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Abstract: The digestive tract, often known as the gastrointestinal (GI) tract or the gastrointestinal
system, is affected by digestive ailments. The stomach, large and small intestines, liver, pancreas
and gallbladder are all components of the digestive tract. A digestive disease is any illness that
affects the digestive system. Serious to moderate conditions can exist. Heartburn, cancer, irritable
bowel syndrome (IBS) and lactose intolerance are only a few of the frequent issues. The digestive
system may be treated with many different surgical treatments. Laparoscopy, open surgery and
endoscopy are a few examples of these techniques. This paper proposes transfer-learning models
with different pre-trained models to identify and classify digestive diseases. The proposed systems
showed an increase in metrics, such as the accuracy, precision and recall, when compared with other
state-of-the-art methods, and EfficientNetB0 achieved the best performance results of 98.01% accuracy,
98% precision and 98% recall.

Keywords: gastrointestinal tract; digestive diseases; deep learning; convolutional neural network;
transfer learning

1. Introduction

The human digestive system may be affected by several diseases. Any ailment that
affects the digestive system is referred to as a digestive disease. Digestion disorders impact
the gastrointestinal tract—sometimes referred to as the GI tract or the gastrointestinal
system. The GI tract is made up of the stomach, large and small intestines, liver, pancreas
and gallbladder (Figure 1).

Figure 1. Digestive system (Source [1]).
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The gastrointestinal (GI) tract is related to three of the eight most-prevalent malignan-
cies. Approximately 2.8 million new cases and 1.8 million fatalities from colon, stomach
and esophageal cancer occur each year [2]. The term “gastrointestinal cancer” describes
cancerous disorders of the GI tract as well as the esophagus, stomach, biliary system,
pancreas, small intestine, large intestine, rectum and anus. The signs and symptoms are
related to the damaged organ and may include blockage (resulting in difficulties eating or
urinating), abnormal bleeding or other related issues.

Overall, compared to other systems in the body, the GI tract and the supporting
digestive organs (pancreas, liver and gall bladder) are the primary causes of cancer and
cancer-related fatalities. Since 2020, nearly 27,600 general public in America have suffered
from abdominal tumors, and 11,010 people are deceased [3]. The threat aspect of abdom-
inal tumors is more advanced in men compared to women. Gastrointestinal polyps are
abnormal tissue growths on the mucosa of the stomach and colon and are the source of
gastrointestinal cancer. They develop slowly, and a person can feel the symptoms only
when the polyps are huge. However, if discovered at an early stage, polyps can be avoided
and treated.

Gastroscopy and colonoscopy are the two types of endoscopic examinations that
play vital roles in the early detection of polyps in the GI tract and, thus, reduce the
possible diseases [4]. While a colonoscopy checks the large intestine (colon) and rectum,
a gastroscopy examines the upper GI tract, including the esophagus, stomach and first
portion of the small bowel. Both of these tests include a real-time visual examination of the
GI tract’s interior accomplished using digital high-definition endoscopes.

One of the newest medical imaging techniques for diagnosing gastrointestinal diseases,
such as stomach ulcers, bleeding and polyps, is called wireless capsule endoscopy (WCE) [5].
A small wireless camera is used during a procedure called a capsule endoscopy to obtain
images of the digestive system. The patient ingests a vitamin-sized capsule that contains
an endoscopic camera. Thousands of photos are taken by the camera while the capsule
passes through the digestive system, and they are sent to a recorder that the patient wears
on a belt around their waist.

Doctors can view the interior of the small intestine with the use of capsule endoscopy,
which is easier to access than more conventional endoscopic techniques. In traditional
endoscopy, a long, flexible tube with a video camera is inserted down the patient’s throat
or via the rectum. Usually, the endoscopy is completed in eight minutes on one patient.
The numerous images produced by medical capsule endoscopy require a great deal of time
for specialists to review. Approximately 56,000 frames are produced for an eight-minute
examination. However, only a handful of them are significant, and the remaining frames
are ignored.

It is difficult to identify contaminated frames from those 56,000 frames, and hence
this selection of significant frames is a crucial task [6]. Specialists manually complete this
laborious and time-consuming task. After choosing the crucial frames, a second study was
conducted to categorize the frames in accordance with infections, such as polyps, ulcers
and bleeding. Manual labeling of this kind always requires a skilled individual. This makes
manual diagnosis challenging, and a poor diagnosis could result from the radiologist’s
incompetence and other human factors.

The experts may differ in their classification of various endoscopic findings and sever-
ity assessments. Identification of disease level must be precise as it may affect the treatment
and follow-up. Endoscopic examinations are resource-intensive and necessitate specialized
people as well as costly technological equipment. To minimize disparities, enhance quality
and make the most use of limited medical resources, the automatic detection, recognition
and assessment of abnormal findings are likely to be beneficial.

In order to diagnose diseases without the aid of an expert, an automated computing
system using WCE frames is required [7]. However, these systems struggle with difficul-
ties, such as poor contrast and complicated background images for reliable recognition.
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A number of imaging techniques have evolved, including 3D imaging, narrow-band imag-
ing (NBI), magnifying endoscopy (ME) and autofluorescence imaging (AFI).

Therefore, a computer-aided automatic approach would be valued for accurately ana-
lyzing tumors and for doing so in the early stages of cancer. This has been demonstrated
to improve the efficacy and quality of gastroscopy in routine clinical practice, acting as
a “third eye” for endoscopists. Due to ongoing advancements in algorithms, hardware
performance, processing power and the gathering of numerous labeled endoscopic image
datasets, deep-learning (DL) technology have recently greatly enhanced the performance
of computer-aided diagnosis systems. Therefore, automatic GI illness classification is
still a topic that has to be studied in order to improve lesion identification and classifica-
tion accuracy.

This paper mainly contributes to providing a computer-aided classification method
for gastrointestinal diseases using endoscopic images without any preprocessing steps
or image enhancement process. In this paper, we propose a transfer-learning approach
using an EfficientNetB0 pre-trained model, and we perform a wide range of experiments
to validate the efficiency of the proposed model. In addition, we compare our results
with other related contemporary approaches and demonstrate better results. We also
highlight the region in the endoscopic image that contributes to disease classification using
Grad-CAM.

The remainder of the paper is structured as follows: An overview of gastrointesti-
nal disorders affecting the GI tract is provided in Section 2. The many state-of-the-art
(SOTA) techniques are described in Section 3. The methods and materials needed to diag-
nose a dataset are covered in Section 4. The analysis and study findings are reported in
Section 5 along with comparisons between the proposed system and findings from other
investigations. Section 6 presents our conclusions.

2. An Overview of Digestive Diseases
2.1. Cecum

The largest bowel’s closest portion is called the cecum. Reaching the cecum provides
evidence that a colonoscopy has been completed, and this completion rate has proven to be
a reliable quality measure for colonoscopies [8]. Therefore, it is crucial to recognize and
record the cecum. The appendiceal aperture is one of the traits that identify the cecum.
When identified or photographed in the reports, this—together with a typical configuration
on the electromagnetic scope tracking system—may be utilized as evidence for cecum
intubation [9]. The appendiceal orifice is depicted as a crescent-shaped slit in Figure 2, and
the scope configuration for the cecal position is shown in green in Figure 2.

Figure 2. Sample images from each disease.
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2.2. Pylorus

The region around the passage from the stomach into the first segment of the small
bowel (duodenum) is referred to as the pylorus. Circumferential muscles in the aperture
regulate the passage of food out of the stomach. One of the more difficult techniques in
gastroscopy—endoscopic instrumentation to the duodenum—requires the identification of
the pylorus. In order to detect certain conditions, such as ulcerations, erosions or stenosis,
a thorough gastroscopy includes an examination on both sides of the pyloric aperture. An
endoscopic view of a healthy pylorus as seen from inside the stomach is shown in Figure 2g.
The smooth, round aperture may be seen in this image as a black circle surrounded by
uniformly colored stomach mucosa.

2.3. Z Line

The gastro-esophageal junction, which marks the transition between the stratified
squamous epithelium in the esophagus and the intestinal epithelium of the gastric cardia,
is known as the Z line in the esophagus (the squamocolumnar junction). Although the Z
line is a typical result, not all studies show it. Although the real danger of this finding is de-
batable, an irregular or raised Z line signals probable distal esophageal metaplasia/Barrett
esophagus.

2.4. Ulcerative Colitis

The large bowel is affected by ulcerative colitis, a chronic inflammatory condition.
The diagnosis is mostly based on colonoscopic findings, and the condition may have a
significant impact on the quality of life. There are four levels of inflammation: none, mild,
moderate and severe—each having a unique endoscopic profile. For instance, swollen
and red mucosa is a sign of a mild condition, whereas ulcerations are more noticeable in a
moderate case. Figure 2e depicts a case of ulcerative colitis with mucosal bleeding, edema
and ulceration. Fibrin, which is white in the image, covers the wounds. An automatic
computer-aided evaluation method can help to grade the disease severity more accurately.

2.5. Esophagitis

The esophagus will become inflamed with esophagitis. The mucosal lining and circular
and longitudinal smooth muscle fibers make up the esophagus—a tube. Food and liquids
often travel through it as it links the throat to the stomach. Esophagitis can be asymptomatic,
or it can produce searing discomfort in the chest and/or abdomen, especially when lying
down or straining, and it can make swallowing challenging (dysphagia). Acid reflux
from the stomach into the lower esophagus is the most typical cause of esophagitis. If the
condition is not addressed, it may result in esophageal pain and scarring. Esophagitis may
lead to esophageal ulcers if the irritation is not given time to heal. Barrett’s esophagus can
result from esophagitis, which also raises the risk of esophageal cancer.

2.6. Polyps

Polyps are intestinal lesions that may be identified by mucosal outgrows. A typical
polyp is demonstrated in Figure 2f. The polyps may be identified from normal mucosa by
color and surface pattern, and they can be flat, raised or pedunculated. The majority of
intestinal polyps are benign; however, some might develop into cancer. In order to stop the
growth of colorectal cancer, polyps must be found and removed. Automatic identification
could enhance the quality of a checkup because doctors may ignore polyps. This aids
in locating the endoscope tip’s present location (and, consequently, the location of the
polyp) along the length of the colon during live endoscopy. For diagnosis, evaluation and
reporting, automatic computer-assisted polyp identification would be beneficial.

2.7. Dyed Resection Margins

When determining whether or not the polyp has been entirely removed, the resection
margins are crucial. Continued growth and, in the worst-case scenario, the development
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of cancer might result from residual polyp tissue. The resection location following a
polyp-ectomy is shown in Figure 2d.

2.8. Dyed and Lifted Polyps

The injection of saline and indigo carmine was used to raise a polyp as seen in Figure 2a.
Contrasted with the darker normal mucosa, the pale blue polyp borders are easily seen.
The eventual presence of non-lifted regions might indicate malignancy.

3. Literature Review

Efficient assistance for pathological findings is offered by a computer-aided diagnostic
system (CADx), which helps medical professionals to diagnose and identify anomalies. In
the past, machine-learning models and, currently, deep-learning models are becoming vital
players in spotting abnormalities in the GI tract.

Handcrafted features, such as color, texture and edge features, have been extracted
from endoscopic images that rely on trial and error for disease diagnosis using machine-
learning algorithms. Convolutional neural networks (CNNs) have started to address
these feature engineering issues, and their use of supervised learning has significantly
enhanced the ability to diagnose medical images. By applying engineering techniques
to the learning process, CNNs have demonstrated an outstanding capacity to extract
features [10]. Medical image diagnostics have been proven to beat expert performance
using deep-learning systems. Therefore, computer-aided diagnosis for endoscopic imaging
utilizing deep-learning algorithms has the potential to attain diagnostic accuracy that is
superior to that of qualified specialists.

In order to diagnose colon polyps, Karkanis et al. [11] presented a method for obtaining
color characteristics based on wavelet decomposition. In numerous studies, authors have
used machine-learning techniques to extract features from gastrointestinal images using
edge shape and valley information, polyp-based local binary, gray-level co-occurrence
matrices (GLCMs), wavelets and context-based features [12–14].

In [15], gemstone spectrum imaging was employed to analyze lymph node metastases
in gastric cancer utilizing machine-learning techniques. With 38 lymph node samples from
gastric cancer, they utilized the kNN classifier to differentiate lymph node metastasis from
non-lymph node metastasis, achieving a global accuracy of 96.33% after utilizing feature
selection and metric knowledge approach to minimize data dimension and feature space.

Wang Y et al. [16] devised a system for colonoscopy polyp detection. Throughout
the colonoscopy, this system can provide an alarm with a real-time reaction. To recognize
polyp boundaries, the authors employed visual fundamentals and a rule-based classifier.
For polyp finding, the system attained an accuracy of 97.7%.

A CNN approach for detecting polyps from CT colonography images was presented
by Godkhindi and Gowda [17]. Their algorithm isolates the colon from the other organs by
segmenting it from the CT image. The colon polyp is subsequently identified by extracting
the form features. Ozawa et al. [18] described a method for Single Shot MultiBox Detector
(SSD)-based colorectal polyp detection and reported encouraging diagnostic outcomes.
A two-stage polyp segmentation and automated classification system were presented by
Pozdeev et al. [19]. The presence or absence of a tumor is classified in the first stage using
the overall characteristics of endoscopic images, and CNN segmentation is used in the
second step.

By extracting color information from lesions, Min et al. [20] created a computer-aided
approach to diagnose linked color imaging. The technique successfully distinguished
between adenomatous polyps and non-adenomatous polyps in pictures. In addition,
Song et al. [21] used CNN techniques to establish a computer-aided approach for classifying
colorectal polyp histology into three categories: serrated polyp, deep submucosal cancer
and benign adenoma mucosal or superficial submucosal cancer.

Segu et al. [22] proposed a detailed CNN technique to describe small intestinal motion.
This CNN-based strategy made use of the overall depiction of six separate abdominal motil-
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ity events by mining deep features, which resulted in superior classification performance
when compared to the other handmade feature-based approaches. Despite achieving a
high classification score of 96% accuracy, they only considered a small number of classes.

Gamage et al. [23] employed pre-trained DenseNet-201, ResNet-18 and VGG-16 CNN
prototypes as feature extractors with a universal average pooling (GAP) layer to produce
a collection of deep features as the only feature vector with a probability correctness of
97.38%. The suggested technique predicted only eight different types of digestive tract
abnormalities. In this paper, we propose a transfer-learning model that enhances the
prediction accuracy of GI tract diseases.

Sutton et al. [24] used CNN techniques to clearly discriminate patients with ul-
cerative colitis from non-ulcerative colitis and to show the endoscopic disease severity.
Yogapriya et al. [25] studied the GI tract disease classification using VGG16, ResNet-18 and
GoogLeNet models and reported 96.33% accuracy with VGG-16.

4. Experimental Setup

The entire experiment was conducted using an openly accessible multi-class KVASIR
dataset [26]. A significant number of images are available in the dataset to employ in a
variety of tasks, including image retrieval, machine learning, deep learning and transfer
learning. The collection includes 8000 expert-verified images of anatomical landmarks,
pathological findings and endoscopic operations in the GI tract for eight distinct digestive
diseases. The Z line, pylorus and cecum are anatomical markers, whereas esophagitis,
polyps and ulcerative colitis are pathological findings.

The images in the dataset range in resolution from 720 × 576 to 1920 × 1072 pixels,
and they are grouped with names that correspond to the contents of the images. The
position and configuration of the endoscope inside the intestine are shown in some of the
image classes and presented as a green picture-in-picture taken using an electromagnetic
imaging system (ScopeGuide, Olympus Europe), which may aid in the interpretation of
the image. In this paper, we considered five diseases—dyed lifted polyps, normal cecum,
normal pylorus, polyps and ulcerative colitis—for the classification task.

A total of 5000 images for the five diseases with each disease consisting of 1000 images
were considered for the experiment. For the classification task, the dataset was split into
training, validation and test sets in the ratio of 80%, 10% and 10%, respectively. For the
custom CNN, 100 epochs were considered while transfer-learning approaches attained
better results in 10 epochs.

4.1. CNN and Transfer Learning

In this study, we conducted two experiments: custom deep CNN and transfer learning
(TL) using pre-trained CNN models with the KVASIR image dataset. We did not employ any
preprocessing or augmentation techniques. We utilized Google Tensorflow as the backend
for all deep-learning implementations, together with Keras, and the implementation was
conducted using a MacBook M1 Air with 16GB RAM. We created a custom CNN, with five
convolutional layers, trained from scratch.

The rectified linear unit (ReLU) and maxpooling were utilized as the activation func-
tion and pooling function, respectively. The final classification phase was performed using
two dense layers with ReLU and Sigmoid acting as the activation functions with a 0.5
dropout inserted in each layer. We used the Adam optimizer, and the custom CNN was
trained with 100 epochs. The hyperparameters used are shown in Table 1.

Table 1. The model hyperparameters.

Custom CNN
Layers

FC
Layers Batch Size Optimizers Activations Dropout

5 2 64 Adam ReLu + Softmax 0.25
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A model created for one task being used as the basis for another using the machine-
learning technique is known as transfer learning. This method can train deep neural
networks with relatively minimal data, making it quite popular in deep learning. It can
occasionally take days or even weeks to train a deep neural network from scratch on a
challenging problem; therefore, transfer learning decreases training time as well. In this
paper, we use four popular DL models as the base model for TL: ResNet50, InceptionV3,
DenseNet121 and EfficientNetB0. A brief overview of each model is given below:

4.2. ResNet50

A 50-layer convolutional neural network called ResNet50 has 48 convolutional layers,
one MaxPool layer and one average pool layer. Deep networks are challenging to train
because of the well-known vanishing gradient problem in which the gradient becomes
increasingly small as it is repeatedly multiplied and back-propagated to older layers. Due
to this, with a deeper network, its performance becomes saturated or even starts to decline
quickly. ResNet uses skip connections to transfer the output from one layer to another. This
aids in reducing the issue of the vanishing gradient. The ResNet50 model uses a bottleneck
design for its building block. A “bottleneck” residual block employs 1 × 1 convolutions to
minimize the number of parameters and matrix multiplications. Each layer’s training can
now be completed much more quickly.

4.3. InceptionV3

A convolutional neural network design from the Inception family called InceptionV3
includes a number of advances, such as the inclusion of an auxiliary classifier to transport
label information lower down the network, factorized 7 × 7 convolutions and employing
label smoothing. The InceptionV3 model incorporates several changes, such as factorization
of larger convolutions into smaller convolutions, spatial factorization into asymmetric
convolutions, usage of auxiliary classifiers and reduction of the grid size, resulting in an
architecture made up of 42 layers. Compared to its predecessors and its contemporaries,
the InceptionV3 model has an incredibly low error rate and high-performance efficiency.

4.4. DenseNet121

As stated earlier, when the number of layers increases or becomes deeper, the van-
ishing gradient problem arises. By altering the typical CNN design and streamlining the
connection pattern across layers, DenseNet alleviates this issue. Each layer in a DenseNet
design is directly linked to every other layer—thus, the term densely connected convolu-
tional network. There are L(L + 1)/2 direct connections for layers of length ‘L’. A total of
120 convolutions and four AvgPool make up DenseNet121. All layers, including transition
layers and those in the same dense block, distribute their weights over several inputs,
enabling deeper layers to leverage features that were extracted earlier. In comparison
to the normal CNN or ResNet equivalents, DenseNets produce more compact models
because they require fewer parameters and permit feature reuse. They have also achieved
state-of-the-art performances and superior outcomes across competing datasets.

4.5. EfficientNetB0

In order to increase the effectiveness of an existing ConvNet based on the available
resources, EfficientNet is a CNN that employs a scaling technique called compound scaling
(memory and FLOPS). The mobile inverted bottleneck MBConv combined with an added
Squeeze and Excitation (SE) block forms the basis of the EfficientNetB0 model. The MBConv
uses Depthwise Separable Convolution, i.e., first, the channels will be widened by a
point-wise convolution (conv 1 × 1) and a 3 × 3 depth-wise convolution that significantly
reduces the number of parameters. Finally, it uses a 1 × 1 convolution to reduce the
number of channels. Dynamic feature channel-wise recalibration is a method in which
the network dynamically allocates high weight to the most relevant channels, rather than
assigning equal weight to all of the channels. CNNs increase the inter-dependencies
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between the channels using an SE block, which uses the dynamic feature channel-wise
recalibration techniques. The architecture of EfficientNetB0 is shown in Figure 3. The
resulting networks outperformed numerous state-of-the-art networks in terms of both
efficiency and performance.

Figure 3. Architecture diagram of EfficientNet121.

Generally, convolution is performed in the lower layers of the CNN. The feature maps
of the final convolution layer are vectorized and input to the fully connected layers followed
by a softmax logistic layer. Thus, the convolution layers act as feature extractors, and these
features are used for classification. Overfitting is more likely to occur in fully connected
layers, which reduces the network’s capacity for generalization. In this article, we propose
to use global average pooling in place of fully connected layers.

With global average pooling, the average of each feature map is calculated and the
resulting feature vector is input directly into the softmax layer. This strategy offers several
advantages. First, overfitting is avoided because the global average pooling layer has
no parameters to optimize. Secondly, it enforces correspondences between feature maps
and categories, making it more natural to the convolution structure. Thus, it is simple to
interpret the feature maps as category confidence maps. Another advantage is that global
average pooling sums out the spatial information, and hence it is more robust to spatial
translations of the input.

In all the experiments, a learning rate annealer was used. If the error rate does not
change after a certain number of epochs, the learning rate annealer reduces the learning
rate. Using this technique, we examined the validation accuracy and if there was a plateau
in three epochs, it reduced the learning rate by 0.01.

5. Results and Discussion

In this section, the performance accuracy and other metrics, such as the precision,
recall and F1 score, obtained by our proposed CNN model and DL models using transfer
learning are compared to the baseline system of the dataset developers and a number
of other SOTA methods on the KVASIR dataset. The hyperparameter chosen is shown
in Table 1, and the proposed model was trained and evaluated for 100 epochs. For the
proposed CNN, the accuracy and loss on the training and validation dataset are shown in
Figure 4a.

The custom CNN model resulted in 89% testing accuracy as shown in Table 2. We
observed that the model suffers from an overfitting problem. In order to improve the
performance accuracy and to avoid the overfitting problem, we used a pre-trained deep-
learning model (InceptionNet, ResNet, DenseNet and EfficientNet) as the basis and then
retrained the model on the KVASIR disease dataset, i.e., transfer learning. Transfer learning
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improves the performance accuracy of the system. Figure 4b–e shows the accuracy and
loss achieved on the training and validation dataset.

The training accuracy and validation accuracy are reported as 99.97%, 98.75% (ResNet),
99.5%, 97.8% (InceptionNet), 99.33% and 97% (DenseNet) and 99.97%, 98.75% (EfficientNet).
It is abundantly evident that the overfitting issue is resolved by the transfer-learning method
when used with these pre-trained models. Table 2 shows the test dataset evaluation for
four TL models.

The proposed systems achieved precision of 95%, 96%, 96% and 98%; recall of 95%,
96%, 95% and 98%; and accuracy of 95%, 97%, 97% and 98.01% for ResNet50, InceptionV3,
DenseNet121 and EfficientNetB0, respectively. The findings from each network were
encouraging, and, among other pre-trained models, EfficientNetB0 achieved a superior
accuracy of 98.01%, because of the deft depth, breadth and resolution scaling, thereby,
outperforming other SOTA systems.

Table 2. Results for the proposed custom CNN and transfer-learning models for five diseases.

Model Accuracy Precision Recall

Custom CNN 89.04 89.01 89.00
TL + ResNet50 (Pre-trained) 95.00 95.00 95.00

TL + InceptionV3 (Pre-trained) 97.00 96.00 96.00
TL + DenseNet121 (Pre-trained) 97.00 96.00 95.00

TL + EfficientNetB0 (Pre-trained) 98.01 98.00 98.00

(a) Custom CNN

(b) InceptionV3

Figure 4. Cont.
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(c) ResNet50

(d) DenseNet121

(e) EfficientNetB0

Figure 4. Training and validation accuracy/loss for the TL models.

Confusion matrices shown in Figure 5 for the TL models indicate the identification
accuracy for each of the individual diseases. The ResNet50 model had the maximum pre-
diction accuracy for the normal-pylorus disease (101 out of 102 samples). The DenseNet121
models performed well in predicting normal-cecum and normal-pylorus diseases with
100% accuracy. The EfficientNetB0 model achieved 100% prediction accuracy for normal-
pylorus and dyed lifted polyps and 99% prediction accuracy for polyp disease. It also
achieved better results compared with the other pre-trained models considering other
metrics, such as the precision, recall and F1-score.

Figure 6 shows the actual disease and predicted disease for the transfer-learning model
using EfficientNetB0. It can be seen that the actual disease and predicted disease are the
same in almost all cases.
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(a) ResNet50 (b) InceptionV3

(c) DenseNet121 (d) EfficientNetB0

Figure 5. Confusion matrix of different transfer-learning models.

(a) Dyed-lifted-polyps

(b) Normal cecum

Figure 6. Cont.
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(c) Normal pylorus

(d) Polyps

(e) Ulcerative colitis

Figure 6. Sample prediction results of the model of the five classes.

Table 3 shows the accuracy of the proposed approaches compared with other con-
temporary methods. While Mosleh Hmoud Al-Adhaileh et al. reported 97% testing
accuracy [27], the proposed TL approach using the ResNet50 model’s accuracy was less
than the SOTA method. The proposed TL using the InceptionV3 and DenseNet121 models
performed equally to the SOTA systems. Interestingly, the EfficientNetB0 model surpassed
the SOTA systems, and its identification accuracy was 98.01%. It is to be noted that we
did not perform any image preprocessing or image augmentation techniques as in other
systems, but were still able to obtain better identification accuracy.

Table 3. Comparison of the identification accuracy of our proposed system with other SOTA models.

Model Accuracy

Godkhindi and Gowda [17] 88.56
Pozdeev et al. [19] 88.00
Ribeiro et al. [28] 90.96
Fonolla et al. [29] 90.20

Mosleh Hmoud et al. [27] 97.00
Proposed model (custom CNN) 89.04

Proposed model (ResNet50) 95.00
Proposed model (InceptionV3) 97.00
Proposed model (DenseNet121) 97.00

Proposed model (EfficientNetB0) 98.01
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Visualization of Outputs

Grad-CAM is a method for increasing the transparency of convolutional neural net-
work (CNN)-based models by highlighting the input regions that are vital for the models’
predictions or visual explanations. Using a gradient class activation map to visualize
CNN’s final layers makes it easier to identify the area of the image that CNN needs for
classification. Figure 7 shows the Grad-CAM visualization of the same sample images
belonging to the five different diseases shown in Figure 6.

(a) Dyed lifted polyps

(b) Normal cecum

(c) Normal pylorus

(d) Polyps

(e) Ulcerative colitis

Figure 7. Grad-CAM visualization of samples shown in Figure 6.
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The Grad-CAM images were generated for the sample images taken from the test
dataset that were predicted correctly. It can be observed that the Grad-CAM highlights
the infected regions in red color as these are medically relevant. In other words, the
regions that are in red contribute the maximum activation in classifying the image, while
the regions in blue have no activation. This provides some support to the claim that the
model is able to focus on the regions of the image that are medically relevant in identifying
digestive diseases.

6. Conclusions

In this paper, we examined endoscopy images of digestive systems and proposed a
transfer-learning model to improve the performance of the automated classification tool in
diagnosing digestive diseases. The proposed system uses several pre-trained deep-learning
models, including ResNet50, InceptionV3, DenseNet121 and EfficientNetB0. All the models
performed well and achieved equal values for all the performance metrics. Among the four,
the EfficientNetB0 model achieved the maximum performance results of 98.01% accuracy
and 98% precision, recall and F1-score—a slight increase in performance compared to the
other state-of-the-art systems. In the future, using various medical images, the suggested
technique may be utilized to detect or diagnose a number of additional disorders. By using
image-enhancing techniques, we can still improve the performance results.
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