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Introduction

The aging of the human population has a profound impact on all aspects of social life, 

with particular reference to healthcare processes. This fact involves a variety of preven-

tive actions aimed at delaying and contrasting decline in the daily activities of each indi-

vidual from a physiological point of view. One of the biggest challenges that healthcare 

professionals try to face is the prevention of pressure ulcers, which are one of the most 

periodic and feared consequences of aging.

Pressure ulcers (PUs), also called bedsores or pressure sores, are injuries whose forma-

tion happens when the skin is under constant pressure for a long enough period of time, 

and it occurs more frequently in hospitalized patients. Data from the National Advisory 
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Panel (NPUAP), a multidisciplinary group of experts in pressure injury, shows that PUs 

occur with a frequency between 10 and 18% in intensive care units, between 2.3 and 

28% in long-term care units and between 0 and 29% in home care units [17]. PUs, which 

usually cause pain, reduce patients mobility, and worsen their quality of life, appear as 

ischemic lesions on the skin and underlying tissues, caused by the prolonged pressure 

between two hard surfaces. Depending on the extent of the lesion, PUs are categorized 

into different grades [11] of severity.

In the first grade, the skin presents a pink or red color that disappears in 30 s after 

removing the pressure while in the second grade the skin loses continuity in correspond-

ence with the appearance of vesicles. With respect to the third grade, the skin presents a 

severe decline in the state of the tissue and in the fourth grade, there is a total loss of skin 

density together with a muscle injury. Depending on the level of loss, it is sometimes 

necessary to remove the infected tissue to prevent sepsis from developing and contami-

nating other areas of the body.

The total risk for each person to develop PUs can be estimated in accordance with dif-

ferent scales: one of these is the Braden scale, which is based on several risk factors, such 

as poor motion activity, but also temperature, skin humidity and malnutrition [14]. PUs 

negatively affect the quality of life of patients and prolong their recovery process thus 

increasing the costs for the healthcare systems. It is therefore necessary to implement 

and adopt preventive strategies to solve this problem steadily getting more common.

There are several systems on the market that allow the monitoring of risk factors 

related to PUs, but until now no suitable solutions have been proposed, especially 

for people with a medium risk of PUs. Healthcare techniques  [29] aimed at personal-

ized patient treatment introduce a series of new solutions that act as a bridge between 

patients and medical services. A possible approach, for solutions of this kind, comes 

from wearable technologies, and the choice of using wearable devices is actually a sig-

nificant step towards improving patient health, also considering that these devices are 

already available in the market and affect our lives under several aspects.

Wearable technology introduces a new paradigm in digital communications: unlike 

other portable devices, such as smartphones and tablets, wearable devices are mostly 

not supposed to be interacted with in order to generate and collect data. This radi-

cally changes the way we approach surrounding environments, deal with interpersonal 

relationships, and information we exchange with other people, by extending the reach 

of what is called the Internet of Things (IoT)  [13]. IoT represents a key factor used to 

acquire information in order to provide the best medical assistance to patients [15]. The 

community refers to this topic through the term Internet of Medical Things (IoMT). 

IoMT is one of the main drivers that the field of medicine is going to embrace in the near 

future. It represents an important enabler for e-health in clinical decision support sys-

tems, and it is fundamental to develop intelligent systems, meant to improve processes 

for patient care by generating significant clinical data [9].

In such a context, cloud computing and machine learning technologies play an impor-

tant role and can be used in order to manage complex systems with a large amount of 

data. The former is fundamental for the management of data collected by IoMT devices 

that use a different kind of sensors, providing also the computational power to process 

it. On the other hand, machine learning represents a key approach to build a model that 
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is able to correlate all data from different devices and to respond dynamically to a wide 

range of different situations, without the help of human beings.

To provide a more accurate and simplified medical monitoring, this article proposes 

an automatic deep learning approach at the basis of a system which is able to recognize 

motor activities of patients and send real-time activity predictions by helping the medi-

cal staff to assess the risk of PUs formation on a specific patient. The use of machine 

learning as a paradigm for the design of a medical support system is starting to be con-

sidered a valid approach for this kind of solutions, especially when the data to analyze 

is hard to correlate. A survey about machine learning, and in particular deep learning 

techniques applied to the domain of biomedical disciplines is available at [5].

The proposed system collects information from various wearable sensors incorporated 

and worn by the patient, it analyzes the data to create, and periodically visualize, the risk 

assessment for PUs. Thanks to this, the medical staff can easily see the status of each 

patient in real time, by allowing the former to provide better assistance.

The contribution of this paper is twofold: (i) we realized a labeled dataset containing 

the readings coming from a set of inertial sensors (accelerometer and magnetometer) 

together with the real time patient position associated, which has been necessary for the 

design and the training of the model; (ii) we designed a system that allows us to predict 

the user position over time with a high level of accuracy and with a minimal hardware 

usage when compared to other solutions found in the literature. Moreover, our goal was 

also to build a system which is totally transparent to the patient, and for this reason, we 

used a specially-crafted hospital gown, containing a set of sensors that do not require any 

kind of invasive attachment to the body of the patient, giving her/him the possibility to 

move freely without any constraint.

This paper is organized as follows: "Related work" section describes the state of the art 

and related works about machine learning techniques and wearable technologies applied 

to healthcare, and specifically to PU-related problems and their applications; "System 

architecture" section describes the overall architecture of each part of the system; "Data 

management" section describes its data management; "Experimental results" section   

presents an experimental overview, including the results obtained, both in terms of 

accuracy for the machine learning model, and of the development of the web interface, 

to allow users to visualize some information about patients, and the corresponding risk 

of developing PUs; "Conclusions" section closes the paper and gives some details about 

future works.

Related work

In recent years we have witnessed ever higher development of research in pervasive 

systems applied to healthcare, that employ smart devices to support the daily activi-

ties of patients, through pervasive computational applications, according to the needs 

of users, which also take into account changes to the environment. Current convergent 

research on pervasive systems is making a major effort on the recognition of patient 

activities, which is a very important aspect in ensuring satisfactory healthcare, thus 

enabling medical personnel to provide appropriate care to patients. In addition to this 

statement and in accordance with [7] the technology employed as a primary choice to 

capture human activities serves not only to place people at the center of activities related 
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to new technologies but also to study their behavior and interaction with others using 

approaches based on monitoring of physiological and behavioural signals that contribute 

to a better understanding of human activities especially in elderly patients and in-home 

care settings [24].

In such context, wearable technology is increasingly being integrated into the eco-

system of e-health solutions with scope into the overall well-being of patients, and 

specifically into prevention and treatment of chronic patient diseases. The use of this 

technology allows personalized healthcare through the sharing of distributed informa-

tion, by favoring better prevention, and real-time monitoring of vitals and behavioral 

data related to everyday life. A high number of healthcare applications are expected to 

take advantage of wearable technology over the next two decades. Authors in [16] pro-

pose a system of recognition of human activities based on wearable sensors by using a 

two-stage end-to-end convolutional neural network and a data augmentation technique. 

Another typical recent example in [2] is the continuous glucose monitoring that allows 

diabetic patients to monitor blood glucose levels by learning from measurements on 

their body functions helping the patient to self-manage and to proceed with the treat-

ment independently. For this same problem, the authors in  [25] introduce a clinical 

approach tested on nine types 2 diabetic patients through the use of wearable devices 

that use optical signals to obtain a photoplethysmogram (PPG) adopted to estimate glu-

cose values by building Random Forest and Adaboost regression models obtaining 90% 

of accuracy.

The use of technology for the prevention of bedsores is one of the key issues facing 

healthcare to limit the costs of this problem. An example comes from [22], where the 

authors developed a wearables wireless patches system by placing them directly in risk 

areas on the skin of the subjects by monitoring contact pressure, temperature, humid-

ity and movement and sending the values to a base location. Authors in [6] developed 

a multimodal sensor system for the evaluation and treatment of PUs that can provide 

spectral, thermal and chemical analysis, the real-time vision of injury size and predic-

tion of wound healing in support of hospitals, clinics and home environments. Authors 

in [20] propose a technique for the prevention of PUs that helps patients effortlessly and 

independently, which comes from a system that provides electrical stimulation to the 

pressurized points of the gluteal muscles through a smartphone application connected 

wireless to the head and regulates the electrotherapy parameters. For medical analysis, 

the therapy history track is stored in the cloud. Another example is provided in  [10], 

where a wearable wireless monitor continuously measures the duration and orientation 

of the posture of the patient through an accelerometer built into the torso and adaptive 

posture algorithms accurately measure the angle of the spine vertebral in order to clas-

sify the orientation of the patient. Other approaches in [14] for the PUs prevention focus 

more on detecting long-term pressure to particular skin regions of the body. All these 

systems use pressure sensors because pressure is one of the main important factors for 

the development of PUs. Authors in  [26] present a smart remote monitoring system 

developed through a ZigBee network infrastructure with pressure sensors located on the 

bed for the prevention of PUs in patients with reduced mobility.

A work to support pressure sores issue was introduced in  [3] in which low-cost 2.4 

GHz wireless transceivers were used to recognize the different activities. The idea has 
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been to collect the intensity of the received signal (RSS) measured between the fixed and 

wearable devices and to use Support Vector Machines (SVMs) and K-Nearest Neighbor 

(KNN) methods to classify the different positions. Another work that enables healthcare 

professionals to provide better patient care in less time was the development of a soft-

ware–hardware platform [28] that collects sensor data embedded in the bed, analyzes 

this information and builds a pressure distribution map on all over the body with peri-

odical indication and controls the bed actuators to adjust the profile of the bed surface 

to redistribute the pressure on the whole body. This platform uses SVMs algorithm as a 

classifier to determine the level of risk of developing ulcer.

There are other recent approaches that have attempted to create an efficient moni-

toring of people’s health activity. Authors in [21] proposed an innovative multi-sensor 

fusion system that improves the performance of human activity detection using a multi-

view ensemble method to integrate the expected values of different motion sensors using 

different classification algorithms, such as logistic regression, K-Nearest Neighbors 

(KNN) and Decision Tree (DT). Authors in [23] use the features of two different radar 

systems operating at C band and K band through a Support Vector Machine classifier to 

recognize 10 human activities for remote health monitoring purposes. Another research 

[19], consisting in the recognition of human activities through video sequences captured 

by UAVs, uses two different approaches: (1) an offline phase in which the human/non-

human model and a human activities model are built through a convolutional neural 

network, and (2) an inference phase that uses these models to detect human beings and 

recognize their activities. Another study of activity recognition is proposed in [30]: here 

authors presented a system which uses a multi-sensor network positioned in different 

body parts, composed by 9 inertial measurements, from accelerometer, magnetometer, 

gyroscope, and quaternion sensors, respectively, by applying feature extraction in the 

time and frequency domain, and two classification algorithms, namely a DT and a Ran-

dom Forest (RF), achieving a 99.1% of accuracy.

All these systems we presented do not meet the basic requirements we captured and 

have some disadvantages, including the high cost and the way of positioning the sensors 

in the bed making vulnerable the comfort of the patient. In particular, our intent is to 

build a non-invasive system which it has to be easy to use, accurate, and with a minimal 

hardware usage in order to reduce the costs. For this reason, instead of using pressure 

sensors and exerting pressure directly on areas of the skin or on the bed, we thought 

to monitor the patient with wearable sensors with the support of machine learning 

techniques in order to estimate his/her position over time and assess the risk of PUs 

formation.

System architecture

In this section, we introduce the scenario in which we operated in order to build a deci-

sion support system using IoMT to monitor and evaluate the risk of PUs formation. Our 

goal is to build a non-invasive system that can be used by anyone in a very simple way. 

Figure 1 shows the clinical scenario we imagined, which consists of one or more patients 

located in a room wearing a hospital gown with attached a set of wearable sensors in the 

abdominal area. The attached sensors are a three-axis accelerometer, a three-axis mag-

netometer that we use in order to detect the patient motion and measure postural body 
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orientation. In order to manage several wearable devices belonging to different patients 

in the same room, we propose a hardware/software architecture that is composed by a 

room gateway that behaves as a bridge among the IoMT devices and the cloud.

The architecture we propose has been chosen in order to improve the scalability of the 

project: Figure 2 shows how the system architecture is organized. The main function is 

performed by the gateway, which has to collect data from the wearable sensors attached 

to the patients bodies, process it and then send the information to the remote server 

which is used to read, interpret, and store it in a database which can be accessed by the 

medical staff to visualize the risk of PUs formation of each patient. In this sense, deep 

learning has been used in order to build a model that takes as input the raw data and 

generates as output the more probable activity or position associated to it.

We can see that the relationship between the gateway and wearable devices is “1-to-N”, 

which means that the gateway may get data from several wearable sensors. This is a real-

istic assumption because in the clinical scenario we have in mind, different sensors could 

be worn by different patients. With respect to the relationship between gateway and the 

cloud an “N-to-1” relationship has been envisioned: this means that each gateway sends 

data to one remote server only hosted in the cloud, and any server could get data from 

Fig. 1 Clinical scenario
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several gateways. Also, this may be considered an accurate hypothesis for the system 

under consideration, because one gateway should be placed in each room and the single 

remote server should be accessible to authorized users. Finally, with respect to the rela-

tionship between the patient and the room, it is a “M-to-1” relationship meaning that 

one or more patients can be hosted in a single room.

System implementation

In this subsection, we present the implementation of the above described architecture. 

With respect to the room gateway, we implemented it using a Raspberry Pi 3, which 

is a small platform that supports a complete Linux system with reduced costs. Figure 3 

depicts the wearable devices that perform another main function of the system: in par-

ticular, we used the Flora device by Adafruit, an electronic platform compatible with 

Arduino combined with the LSM303 integrated circuit which contains an accelerometer 

and a magnetometer. Their job is to send raw accelerometer and magnetometer data val-

ues to the Raspberry Pi through the Bluetooth Low Energy (BLE) module.

The communication flow between the three components is regulated by Generic 

Access Profile (GAP) and Generic Attribute Profile (GATT) procedures. GAP represents 

the generic procedure for discovering BLE devices by checking connections and adver-

tising, which determines the way in which two devices can or not interact with each 

Fig. 2 General system architecture

Fig. 3 Wearables communication



Page 8 of 21Cicceri et al. Hum. Cent. Comput. Inf. Sci.            (2020) 10:5 

other. GATT defines the mode and procedures in which two BLE devices transmit data 

using the attribute protocol (ATT): wearable devices act as a GATT server and Rasp-

berry as a GATT client. GATT transactions in BLE are based on high-level and nested 

objects named profiles, services and characteristics. Profiles consist of services that clus-

ter raw data (characteristics); in turn, a characteristic encapsulates a single data point 

and consists in two attributes (declaration and value). Attributes are the primary data 

described in the ATT protocol [27].

In terms of Cloud, we adopted as solution Stack4Things (S4T), which is an OpenStack-

based framework for Infrastructure-as-a-Service Cloud computing. Figure 4 shows the 

communication flow between the wearable devices, the Raspberry, the S4T Cloud, an 

Open Data CMS (Content Management System) and a web server. A Raspberry, after 

the registration to the Cloud and after receiving logic for wearable sensing by Cloud-

powered injection, starts the communication process scanning the surrounding for BLE 

wearable devices that indicate their presence through advertising data. Once the Rasp-

berry finds the device of interest, it connects to it using the BLE communication. As 

soon as the Raspberry connects to wearable device, it will stop to send advertise data 

and will start to send raw data in real time according to the position of patients. In paral-

lel, and in real time, Raspberry processes, analyzes, and pushes the data to an Open Data 

datastore, provided by the CKAN CMS, using its REST API.

On the Cloud side, the training of our deep learning model is performed offline (a 

detailed description will be given in "Data management" section). At the beginning, the 

system collects the data through the Open Data datastore in order to create a labeled 

dataset, then used to train the deep learning model. Once we obtain the model, it is 

deployed in the Raspberries, that perform the real-time inference process by feeding 

Fig. 4 Communication flow
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the pre-trained model with the data gathered from the sensors via BLE communication. 

Once the data has been transferred to the Open Data service, the web server will be able 

to retrieve the data for visualization and to be analyzed by the medical staff. These pro-

cesses continue until the medical staff will cut off transmission with a specific patient by 

stopping the communication between Raspberry and the wearable devices.

Providing some context about our choice for the Cloud, S4T  [18] is an IoT/Cloud 

integration framework which originates as research effort in IaaS-oriented IoT cloudi-

fication. The bottom-up, implementation-driven approach to this project targets a very 

successful, open source, middleware for IaaS Clouds, namely OpenStack, in order to 

fully explore the I/O cloud [4] paradigm. Single-Board Computers (SBC) such as Rasp-

berry are perfectly suited to host Python-based lightning-rod (LR), which acts as a 

board-side agent for S4T, interacting with its cloud-side counterpart, IoTronic, through 

WebSockets-powered full-duplex communication.

Leveraging the I/O cloud approach, IoT infrastructure administrators are able to inject 

logic, in the form of LR plugins, into IoT nodes at runtime. Plugins are useful to manage 

and expose IoT-hosted resources, such as on-board sensors, or BLE-connected ones, as 

a service from the Cloud, regardless the configuration or level of connectivity of nodes 

hosting them. In particular, LR implements a plugin loader, fully managing the lifecycle 

of plugins: business logic injected from the Cloud is received, validated and run by the 

plugin loader in order to implement specific user-defined actions. New REST resources 

are automatically created exposing user-defined commands on the Cloud side: as soon 

as such resources are invoked, the corresponding code is executed board-side. In our 

case study, two plugins are injected, which carry the logic to, respectively, drive the 

BLE interactions, and push any newly received samples from sensors to an endpoint of 

choice, i.e., our CKAN instance.

Data management

In this section, we provide more details about the dataset and the design of the deep 

learning algorithm: the idea to adopt a deep learning approach comes from the fact that 

in such a context can be very difficult to detect the patient position accurately. In fact, 

problems related to recognition of patient motion activity highlights some issues related 

to the high variability in the motion patterns. Think, for example, to the movements 

of an older adult and a younger one: even if they move seemingly in the same way, the 

actual execution of motion, i.e., its fine-grained sequence, can be very different. Another 

big issue is related to the sensors, which are attached to the hospital gown irregular sur-

face: in particular, the impossibility to fix in position the sensors can sometimes lead 

to the generation of dirty and wrong data, which requires a huge and time consuming 

preprocessing phase before the use. For all these reasons, we decided to face this classi-

fication problem by using a deep learning approach to develop a system which is capable 

of understanding the complex relationship between the data coming from the sensors 

and the user motion. The key idea behind deep learning consists of connecting in cas-

cade several hidden layers between the input and the output. By doing so, this technique 

is able to discover very intricate relationships between the input and the output thanks 

also to the features extraction process which allows a Deep Neural Network (DNN) to 
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get rid of all those features which are redundant or not informative for the training pro-

cess thus reducing the model complexity and training time [12].

In such a context, we worked on a supervised approach, where all data stored inside 

the dataset are labelled with the corresponding patient position. Data collection has 

been performed by equipping six volunteers, belonging to different profiles—in terms 

of age, weight, and sex—with a hospital gown. The latter had a set of wearable devices 

attached, recording the body position while performing five physical activities such as: 

staying seated, prone, supine, laying on the right and left, and in motion. For privacy rea-

sons, we have avoided inserting the real names and surnames of the patients, also avoid-

ing the appearance of their faces in photos.1

The sensors were placed on the chest of each patient (as shown in Fig.  5 for some 

patients) and, thanks to the help of nurses who, through a camera, monitored all 

patients, the activities were collected in medicine department with no constraints on 

the way these must be executed. Every volunteer had no constraints on the movements 

that he/she could do, so the data collected derives from a totally natural motion scheme. 

This, in particular, was the main requirement we asked for to the volunteers in order to 

obtain a dataset without any kind of bias. Moreover, we decided to collect data from dif-

ferent persons in order to have a better generalization of the common motion patterns.

So far, we discussed how we collected the data, let us now introduce a formal defini-

tion for a single record contained inside the dataset. From a mathematical point of view, 

it can be considered as a tuple composed by: the patient id, the timestamp, the sensor 

data collected from the accelerometer and the magnetometer, and the label representing 

the user position at that timestamp. It can be expressed as follows:

Fig. 5 Monitoring on the patients actually involved

1 Involved patients who submitted to tests undersigned a document for the clearance with regards to processing of their 
personal data.
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where dt represents the datapoint recorded at timestamp t. Since our goal is to under-

stand the patient position to prevent the generation of PUs while he/she is resting in 

the same position for too long a period of time, we can reduce the number of positions 

in which we are interested. By analyzing the PU state of the art together with the help 

of specialized personnel, we were able to localize the main body areas where the ulcers 

usually appear, and correspondingly the hazardous positions. At the end of this analysis, 

we defined a set P containing the positions that we have to monitor:

The final dataset D is obtained by merging all the datapoints dt at different timestamps 

(see Table  1), where each row contains all the data registered by the sensors attached 

to the patient body, together with the corresponding position label. At the end of the 

procedure, we collected a total of 8708 samples, which is a fairly good amount of data to 

train our model.

Then, we split the “original” dataset into three sets, namely: train set, validation set, 

and test set, where the train and test set dimensions are, respectively, 85% and 15% of the 

original dataset we collected, while the validation set has been obtained by taking 15% of 

the training data.

From an architectural point of view, a DNN can be considered as a traditional artificial 

neural network (ANN) with a large number of hidden layers between the input layer and 

the output one. These architectures allow DNNs to fit very complex non-linear relation-

ships. However, at the same time, they make more difficult the training process since 

they require a large amount of training data in general because these models tend to 

overfit the data. Hence, it is necessary to adopt the right countermeasures to prevent this 

behaviour in order to obtain a good model.

Figure 6 depicts the DNN architecture we designed, where the input layer consists of 

the measurements gathered from the sensors. In contrast, the output one consists of the 

six different positions (i.e., Supine, Prone, Right, Left, Sitting, Movement) we want to 

classify. It is worth mentioning that each DNN neuron (except for the input layer) is also 

provided with bias values (not shown in the Figure). The latter are mainly used to give 

more “elasticity” to the network in terms of predictive capability, but also to avoid the 

presence of “dead neurons” whose output is 0. After trying several models, we found 

out that four hidden layers are enough to represent the relationship between the input 

and the output fully. In general, all the hyper-parameters have been tuned empirically by 

doing multiple tests with the support also of a validation set. With respect to the num-

ber of hidden units, we started with an architecture with 20 neurons and decreased the 

number of the neurons by five units thus converging to the output layer size which is 

equal to 6. The idea to start with a number of neurons, which is larger than the input size 

and decreases as long as we go deep, is a widespread choice adopted in deep learning 

circles.

The learning rate value is a standard choice since it allows us to reach the global 

minimum with a “reasonable” number of training epochs. Regarding the activa-

tion function, we used the Rectified Linear Unit (ReLU) which in the recent period 

(1)dt =

〈

(Id,Time,Ax,Ay,Az,Mx,My,Mz,Pos)
〉

(2)P =

〈

Supine,Prone,Right, Left, Sitting ,Movement
〉

.
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is becoming the most used one basically because it speeds up the training process 

requiring a lower number of training iterations if compared with other activation 

functions like the Sigmoid, and at the same time, it allows to solve the vanishing gra-

dient problem which is typical for those activation functions that saturate for certain 

inputs. Detecting the patient position given a set of sensors measurements can be 

categorized as a supervised multi-class classification problem. As already mentioned 

above, the input provided to the network consists of the set of measurements gath-

ered by sensors. Such data is then passed to the hidden neurons that perform the fea-

ture extraction process through Eq. (3):

where σ is the activation function, xi is the neuron input, wi is the weight value of the 

connection between the input xi and the neuron itself, and b is the bias of the neuron, a 

constant value used to avoid the output y to be 0.

(3)y = σ





n
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i=1
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Fig. 6 DNN architecture

Table 1 Labeled patient position dataset structure

Id Timestamp Ax Ay Az Mx My Mz Pos

0 2018/07/22 19 : 37 : 15 −0.04 0.24 9.77 26.82 8.18 −1.02 Supine

1 2018/07/24 19 : 42 : 15 7.53 −5.41 3.14 −14.73 40.27 8.98 Left

... ... ... ... ... ... ... ... ...

4 2018/07/27 22 : 37 : 15 −4.67 −8.87 1.80 4.73 21.91 −33.16 Sitting

5 2018/07/30 23 : 23 : 45 8.43 4.98 0.51 11.45 −35.36 3.67 Right



Page 13 of 21Cicceri et al. Hum. Cent. Comput. Inf. Sci.            (2020) 10:5  

In the last layer of the proposed DNN architecture, we adopted Eq. (4) which repre-

sents the softmax activation function whose task is to “compress” the output of each 

neuron in the output layer so that the sum of these values adds up to 1. Here the ỹj rep-

resents the value of the jth output neuron that can be considered as the probability of 

the corresponding class given a specific input. In this sense, to obtain the position of the 

patient, the DNN applies the argmax function to the output layer in order to extract the 

most probable class associated with the input fed into the network.

Finally, we used a technique called regularization, which consists in applying a penalty 

term to each weight of the network in order to prevent it from overfitting. In general, 

it is necessary to define a regularization term which determines the penalty we want to 

assign to each term. From the test we performed, we concluded that a value equal to 0.01 

provides a suitable penalization level, preventing the overfitting of the network. Moreo-

ver, we adopted an early stopping process to prevent overtraining, that in some cases 

could lead the network to overfit as a collateral effect. Table 2 shows the parameters used 

for the network we designed.

Experimental results

In this section, we present the obtained results by making a set of 100 experiments to 

test the performance in terms of accuracy, training, and inference times. In Table 3, we 

present the experimental environment settings in which we operated and the tools we 

(4)ỹj = Softmax(zj) =
ezj

∑p
k=1

ezk
, j = 1, ..., p.

Table 2 Deep neural network parameters

DNN parameters

Number of hidden layers 4

Number of neurons [25, 20, 15, 10]

Input dimension 6

Output dimension 6

Learning rate 0.001

Training epochs 500

Regularization parameter 0.01

Activation function ReLU

Table 3 Experimental environment and specifications

Experimental environment

Processor Intel Core i7 2, 9 GHz

Operating system OS X Mojave

Developing environment Atom 1.38.2 x64

Programming language Python 3.65

Model package Keras 2.3.1

Backend Tensorflow 2.0
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used. To test the architecture of the DNN explained in "Data management" section, we 

prepared the following test environment: we trained the DNN on a MacBook Pro with 

i7 Processor under the MacOS operating system (Mojave release), as development envi-

ronment we used Atom, and Python as programming language.

Once all the data has been collected, we used Keras [8] to train our model and gener-

ate the position predictions. In particular, Keras is a high-level API written in Python, 

which runs on top of several machine learning frameworks like TensorFlow [1]. During 

the learning phase, wearable sensors send the raw values with the label indicating the 

position and the DNN takes this information to perform the training. During the predic-

tion phase, only the wearable sensor data without a label is sent, and the DNN responds 

with the most probable activity. By performing a set of 100 experiments, we obtained a 

mean average time of 10 ms: in this sense, this is a good result considering that the sys-

tem is expected to be used in real-time.

After the training process using the dataset we presented in "Data management" sec-

tion, the model has achieved an accuracy of 99.56% on the test set. Once we trained the 

model, we used a Keras functionality that allows to store it in a file allowing to load it 

without re-training the model every time. In particular, the trained model serialization 

has a dimension of 54 KB which is a reasonably tiny footprint if we consider the fact that 

it has to be exported to a Raspberry device, to be used then for the inference process.

In Fig. 7, we show the learning curves obtained by computing the train and the valida-

tion losses, as the training epochs increase. As we can observe, both curves converge to a 

near-zero value, thus demonstrating that the model has learned the relationship between 

the input and the output correctly. In Fig. 8, on the other hand, we also show how the 

performance learning curves that represent the training and validation accuracy grow 

during epochs and this helps diagnose learning dynamics.

Comparison with other machine learning approaches

In this subsection, we present more extensive results of our system, and we compare it 

with other popular machine learning approaches. To measure the performance of our 

Fig. 7 Learning curves which show the trend of the train and validation losses
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classification algorithm, we used the Confusion Matrix (CM) that we show in Fig. 9. CM 

is a popular metric that shows the obtained results under the form of a table, where pre-

dicted classes are represented in the columns of the matrix, whereas actual classes are 

in the rows. Such a matrix contains four values for each class: True Positives (TP), True 

Negatives (TN), False Positives (FP), and False Negatives (FN). ‘True’ or ‘False’ indicates 

if the classifier predicted the class correctly, whereas ‘Positive’ or ‘Negative’ indicates if 

the classifier predicted the desired class. The first two values indicate the number of cor-

rectly classified samples while the last two refer to the number of wrong samples by the 

algorithm.

In particular, starting from these values, it is possible to compute the Precision, Recall 

(or Sensitivity), and F1-score, which three indicators are used to better evaluate the 

performance of a classification algorithm, since they convey more information than 

Fig. 8 Learning curves which show the accuracy of the train and validation sets

Fig. 9 Confusion Matrix for our model
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accuracy alone. Specifically, Precision indicates the ratio of labels correctly predicted 

(TP) on all those that the model classified as positive (TP and FP). More intuitively, the 

Precision metric indicates the accuracy of the algorithm in classifying the correct labels:

Recall, also defined as sensitivity, indicates the share of accurate estimates on the total of 

the positives. It is computed as the ratio between the TP and the total number of posi-

tives samples. Usually, recall is used when the goal is to minimize the number of false 

negatives (FN), and obtained by using the following formula:

Many times the variability of these two indices is very high, in fact depending on the 

number of TP, FP, and FN these two metrics can be very different, making a compari-

son between two algorithms hard. In such a context, it is usually preferred to use the 

F1-score index which takes into account both the precision and the recall, and provides 

an immediate estimate on the accuracy of the model, with a value between 0 and 1, 

where 1 means that the algorithm was good at correctly classifying the samples on the 

test set, while 0 means that the model was wrong to classify all the samples.

F1-score can be represented as the harmonic mean of precision and recall:

In Table 4 we show the metrics computed from the CM of our proposed model.

Confusion Matrix converts the labels (i.e., Supine, Prone, Right, Left, Sitting, Move-

ment) into numerical values to perform the measurements. Considered that our multi-

class classification problem consists of six classes, each class is numbered with a value 

which ranges between from 0 to 5. The header Avg/total represents the ’weighted’ 

average performed on each column of the confusion matrix (i.e., Precision, Recall, and 

F1-score) where the “Support” column represents the weights.

In particular, our model obtained very good results in terms of precision, recall, and 

F1-score for all the six classes, which proves its quality. To compare the performance 

(5)Precision =
TP

TP + FP
.

(6)Recall =
TP

TP + FN
.

(7)F1-score = 2 ·
Precision · Recall

Precision + Recall
.

Table 4 Classification metrics report obtained from  the  Confusion Matrix applied to  our 

model

DNN performance metrics

Label Precision Recall F1-Score Support

0 (Supine) 0.99 1.00 1.00 330

1 (Prone) 1.00 1.00 1.00 204

2 (Right) 1.00 1.00 1.00 202

3 (Left) 1.00 1.00 1.00 139

4 (Sitting) 0.99 1.00 1.00 341

5 (Movement) 1.00 0.93 0.97 91

Avg/total 1.00 1.00 1.00 1307
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of our proposed approach with other models, we trained and tested other algorithms 

using the same dataset and in particular SVMs and RF algorithms. The methods that are 

based on SVMs have been usually suggested as an alternative to simple NN and DNN, 

and they are very used in the classification tasks with excellent generalization results. 

In such a context, we used a model based on SVMs with a Radial Basis kernel and a 

penalty term equal to 1.0. SVMs were able to generalize very well the data reaching an 

accuracy of 99.32% on the test set. Even if the result is very good and comparable to 

ours, it is worth to mention that SVMs need to perform a 1-vs-1 classification which 

requires to train N · (N − 1)/2 (where N is the number of classes) intermediate models 

in order to perform the actual classification. In this sense, during the inference process, 

the SVMs pass the data to each intermediate classifier returning as a final result the class 

which obtained the higher score accuracy. On the contrary, our DNN approach does not 

need to train intermediate models, since it can perform a multi-class classification with 

a single model, thus resulting faster, in terms of inference time, while saving space. In 

addition, we also used the RF classifier by setting 100 estimators and applied to the same 

dataset achieving an accuracy of 82.80%.

As we can see in the summary Table 5, our proposed approach provided significant 

performance across all metrics for our dataset when compared with other popular two 

machine learning models.

Model deployment

Last part of the system is a web server that accumulates patients data and shows it using 

the web interface. We developed a web interface that medical staff will use to show live 

data on the screen and see the patient risk of developing PUs. To do that, we developed 

different PHP files that make a simple reading from the database internal to the web 

server containing for each patient the position history predicted by the DNN. If the 

DNN predicts the same position for an extended amount of time, the system will send 

an alarm signal meaning that the patient has to change the position as soon as possible 

to avoid PU formation.

The most important pages are shown in Figs.  10 and 11 which indicate the list of 

patients in a specific room with the number of the bed, the last position/activity and 

the level of risk of developing a PU associated with the patient. When the user clicks on 

the “show activity” button, a new page appears showing the patient historical activities. 

The system can generate an alert that warns the medical staff that a specific patient has 

remained too long in the same position. In this sense, the level of risk of PUs formation 

is estimated based on the amount of time the patient remained in the same position, 

together with a medical evaluation. The level of risk is highlighted with three colours: the 

Table 5 Performance metrics comparison with other classification models

Performance metrics

Classification model Acc. (%) Prec. (%) Rec. (%) F1 (%)

DNN 0.9956 1.00 1.00 1.00

SVM 0.9932 0.99 0.98 0.99

RF 0.8280 0.70 0.82 0.75
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red colour means that the patient has been for more than two hours in the same position 

which means a high level of risk for the PU formations. The yellow colour means that 

the patient has been for half an hour, which indicates a mid-level of risk for PU forma-

tion. The green colour means that he/she has recently been in that position. The circle, 

associated with the patient, will change colour according to his/her stillness, as specified 

in the guidelines of the risk assessment for PUs. These guidelines have been provided 

to us by the medical staff. In particular, the guides say that, after two hours of stillness, 

PUs could develop and therefore the patients should change their position in order to 

prevent it. The obtained results demonstrate the feasibility of the technique and suggest 

that the use of wearable devices can be considered a viable solution in order to avoid PU 

formation.

Conclusions

In this paper, we presented a deep learning approach to determine the motion activities 

of patients and address the problem related to the generation of PUs when the skin is 

under constant pressure for a long time. In such a context, we demonstrated that wear-

able technology could be considered a valid solution to address this kind of problem by 

implementing a non-invasive low-cost human-centric system which demands minimal 

hardware costs and setup. We designed a deep learning algorithm and tested it on a real 

scenario by evaluating system behaviour on several patients to verify the correctness 

and feasibility of the proposed approach. Results are encouraging and demonstrate that 

deep learning techniques give better performance compared to other machine learning 

techniques like SVMs and RF, and can be considered reliable support for patient health 

also in the domain of PUs prevention. Future works will be devoted to further extending 

the analysis with a comparison featuring other solutions, both in terms of research and 

Fig. 10 Room web page
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industrial products, and to the investigation of novel techniques aimed at improving the 

overall system performance. About the latter, the analysis will focus on overall system 

responsiveness, real-time behaviour for data exchange, and performance of core system 

components, in particular, battery life of wearable sensors.
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