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Abstract

Objective.—Sleep spindles have been implicated in memory consolidation and synaptic 

plasticity during NREM sleep. Detection accuracy and latency in automatic spindle detection are 

critical for real-time applications.

Approach.—Here we propose a novel deep learning strategy (SpindleNet) to detect sleep 

spindles based on a single EEG channel. While the majority of spindle detection methods are used 

for off-line applications, our method is well suited for online applications.
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Main results.—Compared with other spindle detection methods, SpindleNet achieves superior 

detection accuracy and speed, as demonstrated in two publicly available expert-validated EEG 

sleep spindle datasets. Our real-time detection of spindle onset achieves detection latencies of 

150-350 ms (~2-3 spindle cycles) and retains excellent performance under low EEG sampling 

frequencies and low signal-to-noise ratios. SpindleNet has good generalization across different 

sleep datasets from various subject groups of different ages and species.

Significance.—SpindleNet is ultra-fast and scalable to multichannel EEG recordings, with an 

accuracy level comparable to human experts, making it appealing for long-term sleep monitoring 

and closed-loop neuroscience experiments.
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1. Introduction

Sleep spindles are brief bursts of neural oscillations (9-16 or 11-16 Hz, 0.5-3 sec) generated 

by the interplay of the thalamic reticular nucleus and other thalamic nuclei during NREM 

sleep (N2 and N3 stages) (Gennaro and Ferrara 2003). Spindles can be observed in a wide 

range of thalamic and neocortical structures, and are temporally coupled with neocortical 

slow oscillations (SOs, 0.5-1 Hz) and hippocampal sharp-wave ripples (SWRs, 150-250 Hz) 

during NREM sleep (Mölle et al. 2011; Mölle et al. 2002; Staresina et al. 2015). Spindles 

and SOs might have differential roles in memory consolidation at different sleep stages, or 

for consolidation of different types of memory traces (Born and Wilhelm 2012; Wei et al. 

2018). In addition, spindles are thought to contribute to a number of neural processes, such 

as somatosensory development, thalamocortical sensory gating, and synaptic plasticity 

(Johnson et al. 2012; Cox, Hofman, and Talamini 2012; Mednick et al. 2013; Astori, 

Wimmer, and Lüthi 2013). Spindles have also been implicated in integrating new memories 

with existing knowledge (Tamminen et al. 2011). Online monitoring and entrainment of 

sleep spindles can provide additional benefits, as experimental evidence has suggested that 

spindle density predicts the effect of prior knowledge on memory consolidation (Hennies et 

al. 2016). Sleep disorders or disturbances are important symptoms in many neurological or 

neuropsychiatric disorders. Characterization of sleep spindles (e.g., oscillatory frequency, 

spindle density, duration) can be used as an important biomarker related to brain health, for 

early detection of neurodegenerative disorders such as mild cognitive impairment (MCI) and 

Alzheimer’s disease (Astori, Wimmer, and Lüthi 2013; Hennies et al. 2016; Gorgoni et al. 

2016; Mander et al. 2014; Kam et al. 2016), for assessment of children’s cognitive 

development (Chatburn et al. 2013), and for prediction of stress and schizophrenia (Dang-Vu 

et al. 2015; Castelnovo et al. 2018; D’Agostino et al. 2018).

Spindles provide an important signature for N2-stage sleep. In human sleep labs, spindle 

detection requires manual annotation by sleep experts, a resource-intensive task that is time 

consuming and subject to inter-rater variability (Campbell, Kumar, and Hofman 1980; 

Warby et al. 2014; Zhao et al. 2017). In animal sleep research, there are no publicly available 

datasets with expert-annotated spindles. Additionally, there may be great variability in 

spindle characteristics across different brain areas (e.g., hippocampus, thalamus, and 
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neocortex) and recording tools (e.g., surface or intracortical EEG). Therefore, detection of 

sleep spindles has been an active area of research in human and animal sleep studies for 

decades. To date, the majority of work on automatic spindle detection is geared towards off-

line applications for specific cohorts, which may rely on various unsupervised or supervised 

techniques, including constant or adaptive thresholds, matching pursuit, time-frequency 

transform, decision tree and low-rank optimization (Schönwald et al. 2006; Huupponen et al. 

2007; Duman et al. 2009; Devuyst et al. 2011; Nonclercq et al. 2013; Babadi et al. 2012; 

Warby et al. 2014; O’Reilly and Nielsen 2015; Parekh et al. 2017; Parekh et al. 2015; Lajnef 

2016; LaRocco et al. 2018). Although a few spindle detection algorithms have been adapted 

for online applications, their detection latencies have not been fully investigated. Therefore, 

their flexibility and detection latency for real-time brain-machine interface (BMI) 

applications requiring spindle-triggered closed-loop auditory or electrical stimulation 

(Lustenberger et al. 2017; Latchoumane et al. 2017) remains untested. For instance, in order 

to enhance memory processing during sleep, targeted memory reactivation (TMR) is aimed 

to expose the sleeping brain with an olfactory or auditory cue that is used in the context of 

learning or task behavior during the pre-sleep wakeful period (Schouten et al. 2017). The 

latency consideration is critical because the timing of closed-loop stimulation affects TMR, 

in that acoustic stimulation has been shown to be most efficient when delivered at the 

descending phase of SO down state (Batterink, Creery, and Paller 2016) or during the 

transition from cortical down states to up states (Ngo et al. 2013). Furthermore, since fast 

(13-16 Hz) or slow (9-13 Hz) spindles may occur during different phases of SO (half cycle: 

0.5-1 s) or cortical (up vs. down) state (Mölle et al. 2011) and they may have differential 

roles in memory consolidation. If sleep spindles are detected too late (>350 ms), the phase of 

SO will not be properly selected; as a consequence, stimulation won’t be properly applied.

To date, although numerous methods or algorithms have been developed for detecting sleep 

spindles, most of them are not suitable for online detection or real-time applications. To 

accommodate real-time processing, the spindle detection method needs to process the neural 

data on the fly, with a computational speed faster or comparable to the data streaming speed. 

Many available spindle detection algorithms cannot be used directly in online applications, 

either because they don’t process data in a sequential manner, or because they do not meet 

the speed requirement.

Machine learning has recently emerged as a powerful tool in big data analysis. Deep 

learning algorithms, powered by scalable computational resources and large datasets, have 

shown superior performances in a wide range of tasks, including playing the game of Go 

(Silver et al. 2016), large-scale image and speech recognition (Russakovsky et al. 2017; 

LeCun, Bengio, and Hinton 2015), sleep staging (Supratak et al. 2017; Biswal et al. 2017; 

Mikkelsen and de Vos 2018), EEG-based prediction (Antoniades et al. 2017; Van Putten, 

Olbrich, and Arns 2018), clinical monitoring (Lee et al. 2018), and medical image analysis 

(Esteva et al. 2017). However, deep learning has not been fully investigated in the context of 

automatic spindle detection (Dakun et al. 2015; Chambon et al. 2018). To improve detection 

latency and accuracy of sleep spindles, we have developed a deep neural network (DNN) 

approach, termed as SpindleNet, to learn the complex nonlinear features and 

spectrotemporal structures of sleep spindles. Based on two public annotated sleep spindle 

datasets, we construct a large number (order of millions) of labeled examples and train the 
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DNN using advanced machine-learning techniques. Since annotated spindles are rare, we 

propose a transfer learning method in combination with synthetic spindles through computer 

simulations, to extend spindle detection to a wide variety of datasets (patient populations, 

noninvasive and invasive EEG, human and animal). Transfer learning allows us to store 

knowledge gained from solving one problem with sufficient existing labeled data in one 

domain, and apply it to a different but related problem in another domain (Pan and Yang 

2010). We validate the robustness of our transfer learning method on cross-subject, cross-

age/health group, and cross-species scenarios.

2. Methods

2.1. Experimental data.

We tested our deep learning approach on four publicly available human sleep datasets, one 

non-public human sleep spindle data set, and one non-public rat sleep dataset. All studies 

were approved by the New York University School of Medicine (NYUSOM) Institutional 

Review Board (IRB) and Institutional Animal Care and Use Committee (IACUC).

The first human sleep spindle dataset was derived from the Montreal archive of sleep studies 

(MASS)---an open-access and collaborative database of laboratory-based polysomnography 

(PSG) recordings (O’Reilly et al. 2014). MASS is composed of several cohorts divided into 

subsets. Cohort one has five subsets and comprises of 200 complete night PSG recordings of 

97 men and 103 women of age varying between 18 and 76 years (mean±SD: 38.3±18.9 

years), stored in European data format (EDF). The subset #2 within cohort one (19 healthy 

subjects) was annotated for N2 stage spindles (start-time and duration) by two human 

experts based on the C3 channel (linked-ear reference). A total of fifteen subjects were 

annotated by two human experts, whereas the remaining four subjects were annotated by 

only one expert. The EEG signals were originally sampled at 256 Hz and resampled to 200 

Hz for standardization. For each subject’s sleep recording, we observed consistent variability 

between the annotations of the two experts in terms of start-time, duration and total number 

of spindles (figure 1). In our study, we used the union of annotations from the two experts as 

our ground-truth in training the neural network. We also evaluated the performance using an 

intersection of the annotations from the two experts, which resulted in lower performance. 

We used the MASS dataset for the 5-fold cross-validation analysis, and tested the 

performance of the algorithm on the other independently acquired datasets.

The second human sleep spindle dataset was derived from the DREAMS database from the 

University of MONS-TCTS Laboratory and Universite Libre de Bruxelles--CHU de 

Charleroi Sleep Laboratory under terms of the Attribution-NonCommerical-NoDerivs 3.0 

Unported (CC BY-NC-ND 3.0) License (Devuyst et al. 2006). The DREAMS dataset 

consists of 30 minute PSG excerpts from eight subjects (4 males and 4 females, age: 45.88 

± 7.87 years) with various sleep pathologies (dysomnia, restless syndrome, insomnia and 

apnea/hypopnea syndrome. The excerpts contain three EEG channels (FP1-A1, C3-A1, O1-

A1), two EOG channels and one EMG channel. They were scored independently by two 

sleep experts based on the C3 channel. The original EEG recordings had varying sampling 

frequency of 50-200 Hz, and then were uniformly resampled to 200 Hz for standardization. 

Since not all EEG recordings were annotated by two experts (six only by one expert), and 
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there were consistent differences in their annotations (for e.g. expert two only annotated the 

start-time while expert one annotated both start-time and duration of the spindles), we used 

the union of their annotations (‘OR’ criterion) as the ground-truth to assess the performance 

of the sleep spindle detection.

The third and fourth human sleep datasets were derived from the national sleep research 

resource (NSRR) repository (Zhang et al. 2018). The third dataset consisted of overnight 

PSG recordings from elderly men (65 years or older), collected as a part of a multi-center 

study of osteoporotic fractures (MrOS) (Blank et al. 2005). The fourth dataset consisted of 

overnight PSG date from children (ages 5 to 9.9 years) collected as a part of a multi-center 

childhood adenotonsillectomy (CHAT) study (Redline et al. 2011). Both datasets consisted 

of EEG recordings for channels C3 and C4 with expert-annotated sleep-stages. Original 

sampling rates varied from 200 Hz to 512 Hz, and were uniformly resampled to 200 Hz. We 

randomly selected five subjects from each dataset and tested SpindleNet on stage-2 NREM 

sleep data from channel C3.

The fifth human sleep spindle dataset consisted of intracranial EEG (iEEG) recordings (on 

average 120 electrodes per subject) from a study of 18 epileptic patients who underwent 

surgery for invasive monitoring (Lafon et al. 2017). The original signal was sampled at 512 

Hz and resampled to 200 Hz. We selected three subjects who had entrained sleep spindles 

following randomly applied acoustic stimuli.

Finally, for rat sleep recordings, multichannel local field potential (LFP) signals were 

acquired from the rat primary somatosensory cortex (coordinate: AP −1.5 mm, ML +3.0, 

and DV −1.5) across four sessions (1-2 hours duration) from three animals (male Sprague-

Dawley rats). Rats were kept with controlled humidity, temperature, and 12-hour (6:30 AM 

to 6:30 PM) light-dark cycle. Food and water were available ad libitum. Rats were 

anesthetized with isoflurane (1.5-2%) and implanted with silicon probes (NeuroNexus) 

mounted on custom-built microdrives. One or two probes were implanted in the right 

hemisphere. Rats were allowed to recover for about one week after surgery. Rats were 

allowed to habituate in the recording room and remained in their home cage with food and 

water available during the daytime for 5-7 days. Lights were on in the recording room 

during the recording. Raw neural signals were recorded with 64-channel digital headstage 

(RHD2132, Intan Technologies) and acquisition board (Open Ephys) at a sample rate of 1 

kHz (resampled to 200 Hz). To obtain LFPs, we further filtered the raw signal by a bandpass 

filter between 0.3 and 300 Hz.

2.2. Training setup for SpindleNet.

The SpindleNet is comprised of two deep learning modules: convolutional neural network 

(CNN) and recurrent neural network (RNN), which are integrated in a sequential structure 

(figure 2a, ‘network 1’ and ‘network 2’). The CNN consists of 5 convolution layers (figure 

2b) of 40 one-dimensional (1D) temporal filters (vectors) of size 1×7 in each layer, followed 

by exponential linear units (ELUs). Input to ‘network 1’ consists of 1 × 50 (0.25 s × 200 Hz) 

vector of raw EEG time series. Input to ‘network 2’ consists of the envelope of the band-

pass filtered (9-16 Hz) signals of the same length. Finally, EEG power features are combined 
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along with the outputs of ‘network 1’ and ‘network 2’ and the concatenated vector is 

processed through a fully connected layer.

We used a large receptive field in the first layer inspired by some of the early work in 

ImageNet classification (Krizhevsky, Stuskefer, and Hinton 2012), and decided to maintain 

the size of the receptive fields across the layers based on the network design suggestions by 

VGG Net (Simonyan and Zisserman 2014). However, we found that changing the number of 

layers or receptive field size did not significantly affect our outcome. We used the 

exponential activation function for all the CNN units due to its demonstrated faster learning 

time and higher accuracy compared to other types of nonlinearity (Clevert, Unterthiner, and 

Hochreiter 2015). Every layer was followed by max-pooling using a filter size of five 

samples and stride equal to one. The CNN with ELUs has been previously tested in EEG 

data analyses (Schirrmeister et al. 2017). The RNN consists of 100 long short-term memory 

(LSTM) cells, followed by one fully connected layer and one output layer with a softmax 

activation function.

The dropout strategy has been shown to outperform other regularization methods (Hinton 

2014), which randomly sets a specified percentage of input units in every layer (except the 

first layer) to zero. In all experiments, we empirically set the dropout rate equal to 0.5.

The temporal input for online spindle prediction consisted of single-channel EEG (or LFP) 

signal with a moving window of length 250 ms, approximately one quarter of the average 

spindle size. The parameters of SpindleNet were updated using the Adam optimizer 

(Kingma and Ba 2014). We used the following default learning hyperparameters: an initial 

learning rate of 0.0001 and mini-batch size of 500 (with a balanced size of examples from 

two classes).

Within each fold of 5-fold cross validation, we used 70% of all balanced augmented samples 

as the training set, and 30% for validation. At each fold, we used 30% data for validation of 

independent data samples and for early stopping (to avoid overfitting). We tested SpindleNet 

on the test subjects’ complete recordings by using a moving window with a stride of one. 

For each training sample, we preprocessed the sample by detrending, demeaning, and scale 

normalization for calibration.

The SpindleNet was developed on the basis of the TensorFlow (https://www.tensorflow.org), 

an open source platform for deep learning and neural network development. Our custom 

code was written and implemented on a Linux Computer (OS Ubuntu, 4-core Intel Core 

i7-7700K; 32GB RAM and NVIDIA GTX-Ti 1080 GPU card with 11GB). On average, the 

online execution time of SpindleNet (including computation of EEG features) was 

approximately 6 ms.

2.3. Data calibration.

In practice, EEG signals have different amplitude or variance statistics depending on the 

sleep stage, electrode conductance, and recording depth. Therefore, we applied scale 

normalization for data calibration. For the benchmark experimental testing, the scale was 

chosen as the average standard deviation of the expert-annotated spindles). For other 
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datasets, we scaled the signals (EEG, iEEG or rodent LFP) with the standard deviation 

statistic of the raw time series of a randomly selected subject from the dataset. This was 

based on the assumption that the ratio of spindle amplitude relative to EEG amplitude in 

NREM sleep was similar or stable.

2.4. Data augmentation.

The occurrence of spindles was distributed throughout stage-2 or stage-3 NREM (N2, N3) 

sleep with a density that varied by subject and pathology. This resulted in an imbalanced 

dataset with few samples from the positive class (spindles) compared to the negative class 

(non-spindles). To generate a balanced training sample size, we augmented the positive and 

negative class until they were balanced. This was done by selecting a fixed time interval 

before and after the center of the spindle and generating samples using a moving window of 

size Tw with a stride of one (Figure 3a). A positive label was generated for every window of 

length Tw if more than 50% samples within that window overlapped with the expert-

annotated spindles; otherwise a negative label was used.

2.5. Feature selection and fusion.

Spindles are characterized by a localized high power in the spindle band (9-16 Hz) of 

spectrogram. To accommodate additional spectral features, we computed the multi-taper 

spectrum using a time window of 500 ms and step size of 5 ms (i.e., 1/sampling frequency). 

The power features were computed after data spindle (9-16 Hz)band preprocessing. In 

addition, we computed the spectral power ratio 
spindle(9 – 16 Hz)band

delta+theta(2 – 8 Hz) bands
 as one of the 

features. The power features were appended to the output of the RNN in two subnetworks 

(figure 2a).

2.6. Online vs. offline detection of sleep spindles.

Depending on specific application, we employed different criteria to define sleep spindles. In 

online spindle detection, the latency is the most important factor. Detection latency is not an 

issue for offline spindle detection applications, therefore we used a stricter duration criterion 

to eliminate the detected events shorter than a specified length (e.g., 400 ms).

….. We set two detection criteria (softmax probability and minimum spindle duration) to 

determine the confidence of online detection. Introducing a minimum spindle duration 

would inevitably introduce a detection latency. In contrast, there would be no duration 

criterion in off-line detection.

2.7. Assessment of performance.

We used the following performance metrics:

Sensitivity =
TP

TP + FN
, Specificity =

TN

TN + FP
, Precision =

TP

TP + FP
,
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Accuracy =
TP + TN

TP + FP + TN + FN
, F1 − score =

2 × TP

2 × TP + FP + FN

False positive rate (FPR) =
FP

FP + TN
, False discovery rate(FDR) =

FP

FP + TP

where TP (true positive) denotes agreement between the algorithm and ground truth. FN 

(false negative) denotes a true spindle was missed by the algorithm but marked by experts. 

FP (false positive) denotes a spindle was detected by algorithm but not marked by the 

experts. TN (true negative) was defined as in (Devuyst et al. 2011): TN=signal duration in 

seconds–FP–TP–FN. We assess a true positive when the absolute difference between the 

estimated spindle onset by the algorithm and the onset of ground truth is less than 0.25 s. We 

used the same assessment metrics for comparing other sleep detection methods with 

SpindleNet.

We also computed the false event rate and true event rate (per minute). Specifically, we used 

a non-overlapping 1min moving window to calculate the statistics of spindle events 

(regardless of the duration). In addition, we computed the detection latency by comparing 

the spindle onset detected by SpindleNet to that of the experts’ annotation.

2.8. Synthetic spindle generation.

We used a quadratic parameter sinusoid (QPS) model (figure 3b) to characterize sleep 

spindles (Palliyali, Ahmed, and Ahmed 2015).

s(t) = e
(a + bt + ct

2
)
cos(d + et + f t

2
)

where a, b, c, d, e and f are the free parameters of the quadratic functions. We set a=0 (such 

that the peak amplitude is 1, or smax(t)=1) and set b, c, d, e, f as random variables with 

normal distributions derived from the annotated spindle statistics. In the case of MASS 

dataset, based on the results published in (Palliyali, Ahmed, and Ahmed 2015), we used the 

following parameters (mean, standard deviation): c = (−10, 3.87), d = (0, 4.69), e = (84.5, 

3.86), and f = (−0.9, 4.96). For the DREAMS dataset, we fitted the QPS model to expert-

annotated sleep spindles to compute the simulation parameters for each subject separately 

(Table 1) which were then used to generate synthetic spindles.

To mimic the rich spectrotemporal components of raw EEG data, we merged the synthetic 

spindles with experimental EEG signals. The peak of a simulated spindle was centered at 0. 

To define the onset/offset of simulated spindle, we defined the threshold to be at 0.4 (i.e., 

40% of the peak amplitude of s(t)). We used a Butterworth ‘bandstop’ filter to obtain a clean 

baseline EEG by removing 9-16 Hz frequency components. Adding these two components 

together with (optional) broadband noise yielded synthetic spindles (figure 3c).
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2.9. Other sleep spindle detection methods.

There are numerous automatic sleep spindle algorithms in the literature, but the majority of 

them are not suitable for online applications because they rely on multiple spindles to 

determine the best thresholds and compute signal decompositions that are not performed in 

real time. In addition, some algorithms require prior knowledge or parameter fitting, 

therefore it is nearly impossible to have a completely fair comparison between methods.

For the purpose of comparison, here we selected two recently published spindle detection 

algorithms. The first one is known as McSleep (Parekh et al. 2017) (https://github.com/

aparek/mcsleep.git), which has been shown to outperform seven other spindle detection 

methods (Warby et al. 2014) in the MASS and DREAMS datasets. The McSleep algorithm 

is a nonlinear subspace detection method, which decomposes the input EEG signal into the 

sum of a transient and an oscillatory component. The envelope of oscillatory activity is 

further detected by a Teager operator, followed by spindle threshold detection. The second 

spindle detection algorithm is known as Spindler (LaRocco et al. 2018) (https://github.com/

VisLab/EEG-Spindles). Spindler performs matching pursuit using Gabor atoms for 

estimating spindle locations, which is then thresholded to further identify the spindles. The 

open-source software of these two tested algorithms are not suitable for the online 

application.

2.10. Assessment of agreement between detection results.

Cohen’s kappa and other kappa variants are commonly used for assessing inter-rater 

reliability (IRR) for nominal (i.e., categorical) variables (Cohen 1960). Kappa statistics 

measure the observed level of agreement between two raters or classifiers for a set of 

nominal ratings and corrects for agreement that would be expected by chance. Specifically, 

we computed kappa based on the equation

κ =
P(a) − P(e)

1 − P(e)

where P(a) denotes the observed percentage of agreement, and P(e) denotes the probability 

of expected agreement at a chance level (for a two-class classification problem, P(e) =0.5). κ 
=1 denotes a perfect agreement.

3. Results

3.1. Overview

Two of the most widely used types of deep learning architectures are convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs). We developed a DNN architecture 

that integrates a CNN with a RNN in a sequential structure (figure 2a). The CNN consists of 

5 convolution layers (figure 2b). The input consists of i) a 1 × 50 (0.25 s × 200 Hz) vector of 

EEG time series; ii) the envelope of the band-pass filtered (9-16 Hz) signals of the same 

length; and iii) EEG power features. The convolution operation consists of 40 one-

dimensional (1D) temporal filters (vectors) of size 1×7, followed by exponential linear 
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activation. The RNN consists of 100 long short-term memory (LSTM) cells, followed by 

one fully connected layer and one output layer with a softmax activation function.

We constructed independent training and validation samples for sleep spindles from 

annotated human EEG recordings. Using discriminative supervised learning, we trained 

SpindleNet using a stochastic optimization algorithm (Methods). For each subject’s 

recording, SpindleNet was trained on approximately 1-2 million experimental EEG traces in 

the time domain. Upon completion of training, we examined the receptive field (RF) 

representation of the learned convolution filters. The first-layer filters behaved as matched 

filters that showed temporal structure characterizing spindle oscillations (figure 2c). The 

second and higher-layer filters represented complex and hard-to-interpret higher-order 

spectrotemporal features (figure 2d). During training, we monitored the convergence process 

based on training and validation loss functions to avoid overfitting (figure 2e), and the 

network size and hyperparameters were optimized using grid search method. However, the 

detection performance was robust to the exact choice of hyperparameters (figure 2f,g). 

Detection performance of deep learning depended on the size of training samples. Adding 

training samples gradually improved the accuracy of testing data until ultimately reaching 

the performance plateau (figure 2h,i), indicating the importance of large-scale data in deep 

learning.

Among all annotated spindle events, there was inevitably an unknown level of label noise 

where two experts disagreed. As a result, the histograms of duration, power and power ratio 

statistics of annotated spindles varied between two human raters (figure 1). Differences in 

these statistics suggested subjective biases in human annotation.

3.2. Results on two annotated human sleep datasets

We tested two public annotated sleep spindle datasets (Methods), which contained nocturnal 

sleep EEG recordings from healthy subjects (MASS) and from subjects with sleep 

pathologies (DREAMS). The training data were constructed from a subset of 19 healthy 

adult subjects from the MASS dataset. The NREM sleep duration and spindle statistics 

varied across subjects (figure 1a–d). In addition, there was a large variability in annotated 

spindle statistics between two human experts (figure 1e–h). We used an “OR” criterion from 

two experts to construct putative true positives (TPs) for spindles. In addition, there were 

unlabeled spindle examples from two experts, which could nevertheless be detected by our 

method (see an example marked by arrows in figure 4a,b). Although sleep spindles were 

only annotated during N2 sleep in the MASS dataset, we were able to identify sleep spindles 

during N3-stage sleep, which are often temporally coupled with slow oscillations (figure 

4d). Due to the lack of expert-identified spindles to provide ground truth, N3-stage spindle 

statistics were not used in the result assessment.

We first assessed the spindle detection performance based on the MASS dataset. We trained 

SpindleNet with the N2-stage sleep recordings using a 5-fold cross-validation scheme and 

computed sensitivity, specificity, false discovery rate (FDR), and F1-score (Methods, figure 

4e). Among the subsets of 25,453 putative spindles (n=19 subjects), our method achieved 

sensitivity of 90.07± 2.16%, specificity of 96.19 ± 0.71%, FDR of 30.36 ± 5.88%, F1-score 

of 0.75 ± 0.05 and AUROC of 98.97 ± 0.13% (mean±SEM). We also compared the statistics 
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of false positive (FP) detections with that of the spindle TPs (ground truth) for duration and 

power, and found that these two sets were nearly inseparable in the overlapping feature 

space, indicating the possibility that SpindleNet detected spindles that might be missed by 

experts. Among those putative spindles, we further computed their Fourier spectra and 

categorized them into fast (13-16 Hz) and slow (9-12 Hz) spindles. During N2 sleep, the 

occurrence distribution of fast and slow spindles varied.

Next, we tested SpindleNet trained from the MASS dataset on the unseen DREAMS dataset. 

Despite the differences in spindle statistics between the two datasets, SpindleNet achieved 

good generalization (sensitivity, 77.85 ± 4.28%; specificity, 94.2 ± 1.26%; FDR, 61.96 

± 7.39%; F1-score, 0.48 ± 0.07; and AUROC, 95.97 ± 0.96%) while testing on the 

DREAMS dataset (figure 4f, w/o fine tuning; referred to as baseline). To further improve the 

baseline performance, we fine-tuned SpindleNet using annotated spindles from the 

DREAMS dataset. As a result, the detection accuracy showed an improved trend for a small 

sample size (figure 4f, signed rank test: FDR, p=0.0547; F1-score, p=0.0547, sensitivity, 

p=0.25; n=8). Alternatively, we fine-tuned SpindleNet using simulated spindle samples; and 

the detection results were also similar or slightly improved compared to the baseline.

In addition, we evaluated the performance gain achieved by the various input components of 

SpindleNet (figure 4g). We found that although the network with all three inputs had lower 

sensitivity, using additional inputs (envelope and power features) helped improve the 

performance of SpindleNet on all other metrics (specificity, FDR, F1-score and AUROC). 

Finally, for the purpose of comparison, we also ran the non-DNN component of SpindleNet 

by using the power features alone. We found that the deep learning components (using raw 

EEG and envelope features) achieved significantly higher sensitivity and higher F1-score 

compared to the shallow network component based upon the power features. This suggests 

that the deep learning component of SpindleNet played a more significant role in the overall 

performance, which was further improved when additional power features were used in 

conjunction with raw EEG and envelope features. Overall, SpindleNet have demonstrated 

excellent generalization ability between human EEG sleep datasets, with varying health 

conditions and/or spindle statistics.

Furthermore, we investigated the robustness of SpindleNet with respect to the sampling 

frequency of EEG signals. We resampled EEG signals from the MASS dataset with lower 

sampling frequencies (100 Hz, 50 Hz and 34 Hz). As a result of down sampling, spindle 

detection may suffer from the loss of fidelity of EEG signals (figure 5). By default, the 

standard model trained with a sampling frequency of 200 Hz was termed as Model 1. By 

keeping the input duration (250 ms) unchanged, we retrained different network models 

under different EEG sampling frequencies (Models 2-4 for sampling frequencies of 100 Hz, 

50 Hz, and 34 Hz, respectively) but with the same training sample size. During the testing 

phase, the EEG signals with lower sampling frequency were either first up-sampled to 200 

Hz and then tested by Model 1 (ad hoc option 1), or directly tested by their respective 

reduced models (Models 2-4; option 2). Compared to the ad hoc option, option 2 produced 

comparable or slightly better performance (figure 5g). The difference between these two 

options was most pronounced in the lowest sampling frequency, where the sensitivity, FDR 

and F1-score statistics were significantly better in option 2 than in option 1 (signed rank test, 
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sensitivity, p=0.0158; FDR, p<0.001; F1-score, p<0.001; n=19). This result suggested that 

SpindleNet was robust with respect to a wide range of sampling frequencies, and even 

performed well up to the Nyquist limit (twofold of the maximum spindle frequency of 16 

Hz).

3.3. Comparison with state-of-the-art spindle detection methods

We compared SpindleNet with two recently published open-source spindle detection 

methods: McSleep (Parekh et al. 2017) and Spindler (LaRocco et al. 2018). We chose these 

two algorithms because they have been tested on the MASS and/or DREAMS datasets, and 

have been compared against a wide range of spindle detection methods (see Parekh et al. 

2017) for details).

First, we selected the sleep spindle recordings with annotations from two human experts in 

both datasets (n=15 subjects for MASS and n=6 subjects for DREAMS, which contained 

annotations from two experts). We ran these detection methods and compared various 

performance indices (figure 6b–d). On the MASS dataset (n=15 subjects,), SpindleNet 

achieved specificity of 97.06±0.67% (McSleep: 94.49±0.77%, p=0.0183; Spindler: 

98.37±0.37%, p=0.1003); FDR of 19.03± 3.18% (McSleep: 35.71±4.6%, p=0.0061; 

Spindler: 14.42±2.6%, p=0.2747); F1 score of 0.83±0.02 (McSleep: 0.72±0.04, p=0.0124; 

Spindler: 0.75±0.02, p=0.0196); accuracy of 96.08±0.44% (McSleep: 93.75±0.57%, 

p=0.003; Spindler: 95.37±0.36%, p=0.2222); and false event rate of 1.57±0.36 spindles/min 

(McSleep: 2.97±0.43 spindles/min, p=0.0177; Spindler: 0.87±0.2 spindles/min). All 

comparisons are done with unpaired t-tests. Notably, our false event rate was significantly 

lower (nearly half) compared to that derived from the McSleep algorithm. A representative 

FP example that was misidentified by the McSleep algorithm but correctly identified by 

SpindleNet is shown in figure 6a. In comparison with SpindleNet, Spindler achieved better 

specificity, FDR and false event rate but its sensitivity, F1-score and true event rate were 

worse, suggesting the trade-off between sensitivity and specificity in spindle detection. In 

assessing the consistency between detected spindles and annotated ground truth, we also 

obtained a higher Cohen’s kappa value of 0.71 ±0.014 (McSIeep: 0.45±0.035, p<0.0001), 

indicating a high degree of agreement between our detected spindle results and annotated 

ground truth (figure 6d). On the DREAMS dataset, although SpindleNet performed better on 

some metrics, the performances of these tested detection methods were not significantly 

different (figure 6e,f), possibly due to a shorter sleep recording duration (30 min) or small 

sample size (n=6).

Next, we generated 30-minute EEG recordings containing synthetic spindles (density: 10 

spindles per minute) with varying spindle durations (0.3-1.2 s). Unlike human-labeled 

spindles that contain expert variability, the ground truth of synthetic spindles (onset and 

duration) is predetermined. We varied the SNR of EEG signals during testing and compared 

the detection performance of our method and the McSleep algorithm. At the level of infinity 

(noiseless) or 5 dB SNR, the performances of these two methods were similar. However, 

when the SNR was reduced to 0 dB or below, SpindleNet showed superior performance in 

all detection performance categories (i.e., sensitivity, specificity, FDR and F1-score; figure 

7a–d). In the noiseless condition, SpindleNet achieved a mean detection latency of 150 ms 
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during online spindle detection (figure 7e), and the mean detection latency degraded 

gradually with a decreasing SNR (figure 7f). When the detection latency is not a concern, 

the off-line detection performance could be slightly improved in comparison with on-line 

detection (figure 7h).

On the MASS dataset (n=19 subjects), SpindleNet achieved a mean detection latency of 

~340 ms based on from the OR criteria (choosing the earliest onset) and ~205 ms based on 

the AND criterion (conservative onset, figure 7g)---these statistics are reasonable 

considering the uncertainty in expert labeling of spindle onset, figure 1c). In contrast, the 

McSleep algorithm is not suitable for online processing, thereby yielding no latency 

comparison. A detailed result summary is shown in Table 2 and Table 3.

Furthermore, we investigated the robustness of SpindleNet to the label noise (Frénay and 

Verleysen 2014). In the annotated spindles, there were inevitably uncertainties of spindle 

onset/offset that contributed to the label noise. From the training samples of the MASS 

dataset, we randomly switched the spindle/non-spindle labels with 5% and 10%, retrained 

the SpindleNet and retested the noiseless testing samples. On these noisy-label datasets, 

SpindleNet achieved a performance comparable with the noise-free training performance 

(sensitivity: 97.77±0.6% and F1-score: 98.83±0.6% across all noise scales). This further 

confirms the robustness of deep learning algorithm despite the label noise---which is 

inevitable in the case of human spindle annotation.

3.4. Application of other datasets and transfer learning

Sleep spindle characteristics (e.g., power, duration, and frequency) are known to vary with 

age, health condition, and species (Purcell et al. 2017). However, it is costly to annotate 

large amount of sleep spindles from EEG recordings from all groups. Therefore we explored 

transfer learning to understand how knowledge can learned from one domain (such as sleep 

spindles in healthy young adults) can be transferred to other domains.

Between different sleep recordings, the amplitude/duration/frequency statistics of EEG or 

spindle features might vary significantly. We first tested SpindleNet on un-annotated human 

EEG sleep recordings from three distinct age groups, first from young children (n=5 

randomly selected subjects, ages 5-9.9 years), second from elderly subjects (n=6 randomly 

selected subjects, ages 65-89 years), and third from epilepsy patients (n=3 randomly selected 

subjects, ages 17-26 years). Figure 8a–c shows representative examples our spindle 

detections in these sleep datasets. Notably, the tested EEG sleep recordings had different 

amplitude range, and we performed a data calibration before testing (Section 2.3). However, 

the spindle detection accuracy was robust to the calibration scale (figure 9).

To date, an outstanding question remains for defining sleep spindles in animal sleep studies. 

To our knowledge, there was no consensus or annotated ground truth on rodent sleep 

spindles among published sleep datasets. Next, we investigated whether the knowledge of 

human sleep spindles can be transferred to animal sleep research, a significantly more 

challenging task. Due to the lack of annotated sleep spindles in rats, it is difficult to directly 

train a DNN based on rat LFP recordings. To remove slow oscillations and potential low-

frequency artifacts, we applied bandpass (2-50 Hz) filtering to LFP signals before feeding 
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them to SpindleNet. Rats have a different distribution than humans of sleep EEG power at 

various frequency bands, so we did not use power features for rat sleep spindle prediction 

and used only the raw signal input. Although we only used the temporal features, 

SpindleNet was still able to identify spindles in rat LFP recordings (figure 8d). Due to the 

lack of ground truth, we could not quantify the TP and FP rates. Instead, we compared the 

spindle characteristics derived from SpindleNet with those from the McSleep algorithm 

(figure 8e–g). Results show that SpindleNet generated spindle statistics comparable with the 

McSleep algorithm.

….. It is worth pointing out that transfer learning would often involve learning on a new 

dataset with partial labeled ground truth, which was used for fine tuning based on the pre-

trained network (Yosinski et al., 2014); however, generating ground truth annotations for the 

new human and animal datasets we used here is beyond the scope of the current study. 

Furthermore, to the best of our knowledge, there is no established consensus on annotating 

sleep spindles in animals. Therefore, we decided to use transfer learning primarily to 

demonstrate the generalizability of our approach on independently acquired datasets with 

human subjects in different age groups as well as adult rats. With further addition of ground 

truth on these datasets, we expect to obtain improved performance by retraining parts of 

SpindleNet. As part of demonstration of our method, we have used SpindleNet trained from 

the MASS dataset and tested on the DREAMS dataset, and compared the performance with 

and without transfer learning (figure 4f).

4. Discussion

We have proposed a deep learning approach (SpindleNet) for real-time sleep spindle 

detection. In the context of learning single-channel EEG patterns, the CNN is aimed at 

extracting or detecting scale-invariant oscillatory features of EEG signal (such as spindle 

oscillations), whereas the RNN is aimed at modeling the temporal structure of those 

features. In contrast to imaging processing, CNNs or CNN+RNN architectures are been used 

sparingly in EEG processing (Bashivan et al. 2015; Antoniades et al. 2017). By constructing 

a large number of labeled samples (from either annotated EEG traces or synthetic examples), 

our DNN approach is capable of detecting spindles with high accuracy (figure 4e,f) and 

short detection latency (figure 7e), as confirmed by multiple independent spindle datasets 

and synthetic spindle simulations. We also found that the deep learning components of our 

network (based on raw EEG and envelope features) have overall higher F1-score and 

significantly higher sensitivity compared to non-deep learning component (based on power 

features alone) (figure 4g). We further validated that the learned knowledge of SpindleNet 

from human sleep can be directly transferred to identify rat sleep spindles, despite the 

between-species difference in spindle statistics. This will impact animal sleep research, as it 

is time-consuming to annotate sleep recordings under irregular sleep conditions during the 

course of murine experiments, and there is lack of labeled data given relatively shorter sleep 

recordings. SpindleNet is also insensitive to the sampling frequency of EEG recordings 

(figure 4h) and robust to noise (figure 7). This suggests that it might be directly applied to 

wireless EEG-based sleep recordings with low sampling rate transmission for preservation 

of bandwidth or battery power (Wu and Wen 2009; Mckenzie et al. 2017).
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SpindleNet is capable of extracting complex features from large amounts of time-series data, 

and is also conceptually different from previous applications of DNN in EEG data 

classification (Bashivan et al. 2015; Nir et al. 2012; Schirrmeister et al. 2017). While the 

previous research has primarily relied on applying CNNs or RNNs to EEG data in a single 

domain, here we process the EEG data in the time-domain using a combination of CNN and 

RNN, in addition to power features. Our solution is inspired by applications of DNN for 

video classification problems (Ng and Hausknecht 2015). SpindleNet has several key 

benefits over state-of-the-art spindle detection methods (Devuyst et al. 2006; Ferrarelli 2007; 

Martin et al. 2013; Mölle et al. 2002; Parekh et al. 2017; Wamsley et al. 2012; Wendt et al. 

2012). Most spindle detection methods rely on offline processing of filtered EEG data 

followed by various thresholding schemes. The online spindle detection method proposed in 

(Lustenberger et al. 2016) employed an open-source system (rtxi.org) and adaptive 

threshold-based detection method; but no detection latency was reported. However, 

threshold-based detection methods are often sensitive to selection of globally optimal 

thresholds, and the threshold adaption is purely heuristic. SpindleNet bypasses these 

limitations by learning the higher-order spectrotemporal filters and temporal structures. In 

addition, previous methods have limited scalability across subjects, diseases, and species 

since they require hand-tuned features and parameters. In contrast, our method is able to 

generalize across datasets and learn the common spectrotemporal features. Finally, since 

SpindleNet is able to learn spindle characteristics that are most discriminative for spindle 

detection, it performs consistently better on multiple performance metrics compared to other 

detection methods (figure 6). In our investigations, we have also compared SpindleNet with 

the McSleep and Spindler algorithms for sleep spindle detection. As these three methods are 

used rather differently (in terms of training, sample size requirement, channel requirement, 

online vs. offline), a fair comparison might not be completely possible. Nevertheless, the 

robust detection performance derived from SpindleNet highlights the strength of data-driven 

deep learning. However, a comprehensive comparison between different sleep spindle 

methods would require one or multiple independent, large annotated spindle datasets.

Our SpindleNet (rooted in deep learning) outperforms other state-of-the-art spindle detection 

methods. In the presence of large number of labeled samples, deep learning can provide 

several advantages over traditional methods for sleep spindle detection. First, the deep 

learning method is purely data driven (“let the data speak for themselves”), and is very 

effective to learn discriminative features directly from temporal data. Therefore, it can 

potentially achieve better generalization, whereas traditional methods may be limited by 

specific parametric or statistical assumptions. Second, deep learning can greatly benefit from 

the use of synthetic or simulated samples. Third, deep learning can potentially incorporate 

multiple network structures (e.g., CNN, RNN, or generative adversarial network) and 

capture complex and high-order features of the data. Since each building block may be 

modular, deep learning is more flexible than the other methods.

Real-time detection of sleep spindles has potential applications in closed-loop neuroscience 

experiments, where the onset of sleep spindle can be used as a neurofeedback of BMIs to 

trigger an optogenetic intervention (Mckenzie et al. 2017), auditory stimulation (Antony and 

Paller 2017; Leminen et al. 2017), or transcranial current stimulation (Lustenberger et al. 

2017; Lafon et al. 2017). For instance, the theory of TMR is built upon the assumption that 
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pairing memory cues with brain oscillations at certain phase may mediate effective memory 

consolidation (Tambini, Berners-Lee, and Davachi 2017; Cairney et al. 2016; Schouten et al. 

2017; Shimizu et al. 2018). Therefore, ultrafast detection with the shortest detection latency 

would be desirable, as the strength or effectiveness of memory enhancement depends on the 

timing of acoustic or electrical stimulation. SpindleNet can be easily extended to multi-

channel EEG recordings for identifying spatiotemporal patterns of propagating spindle 

waves (De Souza et al. 2016). Same analysis is also applicable to MEG or ECoG recordings, 

which might have higher sensitivity for spindle detection (Dehghani, Cash, and Halgren 

2011). In addition, SpindleNet is suitable for sleep monitoring, since an accurate 

characterization of dysfunctional spindle activity, in combination with other metrics, can 

help diagnose a thalamic dysfunction or neurodevelopmental disorders (Mckenzie et al. 

2017).

Our proposed deep learning strategy is limited to labeled data and supervised learning. 

However, obtaining labeled data samples is time consuming and costly in practice, and there 

are often a much larger number of unlabeled samples. Incorporating unsupervised deep 

learning strategies for feature selection may overcome the sample size issue of labeled data, 

and further improve the detection performance on sleep spindles.

Finally, future research may determine whether our deep learning strategy can be 

generalized to detect other EEG oscillations during distinct neural states. This is particularly 

interesting for EEG oscillations with overlapping frequency as sleep spindles, such as the 

alpha and mu rhythms. For instance, detection of pre-stimulus alpha waves (9-15 Hz) may 

be useful in predicting mistake or lapse-of-attention (Mazaheri et al. 2009). The alpha 

oscillatory wave may also emerge during the so-called “alpha-delta sleep”, an abnormal 

intrusion of alpha activity into the delta wave during NREM sleep (Roizenblatt et al. 2001). 

On the other hand, human EEG mu-rhythms have been widely adopted in the motor imagery 

BMI (Pfurtscheller et al. 2006), as well as the assessment of child development (e.g., infant’s 

ability to imitate) and autism (Bernier, Dawson, and Webb, 2007).

5. Conclusion

In conclusion, we have proposed a novel deep learning approach for single-channel sleep 

spindle detection and tested the algorithm on a wide range of human and rodent sleep EEG 

datasets. Our approach is driven by deep learning---a powerful data-driven machine learning 

approach to extract spatiotemporal features among the EEG signals during training. In the 

testing mode, our algorithm is ultrafast, appealing for real-time or closed-loop experiments. 

In testing two public annotated sleep spindle datasets, our method produces better or similar 

predictive performance compared to the state-of-the-art sleep spindle detection methods. 

Moreover, our algorithm is robust to the noise and EEG sampling frequency.
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Figure 1. Statistics of MASS dataset.
a, Statistics of NREM duration (min) on 19 human subjects. b-d, Statistics of annotated 

spindle number (b), onset time difference between two experts (c) and amplitude standard 

deviation (d). In panel c, n/a represents the condition only one expert’s annotation was 

available; the onset time difference among 15 subjects were 0.167 ± 0.007 s (mean±SEM). 

e-h, In subject #1, statistics discrepancy between two experts on the commonly annotated 

sleep spindles’ normalized power (e), duration (f), power ratio (g) and difference between 

two experts (Expert 2-Expert 1) on the spindle onset and duration (h).
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Figure 2. SpindleNet: deep neural network (DNN) architecture used for spindle detection.
a, Overall architecture of the network. The input to subnetwork 1 and 2 consists of raw EEG 

signal and the envelope of bandpass filtered (9-16 Hz) EEG signal, respectively. The power 

features that are directly input to the fully connected layer consist of the ratio of the average 

power of spindle-band frequencies (9-16 Hz) to that of lower frequencies (2-8 Hz) and the 

instantaneous power of all frequencies from (2-16 Hz). The convolutional neural network 

(CNN) acts as a temporal feature extractor. The features learned by the CNN are further 

passed to a recurrent neural network (RNN) that is intendent to discover temporal patterns 
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within the CNN features. The RNN implementation consists of a single-layer long short-

term memory (LSTM). The output of the RNN (from 50 time steps) of subnetwork 1 is 

combined with the output of RNN from the subnetwork 2 and the power features using a 

fully connected layer. Output of this layer (of length 50) is further processed by a softmax 

activation function that produces a probability output (spindle vs non-spindle). b, Detailed 

architecture of the 5-layer CNN. The input is processed by a total of 5 layers. Every layer 

consists of 40 1D filters of size 7×1, followed by max-pooling with kernel size 5×1. For 

250-ms EEG with 200 Hz sampling frequency, the size of input is 50. Batch size is set to 

B=20. c, A set of 7×1 learned receptive fields (RFs) from the first-layer CNN filters upon 

completion of training. The 1D filters share a resemblance to the shape of half cycle of 

spindle oscillation. d, A set of 40×40×7 learned RFs from the second-layer CNN filters. e, 

The learning convergence curve on training and validation data. f, The change of detection 

accuracy with respect to two learning hyperparameters: learning rate and drop-out rate. g, 
The change of AUROC statistic with respect to the learning rate and drop-out rate. h, The 

sensitivity of spindle detection improved with increasing training sample size (both tested on 

the same test data). i, The F1-score of detection gradually increased with increasing training 

sample size.
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Figure 3. Spindle data augmentation and generation of synthetic spindles.
a, We used a 250-ms overlapping moving window (dashed and solid boxes) to construct 

positive and negative samples. Any EEG traces with ≥50% duration (i.e., 125 ms) coverage 

of the annotated spindle event (shaded period) was treated as a spindle (positive) example; 

everything else was a non-spindle (negative) example. b, An amplitude-modulated, quadratic 

parameter sinusoid (QPS) descriptor for spindles. The two vertical lines mark the onset and 

offset of spindles, which pass the threshold of 20% of peak amplitude. c, Schematic diagram 

of generating synthetized sleep spindles.
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Figure 4. Results on online sleep spindle detection.
a, A representative snapshot of EEG trace (during stage-2 NREM sleep) with human marked 

sleep spindles (in red). b, Associated EEG multi-taper spectrogram (1 s moving window, 5 

ms step size). Arrows in panels a and b denote a potentially unlabeled spindle by two 

experts, which was detected by SpindleNet. c, Softmax probability output (blue) and the 

final hard decision (red, probability threshold 0.9) for online spindle detection. d, 
Representative EEG traces (blue) during stage-3 NREM sleep that demonstrate coupling 

between slow wave (0.5-4 Hz, black trace) and spindles (marked in red). In these two 
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examples, fast (13-16 Hz) sleep spindles tend to occur in the ascending phase of SO cycle 

(or be coordinated with depolarizing cortical up state), whereas slow (9-12 Hz) spindles tend 

to occur in the descending phase of SO cycle, or during the transition from cortical down to 

up states. Note that a large latency in spindle detection may switch from the up ascending 

phase to the down descending phase of the SO. e, Summarized results (from 5-fold cross 

validation) of sensitivity, specificity, false discovery rate (FDR), F1-score and AUROC 

statistics in the MASS dataset (n=19 subjects). Error bar represents SEM. f, Summarized 

results of sensitivity, specificity, FDR, F1-score and AUROC statistics in the DREAM 

dataset (n=8 subjects), using SpindleNet trained from the MASS dataset without further fine 

tuning as well as with fine-tuning using real and simulated spindles. Fine-tuning with real 

and simulated data further improved the performance. Error bar represents SEM. g, 

Performance comparison (5-fold cross-validated results) of DNN using different input 

features: raw EEG signal, filtered EEG envelope within the spindle frequency band (9-16 

Hz), and the power feature. h, Results on spindle detection from the MASS dataset (n=19 

subjects, error bar represents SEM) under various EEG sampling frequencies. Model 1: 

standard model trained with EEG signal with 200 Hz sampling rate; Models 2-4: models 

trained on down-sampled EEG signals at frequencies 100 Hz, 50 Hz, 34 Hz, respectively. In 

testing EEG signals with <200 Hz sampling frequency, we either up-sampled the signal and 

applied the standard model (Model 1), or applied the respective model for the sampling 

frequency. SpindleNet demonstrated robust performance across various sampling 

frequencies.

Kulkarni et al. Page 27

J Neural Eng. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Illustration of EEG traces and spectrograms with annotated (between two red vertical 
lines) and detected (marked by green vertical lines) sleep spindles at four different sampling 
frequencies.
Black trace denotes the softmax probability output from SpindleNet. Despite the lower 

sampling rate and loss of fidelity in EEG spindles, SpindleNet detected the spindle onset 

reliably.
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Figure 6. Performance comparison between SpindleNet and two other spindle detection 
algorithms (McSIeep and Spindler).
a, Examples of sleep spindle detection where the McSIeep algorithm detected a false event 

in the MASS dataset, whereas the softmax probability output (blue trace) from SpindleNet 

was below the detection threshold. b,c, Summarized comparative performance on the 

reduced MASS dataset (n=15 subjects, with annotations from two experts). *, p<0.05; **, 

p<0.01, unpaired t-test. d, Comparison of the kappa statistic between SpindleNet and 

McSleep, as well as between them and ground truth (GT). e-g, Similar to panels b-d, except 

for the reduced DREAMS dataset (n=6 subjects, with annotations from two experts).
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Figure 7. Performance comparison between our method (SpindleNet) and McSleep on simulated 
sleep spindle data with varying levels of signal-to-noise ratio (SNR).
a, Sensitivity. b, Specificity. c, False discovery rate. d, F1-score. The Inf SNR denotes the 

noiseless condition. e, Histogram of detection latency in the noiseless condition. f, Mean 

detection latency of our proposed method with respect to the SNR. g, Spindle detection 

latency based on the AND and OR criteria. Error bar represents SEM (n=19 subjects). h, 
Performance comparison of on-line vs off-line detection in SpindleNet. Error bar represents 

SEM (n=19 subjects, MASS dataset).
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Figure 8. Representative examples of sleep spindle detection from various sleep datasets.
a, Children (CHAT). b, Elderly (MrOS). c, Epilepsy patient. d, Rat. e-g, Comparison of 

detected sleep spindle characteristics (frequency, duration and power) between SpindleNet 

and the McSleep algorithm.
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Figure 9. Sleep spindle detection performance with respect to different normalization factors.
a, False event rate and true event rate for pre- and post-computed normalization on the 

MASS dataset (n=19). b, Sensitivity, specificity, FDR, F1-score, accuracy and AUROC for 

pre- and post-computed normalization on the MASS dataset (n=19). Pre-computed 

normalization is the average spindle standard deviation from the training set, whereas post-

computed normalization is the average standard deviation from the testing set. c, Testing on 

the MASS subject #18 with various normalization factors in sleep EEG calibration.
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Table 1.

Synthetic spindle parameters (mean, standard deviation) for the DREAMS dataset (n=8 subjects).

DREAMS subject # c d e f

1 −9.34 (9.6) −0.7 (4.77) 82.09 (5.45) −0.77 (9.45)

2 −8.5 (9.66) 0.16 (4.23) 81.32 (4.69) −1.84 (8.25)

3 −5.38 (4.98) −0.62 (4.08) 86.56 (4.12) 0.14 (6.81)

4 −8.49 (8.19) 0.36 (4.6) 79.85 (8.34) −2.21 (14.17)

5 −10.86 (8.72) −0.01 (4.33) 83.76 (3.59) −4.12 (10.41)

6 −12.76 (14.63) −0.19 (4.51) 85.2 (4.09) −5.52 (13.31)

7 −9.01 (8.13) 1.73 (3.94) 84.17 (7.14) 1.86 (7.9)

8 −13.26 (14.8) −0.44 (4.8) 86.13 (5.26) −2.58 (17.83)
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Table 2.

Summarized spindle detection performance of SpindleNet on the MASS dataset (n=19 subjects).

MASS subject # Cross 
validation 

fold #

Median latency (ms) Sensitivity Specificity FDR F1-score AUROC False 
event 
rate 

(spindles/
min)

True 
event 
rate 

(spindles/
min)

1 1 250.85 0.8739 0.9888 0.0566 0.9072 0.9944 0.5517 9.1818

2 250.16 0.927 0.9829 0.1088 0.9087 0.9951 0.8892 7.2782

3 286.44 0.7142 0.9971 0.0572 0.8127 0.9954 0.1633 2.6917

4 215.09 0.9353 0.9633 0.2682 0.8211 0.99 3.5114 1.0182

5 2 269.76 0.7153 0.9919 0.1418 0.7802 0.9902 1.9859 5.4174

6 262.96 0.89 0.9672 0.1904 0.8479 0.9864 0.4571 2.765

7 355.86 0.7882 0.9926 0.0601 0.8574 0.9906 1.7033 7.2412

8 342.94 0.7355 0.9987 0.0096 0.8441 0.9953 6.3961 2.11

9 3 238.9 0.954 0.9597 0.2215 0.8574 0.9923 0.3857 6.0288

10 273.01 0.8854 0.9805 0.1681 0.8579 0.9912 0.0647 6.6039

11 227.11 0.9711 0.9414 0.3486 0.7798 0.9909 2.1067 7.4065

12 179.2 0.9774 0.9018 0.4145 0.7323 0.9807 1.0538 5.2166

13 4 333.87 0.9087 0.9829 0.1761 0.8642 0.9944 3.1616 5.9087

14 207.54 0.9444 0.9491 0.2721 0.8222 0.9888 5.1579 7.2868

15 223.6 0.9604 0.9609 0.3601 0.768 0.9927 2.4406 0.5715

16 47.91 0.9605 0.9404 0.7752 0.3643 0.976 4.0902 2.5528

17 5 58.425 0.9974 0.8895 0.7519 0.4977 0.9808 0.9449 4.4194

18 118.88 0.9897 0.9589 0.8102 0.3184 0.9938 2.6696 7.1434

19 114.9 0.9845 0.9288 0.6157 0.5528 0.9858 2.1905 3.8921
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Table 3.

Performance comparison of SpindleNet and other two sleep spindle methods on the MASS dataset (n=19 

subjects).

MASS subject # Sensitivity Specificity FDR F1-score

McSleep Spindler McSleep Spindler McSleep Spindler McSleep Spindler

1 0.8145 0.5481 0.9809 0.5481 0.0996 0.0232 0.8553 0.7022

2 0.9472 0.8289 0.9440 0.8289 0.2818 0.0491 0.8169 0.8857

3 0.7929 0.6067 0.9705 0.6067 0.3568 0.0847 0.7103 0.7297

4 0.9842 0.9328 0.8874 0.9328 0.8642 0.8158 0.2387 0.3077

5 0.9034 0.7381 0.9317 0.7381 0.4143 0.1656 0.7107 0.7833

6 0.7773 0.3031 0.9545 0.3031 0.4593 0.1511 0.6378 0.4467

7 0.9575 0.7311 0.8832 0.7311 0.4374 0.0965 0.7088 0.8082

8 0.9740 0.9481 0.8849 0.9481 0.7639 0.5913 0.3801 0.5712

9 0.8578 0.9034 0.9691 0.9034 0.1980 0.1710 0.8289 0.8646

10 0.8872 0.6303 0.9557 0.6303 0.2209 0.0331 0.8296 0.7632

11 0.7929 0.9188 0.9705 0.9188 0.3568 0.1605 0.7103 0.8774

12 0.9842 0.8226 0.8874 0.8226 0.8642 0.2260 0.2387 0.7976

13 0.9034 0.9204 0.9317 0.9204 0.4143 0.2950 0.7107 0.7984

14 0.7773 0.5028 0.9545 0.5028 0.4593 0.0797 0.6378 0.6503

15 0.9575 0.9485 0.8832 0.9485 0.4374 0.7229 0.7088 0.4289

16 0.9740 0.8673 0.8849 0.8673 0.7639 0.6198 0.3801 0.5287

17 0.8578 0.4667 0.9690 0.4667 0.1980 0.1000 0.8289 0.6147

18 0.8872 0.7447 0.9557 0.7447 0.2209 0.1233 0.8296 0.8054

19 0.9509 0.9641 0.9153 0.9641 0.3748 0.4038 0.7544 0.7368
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