dataset D-IDC and are based on AlexNet and a

3-layered CNN, respectively. They were ranked according to

according to the performance of the F-measure and BAC. The

SEF approach outperformed method [13] with an increment

of 5.06% and 3.08% in terms of the F-measure and BAC,

respectively. With respect to method [9], the performance of

SEF showed an increment of 9.74% and 3.53% in terms of

the F-measure and BAC measure, respectively. Comparing

the results of Tables 2 and 5, it is clear that ResNet-34 also

outperformed both methods [13] and [9] in terms of the F-

measure, while the BAC measure was approximately equiva-

lent in all these methods. Finally, residual CNNs end-to-end

trained for classification (i.e., SEF and ResNet) provided the

best performances for the IDC detection task. In particular,

SEF provided the best performance.

B. LYMPHOMA MULTI-CLASSIFICATION

The D-Lymph dataset has been employed as a benchmark to

evaluate the image analysis techniques for the CLL, FL and
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FIGURE 4. Results for the IDC detection (true positive and false positive patches are highlighted in green
and in red, respectively): (a) ground truth (b) FusionNet (c) UNet (d) SEF (e) SEU (f) ResNet-34.

MCL sub-types. In total 374 images were generated, con-

taining 113, 139, and 122 images of CLL, FL and MCL,

respectively. The size of each image was equal to 1388 ×

1040 pixels. In Fig. 6 a sample for each class is shown.

With high resolution images, DL models suffer from high

computational costs and limitations in the number of model

layers and channels. In accordance with a general trend,

the authors in [13] address this problem by training their DL

network on image patches and classifying an image based

on patch-level predictions. We decide on a different strategy,
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FIGURE 5. Results for the IDC detection (true positive and false positive patches are highlighted in green
and in red, respectively): (a) ground truth (b) FusionNet (c) UNet (d) SEF (e) SEU (f) ResNet-34.

that of reducing the input image by a factor about 88%.

Doing so, the spatial organization of cellular structures can

be globally analyzed by the network, while also keeping the

computational cost down. The reduced image had a size equal

to 170×128 pixels. We considered the central square section

with a size equal to 128 × 128 pixels as the input to the

network. In this case, the input size of the bridge layer was

equal to 8 × 8.

An augmentation of the dataset was performed by con-

sidering a set of 9 transformations for each training image
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FIGURE 6. Lymphoma sub-types: (a) MCL (b) CLL (c) FL.

TABLE 6. The training parameters for the lymphoma multi-classification.

TABLE 7. Results of the different approaches for the lymphoma multi-classification. The best performance is highlighted in bold.

(i.e. horizontal flip, vertical flip, three clock-wise rotations of

90◦, and two horizontal and two vertical translations of ±100

pixels). In order to allow a comparison with [13], the same

experimental protocol was followed. In particular, in [13] a

k-fold cross validation with k = 5 was adopted, where each

folder contained 299 training images (consisting of about

80% of the whole dataset) and 75 test images. Differently

from [13], each folder contained resized central regions of

the image together with their corresponding augmentations,

instead of patches resulting from a splitting operation. The

values of the parameters adopted for the training are given

in Table 6. Both scenarios produced 512 feature maps, at the

end of the encoding stage. In the ‘‘Classification by Recon-

struction’’ scenario, a max pooling layer with a kernel size

equal to 4 × 4 and a stride equal to 2 was applied at the end

of the encoding part, producing 2048 feature maps. In the

‘‘Supervised Classification’’ scenario, the max pooling layer

was subsituted by a fully connected layer, which did not

produce any increase in the number of feature maps.

1) EXPERIMENTAL RESULTS AND DISCUSSION

The performances of the different approaches have been

quantitatively assessed by considering the Accuracy mea-

sure. The numerical results of these experiments are reported

in Table 7.

Also in this case, we have performed many experiments

with different configurations of ResNet (i.e. ResNet-18,

ResNet-34 and ResNet-50, fine-tuned and from scratch and

by using two different input sizes i.e. 128×128 and 224×224

pixels). Moreover, by performing Wilcoxon test [27] to val-

idate the statistical significance, we found that the obtained

p-values always exceed 0.7. For this reason, we preferred

to report in Table 8 the results produced by the fine-tuned

ResNet-34, as it provides the lowest standard deviation.

The SEF method achieved an accuracy of 97.67% which

is 20.07%, 32.57%, 4.87%, and 2.2% higher when com-

pared with those of FusionNet, U-Net, SEU and ResNet-

34, respectively. In this use case also, the SEF and ResNet

networks outperformed the other networks. The same values

for the training parameters were used for all the consid-

ered approaches, with the exception of fine-tuned ResNet-34,

which adopted a lower number of epochs (50 epochs) and a

different resolution of the input images (224 × 224 pixels).

In order to further strengthen these results, we have also

performed Wilcoxon test between SEF and the other meth-

ods. The resulting p-values are reported in table 9. With the

exception of the comparison between SEF and Resnet-34 (p-

value = 0.1288), the obtained p-values are always lower than

0.01. Other observations can be made by looking in Table 7

at the values of the standard deviation of accuracy, computed
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TABLE 8. Results of the different ResNet configurations for the lymphoma
multi-classification. The best performance is highlighted in bold.

TABLE 9. The p-values provided by the Wilcoxon test between SEF and
each other methods.

TABLE 10. The confusion matrix of FusionNet.

TABLE 11. The confusion matrix of UNet.

TABLE 12. The confusion matrix of SEF.

by adopting a 5-fold cross validation. The SEF method had a

much lower standard deviation of accuracy when compared

with those of FusionNet, UNet, SEU and ResNet-34. Thus,

the performance of SEF had a lower dependence on the

selection of the training set than each of the other approaches.

Additionally, the Tables 10, 11, 12, 13 and 14 show the confu-

sion matrices of Fusionet, UNet, SEF, SEU and ResNet-34,

respectively. Considering that the average number of MCL,

TABLE 13. The confusion matrix of SEU.

TABLE 14. The confusion matrix of ResNet-34.

CLL and FL images, in the test set, is equal to 24.6, 22.2 and

27.8, respectively, by means of an analysis of the confusion

matrices it is clear that the number of miss-classified images

with SEF was considerably lower than those provided by the

other approaches. The performance of SEF is compared with

method [13], which adopts AlexNet also for this use case and

it is evaluated only in terms of accuracy (see the last column

of the Table 5). The SEF method achieved an accuracy of

97.67% which was 1.09%, higher when compared with the

accuracy of method [13].

For the sake of completeness, we tested also the same

training strategy as [13] for SEF and ResNet-34. Instead of

image resizing preprocessing, the images were split into 48×

48 patches with a stride of 48 avoiding the augmentation of

the dataset. During the testing stage, patches were extracted

using the same methodology, and a voting scheme per sub-

type was used where the votes were aggregated to predict the

class. In particular, the class with the highest number of votes

became the detected class for the entire image. According

to this training strategy, ResNet-34 achieved an accuracy

equal to 96.84% outperforming method [13]. SEF obtained

an accuracy equal to 97.06% and it proved once again to have

the best performance.

V. CONCLUSIONS

In this work, we have suggested a method, namely SEF,

based on a deep network for learning histological images to

avoid hand-crafted pathological features. Using deep learning

approaches with specific settings for cancer detection and

classification is an effective and reliable strategy compared to

conventional approaches. We have shown that the encoder of

FusionNet, which has been designed for image segmentation

and reconstruction, can be adapted for cancer detection and

the classification of histological images.

In detail, our SEF method is based on a Residual CNN (i.e.

the encoder of FusionNet) and a softmax classifier to address

two use cases: the detection of IDC of the breast cancer and

lymphoma multi-classification.

In our experiments, we compared the performances of SEF

against different existing deep neural network (FusionNet,

UNet and ResNet) and the encoding part of UNet under the

same conditions and on the same datasets.
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We have also proposed several strategies for training of

the proposed network, based on the extraction of patches

or on resized images, allowing us to deal with the high-

resolution of histological images. The detailed experimental

analysis and performance comparisons show a significant

improvement of the SEF method in relation to all the consid-

ered DL approaches and other existing methods for both use

cases. The results show that for the considered uses cases,

Autoencoders (FusionNet and UNet) extract features that

are unsuitable for the classification, as they are learned for

the image reconstruction. This is the underlying reason why

CNNs trained end-to-end for classification have provided

a higher performance. In particular, the residual one (SEF

and RESNet) are better at consider for small cellular struc-

tures depicted in the histological images, as they attenuate

the drawback of vanishing gradients. However, this problem

remains, so increasing the deep of the network (from 34 to

50 layers in RESNet) does not translate into an increasing

of the classification performance. In our future work we

aim to explore the application of SEF to other use cases for

histological image analysis and also with different training

strategies.

REFERENCES

[1] (2014). ICPR MITOS-ATYPIA. [Online]. Available: http://mitosatypia-

14.grand-challenge.org/

[2] Lymphoma and IDC Datasets. Accessed: 2016. [Online]. Available:

http://www.andrewjanowczyk.com/deep-learning/

[3] G. Aresta et al. (2018). ‘‘BACH: Grand challenge on breast cancer histol-

ogy images.’’ [Online]. Available: https://arxiv.org/abs/1808.04277

[4] D. Bardou, K. Zhang, and S. M. Ahmad, ‘‘Classification of breast cancer

based on histology images using convolutional neural networks,’’ IEEE

Access, vol. 6, pp. 24680–24693, 2018.

[5] N. Bayramoglu, J. Kannala, and J. Heikkilá, ‘‘Deep learning for magnifi-

cation independent breast cancer histopathology image classification,’’ in

Proc. 23rd Int. Conf. Pattern Recognit. (ICPR), Dec. 2016, pp. 2440–2445.

[6] B. E. Bejnordi et al., ‘‘Stain specific standardization of whole-slide

histopathological images,’’ IEEE Trans. Med. Imag., vol. 35, no. 2,

pp. 404–415, Feb. 2016.

[7] N. Brancati, M. Frucci, and D. Riccio, ‘‘Multi-classification of breast

cancer histology images by using a fine-tuning strategy,’’ in Image Analysis

and Recognition, A. Campilho, F. Karray, and B. ter Haar Romeny, Eds.

Cham, Switzerland: Springer, 2018, pp. 771–778.

[8] H. Chen et al., ‘‘Mitosis detection in breast cancer histology

images via deep cascaded networks,’’ in Proc. AAAI, 2016,

pp. 1160–1166.

[9] A. Cruz-Roa et al., ‘‘Automatic detection of invasive ductal carcinoma

in whole slide images with convolutional neural networks,’’ Proc. SPIE,

vol. 9041, Mar. 2014, Art. no. 904103.

[10] A. A. Cruz-Roa, J. E. A. Ovalle, A. Madabhushi, and F. A. G. Osorio,

‘‘A deep learning architecture for image representation, visual inter-

pretability and automated basal-cell carcinoma cancer detection,’’ in Proc.

Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. Berlin, Ger-

many: Springer, 2013, pp. 403–410.

[11] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for

image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,

Jun. 2016, pp. 770–778.

[12] L. Hou et al., ‘‘Sparse autoencoder for unsupervised nucleus detection

and representation in histopathology images,’’ Pattern Recognit., vol. 86,

pp. 188–200, Feb. 2019.

[13] A. Janowczyk and A. Madabhushi, ‘‘Deep learning for digital pathol-

ogy image analysis: A comprehensive tutorial with selected use cases,’’

J. Pathol. Inform., vol. 7, p. 29, Jul. 2016.

[14] D. P. Kingma and J. Ba. (2014). ‘‘Adam: Amethod for stochastic optimiza-

tion.’’ [Online]. Available: https://arxiv.org/abs/1412.6980

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-

cess. Syst., 2012, pp. 1097–1105.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-

ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,

pp. 2278–2324, Nov. 1998.

[17] Y. Liu et al. (2017). ‘‘Detecting cancer metastases on gigapixel pathology

images.’’ [Online]. Available: https://arxiv.org/abs/1703.02442

[18] R. Nateghi, H. Danyali, and M. S. Helfroush, ‘‘Maximized inter-class

weighted mean for fast and accurate mitosis cells detection in breast cancer

histopathology images,’’ J. Med. Syst., vol. 41, no. 9, p. 146, 2017.

[19] A. Ng, ‘‘Sparse autoencoder,’’ CS294A Lect. Notes, vol. 72, 2011.

[20] T. M. Quan, D. G. Hilderbrand, and W.-K. Jeong. (2016). ‘‘FusionNet:

A deep fully residual convolutional neural network for image segmentation

in connectomics.’’ [Online]. Available: https://arxiv.org/abs/1612.05360

[21] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-NET: Convolutional networks

for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image

Comput. Comput.-Assist. Intervent. Springer, 2015, pp. 234–241.

[22] F. A. Spanhol, L. S. Oliveira, L. Heutte, and C. Petitjean, ‘‘A dataset

for breast cancer histopathological image classification,’’ IEEE Trans.

Biomed. Eng., vol. 63, no. 7, pp. 1455–1462, Jul. 2016.

[23] F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte, ‘‘Breast

cancer histopathological image classification using convolutional neural

networks,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2016,

pp. 2560–2567.

[24] M. Veta et al., ‘‘Assessment of algorithms for mitosis detection in

breast cancer histopathology images,’’ Med. Image Anal., vol. 20, no. 1,

pp. 237–248, 2015.

[25] T. H.Vu, H. S.Mousavi, V.Monga, G. Rao, andU.K.A. Rao, ‘‘Histopatho-

logical image classification using discriminative feature-oriented dictio-

nary learning,’’ IEEE Trans. Med. Imag., vol. 35, no. 3, pp. 738–751,

Mar. 2016.

[26] D.Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck. (2016). ‘‘Deep

learning for identifying metastatic breast cancer.’’ [Online]. Available:

https://arxiv.org/abs/1606.05718

[27] F. Wilcoxon, ‘‘Individual comparisons by ranking methods,’’ Biometrics

Bull., vol. 1, no. 6, pp. 80–83, 1945.

[28] J. Xu et al., ‘‘Stacked sparse autoencoder (SSAE) for nuclei detection on

breast cancer histopathology images,’’ IEEE Trans. Med. Imag., vol. 35,

no. 1, pp. 119–130, Jan. 2016.

[29] K.-H. Yu et al., ‘‘Predicting non-small cell lung cancer prognosis by

fully automated microscopic pathology image features,’’Nature Commun.,

vol. 7, Aug. 2016, Art. no. 12474.

[30] Y. Zhang, B. Zhang, F. Coenen, J. Xiao, and W. Lu, ‘‘One-class kernel

subspace ensemble for medical image classification,’’ EURASIP J. Adv.

Signal Process., vol. 2014, no. 1, p. 17, 2014.

NADIA BRANCATI received the Laurea degree

(cum laude) in computer science from the Uni-

versity of Naples Parthenope, in 2008. She is cur-

rently a Researcher with the National Research

Council of Italy. Her research interests include

mainly image processing, computer vision, and

human–computer interaction, in particular seg-

mentation, image analysis, color image process-

ing, classification, and medical imaging. She is a

member of the Italian Association of Computer

Vision, Pattern Recognition, and Machine Learning (CVPL).

GIUSEPPE DE PIETRO is currently the Director

of the Institute for High Performance Comput-

ing and Networking-CNR and an Adjunct Pro-

fessor with the College of Science and Tech-

nology, Temple University, Philadelphia. He is

actively involved in many European and National

projects, with industrial co-operations too. He has

authored more than 180 scientific papers pub-

lished in international journals and conferences.

His current research interests include cognitive

computing, clinical decision support systems, and software architectures for

e-health. He is an IEEE and KES International Member. He is involved in

many program committees and journal editorial boards.

VOLUME 7, 2019 44719



N. Brancati et al.: DL Approach for Breast IDC Detection and Lymphoma Multi-Classification in Histological Images

MARIA FRUCCI received the Ph.D. degree (cum

laude) in physics from the University of Naples

Federico II, Italy, in 1983. She is currently a Senior

Researcher with the National Research Council of

Italy. She has published more than 100 papers on

different topics, such as natural language, percep-

tion, representation, image analysis, segmentation,

biometrics, color image processing, and medical

imaging. Her research interests include image pro-

cessing, computer vision, and pattern recognition.

She is a member of the Italian Association of Computer Vision, Pattern

Recognition, and Machine Learning (CVPL).

DANIEL RICCIO received the Laurea degree (cum

laude) and the Ph.D. degree in computer sci-

ences from the University of Salerno, Salerno,

Italy, in 2002 and 2006, respectively. He is cur-

rently an Associate Professor with the University

of Naples Federico II. He is also an Associate

Researcher with the National Research Council

of Italy. His research interests include biometrics,

medical imaging, image processing and indexing,

and image and video analytics. He is an IEEE

Member and amember of the ItalianAssociation of Computer Vision, Pattern

Recognition, and Machine Learning (CVPL).

44720 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	USE CASES
	INVASIVE DUCTAL CARCINOMA DETECTION
	EXPERIMENTAL RESULTS AND DISCUSSION

	LYMPHOMA MULTI-CLASSIFICATION
	EXPERIMENTAL RESULTS AND DISCUSSION


	CONCLUSIONS
	REFERENCES
	Biographies
	NADIA BRANCATI
	GIUSEPPE DE PIETRO
	MARIA FRUCCI
	DANIEL RICCIO


