
Shone, N, Tran Nguyen, N, Vu Dinh, P and Shi, Q

 A Deep Learning Approach to Network Intrusion Detection

http://researchonline.ljmu.ac.uk/id/eprint/7479/

Article

LJMU has developed LJMU Research Online for users to access the research output of the

University more effectively. Copyright © and Moral Rights for the papers on this site are retained by

the individual authors and/or other copyright owners. Users may download and/or print one copy of

any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.

You may not engage in further distribution of the material or use it for any profit-making activities or

any commercial gain.

The version presented here may differ from the published version or from the version of the record.

Please see the repository URL above for details on accessing the published version and note that

access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you

intend to cite from this work)

Shone, N, Tran Nguyen, N, Vu Dinh, P and Shi, Q (2018) A Deep Learning

Approach to Network Intrusion Detection. IEEE Transactions on Emerging

Topics in Computational Intelligence, 2 (1). ISSN 2471-285X

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, NOVEMBER 2017 1

A Deep Learning Approach to Network Intrusion
Detection

Nathan Shone, Tran Nguyen Ngoc, Vu Dinh Phai, Qi Shi

Abstract—Network Intrusion Detection Systems (NIDSs) play a crucial role in defending computer networks. However, there are

concerns regarding the feasibility and sustainability of current approaches when faced with the demands of modern networks. More

specifically, these concerns relate to the increasing levels of required human interaction and the decreasing levels of detection

accuracy. This paper presents a novel deep learning technique for intrusion detection, which addresses these concerns. We detail our

proposed non-symmetric deep auto-encoder (NDAE) for unsupervised feature learning. Furthermore, we also propose our novel deep

learning classification model constructed using stacked NDAEs. Our proposed classifier has been implemented in GPU-enabled

TensorFlow and evaluated using the benchmark KDD Cup ’99 and NSL-KDD datasets. Promising results have been obtained from our

model thus far, demonstrating improvements over existing approaches and the strong potential for use in modern NIDSs.

Index Terms—deep learning, anomaly detection, auto-encoders, KDD, network security.

✦

1 INTRODUCTION

ONE of the major challenges in network security is the
provision of a robust and effective Network Intrusion

Detection System (NIDS). Despite the significant advances
in NIDS technology, the majority of solutions still operate
using less-capable signature-based techniques, as opposed
to anomaly detection techniques. There are several reasons
for this reluctance to switch, including the high false error
rate (and associated costs), difficulty in obtaining reliable
training data, longevity of training data and behavioural
dynamics of the system. The current situation will reach a
point whereby reliance on such techniques leads to ineffec-
tive and inaccurate detection. The specifics of this challenge
are to create a widely-accepted anomaly detection technique
capable of overcoming limitations induced by the ongoing
changes occurring in modern networks.

We are concerned with three main limitations, which
contribute to this network security challenge. The first is
the drastic growth in the volume of network data, which is set
to continue. This growth can be predominantly attributed
to increasing levels of connectivity, the popularity of the
Internet of Things and the extensive adoption of cloud-
based services. Dealing with these volumes requires tech-
niques that can analyse data in an increasingly rapid, effi-
cient and effective manner. The second cause is the in-depth
monitoring and granularity required to improve effectiveness
and accuracy. NIDS analysis needs to be more detailed and
contextually-aware, which means shifting away from ab-
stract and high-level observations. For example, behavioural
changes need to be easily attributable to specific elements of
a network, e.g. individual users, operating system versions
or protocols. The final cause is the number of different

• N. Shone and Q. Shi are with the Department of Computer Science at
Liverpool John Moores University, Liverpool, UK.
E-mail: {n.shone/q.shi}@ljmu.ac.uk

• T. Ngoc and V. Phai are with Department of Information Security at Le
Quy Don Technical University, Hanoi, Vietnam.
Email: ngoctn@mta.edu.vn, dinhphai88@gmail.com

Manuscript submitted 30 June 2017.

protocols and the diversity of data traversing through modern
networks. This is possibly the most significant challenge and
introduces high-levels of difficulty and complexity when
attempting to differentiate between normal and abnormal
behaviour. It increases the difficulty in establishing an accu-
rate norm and widens the scope for potential exploitation or
zero-day attacks.

In recent years, one of the main focuses within NIDS
research has been the application of machine learning and
shallow learning techniques such as Naive Bayes, Decision
Trees and Support Vector Machines (SVM) [1]. By enlarge,
the application of these techniques has offered improve-
ments in detection accuracy. However, there are limitations
with these techniques, such as the comparatively high level
of human expert interaction required; expert knowledge
is needed to process data e.g. identifying useful data and
patterns. Not only is this a labour intensive and expensive
process but it is also error prone [2]. Similarly, a vast
quantity of training data is required for operation (with
associated time overheads), which can become challenging
in a heterogeneous and dynamic environment.

To address the above limitations, a research area cur-
rently receiving substantial interest across multiple domains
is that of deep learning. This is an advanced subset of ma-
chine learning, which can overcome some of the limitations
of shallow learning. Thus far, initial deep learning research
has demonstrated that its superior layer-wise feature learn-
ing can better or at least match the performance of shallow
learning techniques [3]. It is capable of facilitating a deeper
analysis of network data and faster identification of any
anomalies.

In this paper, we propose a novel deep learning model to
enable NIDS operation within modern networks. The model
we propose is a combination of deep and shallow learning,
capable of correctly analysing a wide-range of network
traffic. More specifically, we combine the power of stacking
our proposed non-symmetric deep auto-encoder (NDAE)
(deep-learning) and the accuracy and speed of Random

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, NOVEMBER 2017 2

Forest (RF)(shallow learning). We have practically evaluated
our model using GPU-enabled TensorFlow and obtained
promising results from analysing the KDD Cup ’99 and
NSL-KDD datasets. We are aware of the limitations of these
datasets but they remain widely-used benchmarks amongst
similar works, enabling us to draw direct comparisons.

This paper offers the following novel contributions:

• A new NDAE technique for unsupervised feature
learning, which unlike typical auto-encoder ap-
proaches provides non-symmetric data dimensional-
ity reduction. Hence, our technique is able to facili-
tate improved classification results when compared
with leading methods such as Deep Belief Networks
(DBNs).

• A novel classifier model that utilises stacked NDAEs
and the RF classification algorithm. By combining
both deep and shallow learning techniques to exploit
their respective strengths and reduce analytical over-
heads. We are able to better or at least match results
from similar research, whilst significantly reducing
the training time.

The remainder of this paper is structured as follows.
Section 2 presents relevant background information. Section
3 examines existing research. Section 4 specifies our pro-
posed solution, which is subsequently evaluated in Section
5. Section 6 discusses our findings from the evaluation.
Finally the paper concludes in Section 7.

2 BACKGROUND

In this section, we will provide background information
necessary to understand our motivations and the concepts
behind the model proposed in this paper.

2.1 NIDS challenges

Network monitoring has been used extensively for the
purposes of security, forensics and anomaly detection. How-
ever, recent advances have created many new obstacles for
NIDSs. Some of the most pertinent issues include:

• Volume - The volume of data both stored and pass-
ing through networks continues to increase. It is
forecast that by 2020, the amount of data in existence
will top 44ZB [4]. As such, the traffic capacity of
modern networks has drastically increased to facil-
itate the volume of traffic observed. Many modern
backbone links are now operating at wirespeeds of
100Gbps or more. To contextualise this, a 100Gbps
link is capable of handling 148,809,524 packets per
second [5]. Hence, to operate at wirespeed, a NIDS
would need to be capable of completing the analysis
of a packet within 6.72ns. Providing NIDS at such a
speed is difficult and ensuring satisfactory levels of
accuracy, effectiveness and efficiency also presents a
significant challenge.

• Accuracy - To maintain the aforementioned levels of
accuracy, existing techniques cannot be relied upon.
Therefore, greater levels of granularity, depth and
contextual understanding are required to provide
a more holistic and accurate view. Unfortunately,

this comes with various financial, computational and
time costs.

• Diversity - Recent years have seen an increase in
the number of new or customised protocols being
utilised in modern networks. This can be partially
attributed to the number of devices with network
and/or Internet connectivity. As a result, it is be-
coming increasingly difficult to differentiate between
normal and abnormal traffic and/or behaviours.

• Dynamics - Given the diversity and flexibility of
modern networks, the behaviour is dynamic and
difficult to predict. In turn, this leads to difficulty
in establishing a reliable behavioural norm. It also
raises concerns as to the lifespan of learning models.

• Low-frequency attacks - These types of attacks have
often thwarted previous anomaly detection tech-
niques, including artificial intelligence approaches.
The problem stems from imbalances in the training
dataset, meaning that NIDS offer weaker detection
precision when faced with these types of low fre-
quency attacks.

• Adaptability - Modern networks have adopted
many new technologies to reduce their reliance on
static technologies and management styles. There-
fore, there is more widespread usage of dynamic
technologies such as containerisation, virtualisation
and Software Defined Networks. NIDSs will need to
be able to adapt to the usage of such technologies
and the side effects they bring about.

2.2 Deep Learning

Deep learning is an advanced sub-field of machine learning,
which advances Machine Learning closer to Artificial Intel-
ligence. It facilitates the modelling of complex relationships
and concepts [6] using multiple levels of representation. Su-
pervised and unsupervised learning algorithms are used to
construct successively higher levels of abstraction, defined
using the output features from lower levels [7].

2.2.1 Auto-encoder

A popular technique currently utilised within deep learning
research is auto-encoders, which is utilised by our proposed
solution (detailed in Section 4). An auto-encoder is an unsu-
pervised neural network-based feature extraction algorithm,
which learns the best parameters required to reconstruct its
output as close to its input as possible. One of it desirable
characteristics is the capability to provide more a powerful
and non-linear generalisation than Principle Component
Analysis (PCA).

This is achieved by applying backpropagation and set-
ting the target values to be equal to the inputs. In other
words, it is trying to learn an approximation to the identity
function. An auto-encoder typically has an input layer, out-
put layer (with the same dimension as the input layer) and
a hidden layer. This hidden layer normally has a smaller di-
mension than that of the input (known as an undercomplete
or sparse auto-encoder). An example of an auto-encoder is
shown in Fig. 1.

Most researchers [8], [9], [10] use auto-encoders as a non-
linear transformation to discover interesting data structures,

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, NOVEMBER 2017 3

by imposing other constraints on the network, and compare
the results with those of PCA (linear transformation). These
methods are based on the encoder-decoder paradigm. The
input is first transformed into a typically lower-dimensional
space (encoder), and then expanded to reproduce the initial
data (decoder). Once a layer is trained, its code is fed to the
next, to better model highly non-linear dependencies in the
input. This paradigm focuses on reducing the dimension-
ality of input data. To achieve this, there is a special layer
- the code layer [9], at the centre of the deep auto-encoder
structure. This code layer is used as a compressed feature
vector for classification or for combination within a stacked
auto-encoder [8].

Input
Hidden

Layer
Output

x1 x'1

h

𝑓 𝑑x…
xn

x2

x'…
x'2

Fig. 1. An example of a single auto-encoder

The hidden layer is used to create a lower dimensionality
version of high dimensionality data (known as encoding).
By reducing the dimensionality, the auto-encoder is forced
to capture the most prominent features of the data distribu-
tion. In an ideal scenario, the data features generated by the
auto-encoder will provide a better representation of the data
points than the raw data itself.

The aim of the auto-encoder is to try and learn the
function shown in equation 1.

hW,b(x) ≈ x (1)

Here, h is a non-linear hypothesis using the parameters
W (weighting) and b (bias), which can fit the given data (x).

Simply, it tries to learn an approximation to the identity
of a function, where x′ is most similar to x. The learning
process is described as a reconstruction error minimisation
function, as shown in equation 2.

L(x, d(f(x))) (2)

Here, L is a loss function penalising d(f(x)) for being
dissimilar to x, d is a decoding function and f is an encoding
function.

2.2.2 Stacked auto-encoder

Unlike a simple auto-encoder, a deep auto-encoder is com-
posed of two symmetrical deep-belief networks, which typ-
ically have four or five shallow layers for encoding, and a
second set of four or five layers for decoding. The work by
Hinton and Salacukhudinov [9] has produced promising re-
sults by implementing a deep learning algorithm to convert

high dimensional data to low dimensional data by utilising
a deep auto-encoder.

Deep learning can be applied to auto-encoders, whereby
the hidden layers are the simple concepts and multiple
hidden layers are used to provide depth, in a technique
known as a stacked auto-encoder. This increased depth can
reduce computational costs and the amount of required
training data, as well as yielding greater degrees of accuracy
[6]. The output from each hidden layer is used as the input
for a progressively higher level. Hence, the first layer of a
stacked auto-encoder usually learns first-order features in
raw input. The second layer usually learns second-order
features relating to patterns in the appearance of the first-
order features. Subsequent higher layers learn higher-order
features. An illustrative example of a stacked auto-encoder
is shown in Fig. 2. Here, the superscript numbers refer to
the hidden layer identity and the subscript numbers signify
the dimension for that layer.

𝑥1 ℎ1(1)𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7

ℎ2(1)
ℎ3(1)
ℎ4(1)

ℎ1(2)
ℎ2(2)
ℎ3(2)

Classifier

Input Auto-encoder 1

Hidden Layers

Output

ℎ5(1)
ℎ6(1)

ℎ4(2)
ℎ5(2)

ℎ1(1)
ℎ2(1)
ℎ3(1)
ℎ4(1)

ℎ1(2)
ℎ2(2)
ℎ3(2)

Auto-encoder 2

Hidden Layers

Fig. 2. An example of a stacked auto-encoder

3 EXISTING WORK

Deep learning is garnering significant interest and its appli-
cation is being investigated within many research domains,
such as: healthcare [11], [12]; automotive design [13], [14];
manufacturing [15] and law enforcement [16], [17].

There are also several existing works within the domain
of NIDS. In this section, we will discuss the most current
notable works.

Dong and Wang undertook a literary and experimental
comparison between the use of specific traditional NIDS
techniques and deep learning methods [1]. The authors
concluded that the deep learning-based methods offered
improved detection accuracy across a range of sample sizes
and traffic anomaly types. The authors also demonstrated
that problems associated with imbalanced datasets can be
overcome by using oversampling for which, they used the
Synthetic Minority Oversampling Technique (SMOTE).

Zhao et al. [2] presented a state-of-the-art survey of deep
learning applications within machine health monitoring.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, NOVEMBER 2017 4

They experimentally compared conventional machine learn-
ing methods against four common deep learning methods
(auto-encoders, Restricted Boltzmann Machine (RBM), Con-
volutional Neural Network (CNN) and Recurrent Neural
Network (RNN). Their work concluded that deep learning
methods offer better accuracy than conventional methods.

Our literature review identified several proposed deep
learning methods specifically for NIDSs.

Alrawashdeh and Purdy [18] proposed using a RBM
with one hidden layer to perform unsupervised feature re-
duction. The weights are passed to another RBM to produce
a DBN. The pre-trained weights are passed into a fine tuning
layer consisting of a Logistic Regression classifier (trained
with 10 epochs) with multi-class soft-max. The proposed
solution was evaluated using the KDD Cup ’99 dataset.
The authors claimed a detection rate of 97.90% and a false
negative rate of 2.47%. This is an improvement over results
claimed by authors of similar papers.

The work by Kim et al. [19] aspired to specifically target
advanced persistent threats. They propose a Deep Neural
Network (DNN) using 100 hidden units, combined with the
Rectified Linear Unit activation function and the ADAM
optimiser. Their approach was implemented on a GPU
using TensorFlow, and evaluated using the KDD data set.
The authors claimed an average accuracy rate of 99%, and
summarised that both RNN and Long Short-Term Memory
(LSTM) models are needed for improving future defences.

Javaid et al. [20] propose a deep learning based approach
to building an effective and flexible NIDS. Their method
is referred to as self-taught learning (STL), which com-
bines a sparse auto-encoder with softmax regression. They
have implemented their solution and evaluated it against
the benchmark NSL-KDD dataset. The authors claim some
promising levels of classification accuracy in both binary
and 5-class classification. Their results show that their 5-
class classification achieved an average f-score of 75.76%.

Potluri and Diedrich [21] propose a method using 41
features and their DNN has 3 hidden layers (2 auto-encoders
and 1 soft-max). The results obtained were mixed, those
focusing on fewer classes were more accurate than those
with more classes. The authors attributed this to insufficient
training data for some classes.

Cordero et al. [22] proposed an unsupervised method
to learn models of normal network flows. They use RNN,
auto-encoder and the dropout concepts of deep learning.
The exact accuracy of their proposed method evaluated is
not fully disclosed.

Similarly, Tang et al. [23] also propose a method to
monitor network flow data. The paper lacked details about
its exact algorithms but does present an evaluation using
the NSL-KDD dataset, which the authors claim gave an
accuracy of 75.75% using six basic features.

Kang and Kang [24] proposed the use of an unsuper-
vised DBN to train parameters to initialise the DNN, which
yielded improved classification results (exact details of the
approach are not clear). Their evaluation shows improved
performance in terms of classification errors.

Hodo et al. [25] have produced a comprehensive taxon-
omy and survey on notable NIDSs approaches that utilise
deep and shallow learning. They have also aggregated some
of the most pertinent results from these works.

In addition, there is other relevant work, including the
DDoS detection system proposed by Niyaz et al. [26]. They
propose a deep learning-based DDoS detection system for
a software defined network (SDN). Evaluation is performed
using custom generated traffic traces. The authors claim to
have achieved binary classification accuracy of 99.82% and
8-class classification accuracy of 95.65%. However, we feel
that drawing comparisons with this paper would be unfair
due to the contextual difference of the dataset. Specifically,
benchmark KDD datasets cover different distinct categories
of attack, whereas the dataset used in this paper focuses on
subcategories of the same attack.

You et al. [16] propose an automatic security auditing
tool for short messages (SMS). Their method is based upon
the RNN model. The authors claimed that their evaluations
resulted in an accuracy rate of 92.7%, thus improving exist-
ing classification methods (e.g. SVM and Naive Bayes).

Wang et al. [27] propose an approach for detecting
malicious JavaScript. Their method uses a 3 layer SdA with
linear regression. It was evaluated against other classifier
techniques, showing that it had the highest true positive
rate but the second best false positive rate.

The work by Hou et al. [3] outlines their commercial
Android malware detection framework, Deep4MalDroid.
Their method involves the use of stacked auto-encoders
with best accuracy resulting from 3 layers. The 10-fold
cross validation was used, showing that in comparison to
shallow learning, their approach offers improved detection
performance.

Lee et al. [28] propose a deep-learning approach to fault
monitoring in semiconductor manufacturing. They use a
Stacked de-noising Auto-encoder (SdA) approach to pro-
vide an unsupervised learning solution. A comparison with
conventional methods has demonstrated that throughout
different use cases the approach increases accuracy by up to
14%. in different use cases. They also concluded that among
the SdAs analysed (1-4 layers) those with 4 layers produced
the best results.

The findings from our literature review have shown that
despite the high detection accuracies being achieved, there
is still room for improvement. Such weaknesses include the
reliance on human operators, long training times, inconsis-
tent or average accuracy levels and the heavy modification
of datasets (e.g. balancing or profiling). The area is still in
an infantile stage, with most researchers still experimenting
on combining various algorithms (e.g. training, optimisa-
tion, activation and classification) and layering approaches
to produce the most accurate and efficient solution for a
specific dataset. Hence, we believe the model and work pre-
sented in this paper will be able to make a valid contribution
to the current pool of knowledge.

4 PROPOSED METHODOLOGY

4.1 Non-symmetric deep auto-encoder

Decreasing the reliance on human operators is a crucial
requirement for future-proofing NIDSs. Hence, our aim is
to devise a technique capable of providing reliable un-
supervised feature learning, which can improve upon the
performance and accuracy of existing techniques.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, NOVEMBER 2017 5

This paper introduces our NDAE, which is an auto-
encoder featuring non-symmetrical multiple hidden layers.
Fundamentally, this involves the proposed shift from the
encoder-decoder paradigm (symmetric) and towards utilis-
ing just the encoder phase (non-symmetric). The reasoning
behind this is that given the correct learning structure,
it is be possible to reduce both computational and time
overheads, with minimal impact on accuracy and efficiency.
NDAE can be used as a hierarchical unsupervised feature
extractor that scales well to accommodate high-dimensional
inputs. It learns non-trivial features using a similar training
strategy to that of a typical auto-encoder. An illustrated
example of this is presented in Fig. 3.

Typical auto-encoder Non-symmetric deep auto-encoder

x
1

x…
x
n

h
1

x'
1

x'
n

x'…

Encode Decode

x
1

x…
x
n

h
1

x'
1

x'
n

x'…

Encode Encode

Hidden

Layer

Hidden

Layer

h
2

Hidden

Layer

Encode

Fig. 3. Comparison of a typical auto-encoder and a NDAE

The proposed NDAE takes an input vector x ∈ Rd and
step-by-step maps it to the latent representations hi ∈ Rdi

(here d represents the dimension of the vector) using a
deterministic function shown in equation (3) below:

hi = σ(Wi.hi−1 + bi); i = 1, n, (3)

Here, h0 = x, σ is an activation function (in this work
we use sigmoid function σ(t) = 1/(1 + e−t)) and n is the
number of hidden layers.

Unlike a conventional auto-encoder and deep auto-
encoder, the proposed NDAE does not contain a decoder
and its output vector is calculated by a similar formula to
equation (4) as the latent representation.

y = σ(Wn+1.hn + bn+1) (4)

The estimator of the model θ = (Wi, bi) can be obtained
by minimising the square reconstruction error over m train-
ing samples (x(i), y(i))mi=1, as shown in equation (5).

E(θ) =

m∑

i=1

(x(i)
− y(i))2 (5)

4.2 Stacked non-symmetric deep auto-encoders

In this subsection, we detail the novel deep learning clas-
sification model we have created to address the problems
identified with current NIDSs.

Fundamentally, our model is based upon using our
NDAE technique (outlined in Section 4.1) for deep learning.
This is achieved by stacking our NDAEs to create a deep
learning hierarchy. Stacking the NDAEs offers a layer-wise
unsupervised representation learning algorithm, which will
allow our model to learn the complex relationships between

different features. It also has feature extraction capabilities,
so it is able to refine the model by prioritising the most
descriptive features.

Due to the data that we envisage this model using,
we have designed the model to handle large and complex
datasets (further details on this are provided in 6). Despite
the 42 features present in the KDD Cup ’99 and NSL-KDD
datasets being comparatively small, we maintain that it pro-
vides a benchmark indication as to the model’s capability.

However, the classification power of stacked auto-
encoders with a typical soft-max layer is relatively weak
compared to other discriminative models including RF,
KNN and SVM. Hence, we have combined the deep learn-
ing power of our stacked NDAEs with a shallow learn-
ing classifier. For our shallow learning classifer, we have
decided upon using Random Forest. Current comparative
research such as that by Choudhury and Bhowal [29], and
Anbar et al. [30] shows that RF is one of the best algo-
rithms for intrusion detection. These are findings that were
replicated by our own initial tests. Additionally, there are
many examples of current intrusion detection research also
utilising RF such as [31] and [32].

RF is basically an ensemble learning method, the princi-
ple of which is to group ‘weak learners’ to form a ‘strong
learner’ [33]. In this instance, numerous individual decision
trees (the weak learners) are combined to form a forest.
RF can be considered as the bagging (records are selected
at random with replacement from the original data) of
these un-pruned decision trees, with a random selection of
features at each split. It boasts advantages such as low levels
of bias, robustness to outliers and overfitting correction, all
of which would be useful in a NIDS scenario.

In our model, we train the RF classifier using the en-
coded representations learned by the stacked NDAEs to
classify network traffic into normal data and known attacks.

In deep learning research, the exact structure of a model
dictates its success. Currently, researchers are unable to ex-
plain what makes a successful deep learning structure. The
exact structure of our model has resulted from experimented
with numerous structural compositions to achieve the best
results. The final structure of our proposed model is shown
in Fig. 4.

In
pu

t

H
id

de
n

La
ye

r 1

H
id

de
n

La
ye

r 2

NDAE 2

H
id

de
n

La
ye

r 3

H
id

de
n

La
ye

r
1

H
id

de
n

La
ye

r 2

H
id

de
n

La
ye

r 3

Random
Forest

Classifier

NDAE 1

41 14 28 28 14 28 28

Fig. 4. Stacked NDAE Classification Model

As per Fig. 4, our model uses two NDAEs arranged in a
stack, and is combined with the RF algorithm. Each NDAE
has 3 hidden layers, with each hidden layer using the same

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, NOVEMBER 2017 6

number of neurons as that of features (indicated by the
numbering in the diagram). These exact parameters were
determined by cross-validating numerous combinations (i.e.
numbers of neurons and hidden layers), until the most
effective was identified. This allows for performance eval-
uation without the risk of overfitting. For our experiments,
we used the 10-fold cross-validation approach on the NSL-
KDD dataset using Scikit Learn. The result for our final
model structure was 0.995999 +/- 0.000556, which is a very
promising result.

5 EVALUATION & RESULTS

Similar to most existing deep learning research, our pro-
posed classification model (Section 4.2) was implemented
using TensorFlow. All of our evaluations were performed
using GPU-enabled TensorFlow running on a 64-bit Ubuntu
16.04 LTS PC with an Intel Xeon 3.60GHz processor, 16 GB
RAM and an NVIDIA GTX 750 GPU.

To perform our evaluations, we have used the KDD Cup
’99 and NSL-KDD datasets. Both of these datasets are con-
sidered as benchmarks within NIDS research. Furthermore,
using these datasets assists in drawing comparisons with
existing methods and research.

Throughout this section, we will be using the metrics
defined below:

• True Positive (TP) - Attack data that is correctly clas-
sified as an attack.

• False Positive (FP) - Normal data that is incorrectly
classified as an attack.

• True Negative (TN) - Normal data that is correctly
classified as normal.

• False Negative (FN) - Attack data that is incorrectly
classified as normal.

We will be using the following measures to evaluate the
performance of our proposed solution:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

The accuracy measures the proportion of the total number
of correct classifications.

Precision =
TP

TP + FP
(7)

The precision measures the number of correct classifications
penalised by the number of incorrect classifications.

Recall =
TP

TP + FN
(8)

The recall measures the number of correct classifications
penalised by the number of missed entries.

False Alarm =
FP

FP + TN
(9)

The false alarm measures the proportion of benign events
incorrectly classified as malicious.

F-score = 2 ·
Precision ·Recall

Precision+Recall
(10)

The F-score measures the harmonic mean of precision and
recall, which serves as a derived effectiveness measurement.

5.1 Datasets

This paper utilises the KDD Cup ’99 and NSL-KDD bench-
mark datasets. Both of which have been used extensively
in IDS research involving traffic with both normal and
abnormal connections.

5.1.1 KDD Cup ’99

The KDD Cup ’99 dataset was used in DARPA’s IDS evalu-
ation program [34]. The data consists of 4 gigabytes-worth
of compressed tcpdump data resulting from 7 weeks of
network traffic. This can be processed into about 5 million
connection records, each with about 100 bytes. It consists of
approximately 4,900,000 single connection vectors each of
which contains 41 features. These include Basic features (e.g.
protocol type, packet size), Domain knowledge features (e.g.
number of failed logins) and timed observation features (e.g.
% of connections with SYN errors). Each vector is labelled as
either normal or as an attack (of which there are 22 specific
attack types, as outlined in Table 1).

It is common practice to use 10% of the full size dataset,
as this provides a suitable representation with reduced com-
putational requirements. This 10% subset is produced and
disseminated alongside the original dataset. In this paper,
we use the 10% (herein referred to as KDD Cup ’99) subset,
which contains 494,021 training records and 311,029 testing
records. The exact composition is shown in Table 1.

The KDD Cup ’99 dataset needs pre-processing to be suc-
cessfully utilised with our proposed stacked NDAE model.
This is because our model operates using only numeric
values but one record in the dataset has a mixture of
numeric and symbolic values, so a data transformation was
needed to convert them. In addition integer values also need
normalisation as they were mixed with floating point values
between 0 and 1, which would make learning difficult.

5.1.2 NSL-KDD

The newer NSL-KDD dataset, which was produced by
Tavallaee et al. to overcome the inherent problems of the
KDD ’99 data set, which are discussed in [35]. Although,
this new version of the dataset still suffers from some of
the problems discussed by McHugh in [36] and may not
be a perfect representation of existing real networks. Most
current NIDS research still uses this dataset, so we believe it
remains an effective benchmark to help researchers compare
different methods.

The NSL-KDD dataset is fundamentally the same struc-
ture as the KDD Cup ’99 dataset (i.e. it has 22 attack patterns
or normal traffic, and fields for 41 features). We will be
using the whole NSL-KDD dataset for our evaluations, the
composition of which is also shown in Table 1.

In Table 1, some of the attack patterns have been high-
lighted. This indicates attack patterns that contain less than
20 occurrences in the dataset. 20 is the minimum threshold
required for accurate levels of training and evaluation. So,
for this paper these attacks have been omitted.

One of the most prominent techniques currently used
within deep learning research is DBNs [7], [1], [2]. One
notable publication on the technique is by Alrawashdeh
and Purdy [18], where the authors propose the use of a
DBN model for NIDSs. Hence, for our evaluation we draw

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, NOVEMBER 2017 7

TABLE 1
Composition of Datasets

10% KDD ’99 NSL-KDD
Category Attack Type Train Test Train Test

’back’ 2203 1098 956 359
’land’ 21 9 18 7

’neptune’ 107201 58001 41214 4657
’pod’ 264 87 201 41

’smurf’ 280790 164091 2646 665

DoS

’teardrop’ 979 12 892 12
’ipsweep’ 1247 306 3599 141

’nmap’ 231 84 1493 73
’portsweep’ 1040 354 2931 157

Probe

’satan’ 1589 1633 3633 735
’ftp write’ 8 3 8 3

’guess password’ 53 4367 53 1231
’imap’ 12 1 11 1

’multihop’ 7 18 7 18
’phf’ 4 2 4 2
’spy’ 2 0 2 0

’warezclient’ 1020 0 890 0

R2L

’warezmaster’ 20 1602 20 944
’loadmodule’ 9 2 9 2

’buffer overflow’ 30 22 30 20
’rootkit’ 10 13 10 13

U2R

’perl’ 3 2 3 2
Normal 97278 60593 67343 9711

Total 494021 292300 125973 18794

a direct comparison between the results obtained from our
proposed model and the DBN model. We will also com-
pare the results of our model against those published by
Alrawashdeh and Purdy.

5.2 KDD Cup ’99

In this section, we evaluate the 5-class classification perfor-
mance of our proposed classification model against the DBN
model published in [18], using the KDD Cup ’99 dataset as
outlined in the previous subsection.

The results obtained from the 5-class analysis of the KDD
Cup ’99 dataset by both the DBN model in [18] and our
stacked NDAE model are presented in Table 2. By compar-
ing the results of both models, we can see that overall our
stacked NDAE model the effectiveness and accuracy of our
results are better than, or comparable with those achieved
by the model in [18]. However, notable exceptions to this
are the “U2R” and “R2L” classes, which will be discussed in
Section 6.

Time efficiency is an important consideration for our
model, particularly when applied within a NIDS. Hence, we
have measured the training time required by our stacked
NDAE model and a DBN model to analyse the KDD ’99
dataset. However, it would not be a fair to draw compar-
isons with [18] in this respect, due to differences in the hard-
ware and software used. Therefore, we have implemented
a DBN model in TensorFlow, and the results obtained are
presented in Table 3.

As Table 3 shows, the non-symmetric approach of our
model is able to accomplish a significant reduction in
required training time, offering an average reduction of
97.72%. Hence, it is promising that our model can maintain
the high levels of accuracy, whilst drastically reducing the
required training time.

TABLE 3
KDD ’99 Training Time

No. Neurons
in Hidden Layers

Training Time (s) Time
Saving (%)DBN S-NDAE

8 54660 2024 96.30
14 122460 2381 98.06
22 204900 2446 98.81

5.3 NSL-KDD

Unfortunately, the paper [18] does not provide evaluations
using the NSL-KDD dataset. Thus we will be using the
previously-discussed TensorFlow DBN model for compar-
isons. To maximise comparability we have undertaken two
separate evaluations based on (a) 5-class classification as used
in KDD Cup ’99, and (b) 13-class classification from NSL-KDD
(this selection is explained in Section 5.1).

5.3.1 5-Class Classification

By using the same 5 generic class labels as used in the KDD
Cup ’99 dataset, we can compare the performance of the two
models between the two datasets. It also aids comparability
against similar works adopting this strategy. The perfor-
mance results are presented in Table 4 and illustrated by the
Receiver Operating Characteristic (ROC) curve in Figure 5.

Fig. 5. ROC Curve for NSL-KDD 5-Class

From the table, it is evident that our model offers in-
creased accuracy, precision, recall, effectiveness (F-score)
and the false alarm rate, when compared to the DBN ap-
proach.

5.3.2 13-Class Classification

As discussed previously, our model is designed to work
with larger and complex datasets. Therefore, we evaluate
our model’s classification capabilities on a 13-class dataset.
These 13 labels are those with more than the minimum
20 entries. The purpose of this analysis is to compare the
stability of our model when the number of attack classes in-
creases. Therefore, we do not compare these results against
another model. The corresponding performance analysis is
presented in Table 5. It is evident when these results are
compared to those in Table 4 (the 5-class performance) that
overall it performs better, with the average accuracy increas-
ing from 85.42% to 89.22%. One of our initial goals was
to support the granularity required by modern networks.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, NOVEMBER 2017 8

TABLE 2
KDD Cup ’99 Performance

Attack
Class

No.
Training

No.
Attacks

Accuracy (%) Precision (%) Recall (%) F-Score (%) False Alarm (%)
DBN S-NDAE DBN S-NDAE DBN S-NDAE DBN S-NDAE DBN S-NDAE

Normal 97278 60593 99.49 99.49 94.51 100.00 99.49 99.49 96.94 99.75 5.49 8.92
DoS 391458 223298 99.65 99.79 98.74 100.00 99.65 99.79 99.19 99.89 1.26 0.04

Probe 4107 2377 14.19 98.74 86.66 100.00 14.19 98.74 24.38 99.36 13.34 10.83
R2L 1126 5993 89.25 9.31 100.00 100.00 89.25 9.31 94.32 17.04 0.00 0.71
U2R 52 39 7.14 0.00 38.46 0.00 7.14 0.00 12.05 0.00 61.54 100.00
Total 494021 292300 97.90 97.85 97.81 99.99 97.91 97.85 97.47 98.15 2.10 2.15

TABLE 4
NSL-KDD 5-class Performance

Attack
Class

No.
Training

No.
Attacks

Accuracy (%) Precision (%) Recall (%) F-Score (%) False Alarm (%)
DBN S-NDAE DBN S-NDAE DBN S-NDAE DBN S-NDAE DBN S-NDAE

DoS 45927 5741 87.96 94.58 100.00 100.00 87.96 94.58 93.60 97.22 8.80 1.07
Normal 67343 9711 95.64 97.73 100.00 100.00 95.64 97.73 97.77 98.85 24.29 20.62
Probe 11656 1106 72.97 94.67 100.00 100.00 72.97 94.67 84.37 97.26 18.40 16.84
R2L 995 2199 0.00 3.82 0.00 100.00 0.00 3.82 0.00 7.36 0.00 3.45
U2R 52 37 0.00 2.70 0.00 100.00 0.00 2.70 0.00 5.26 0.00 50.00
Total 125973 18794 80.58 85.42 88.10 100.00 80.58 85.42 84.08 87.37 19.42 14.58

Therefore, these results are a promising indication that our
model can perform better when faced with more detailed
and granular datasets.

Timeliness is critical in modern NIDS, thus we also eval-
uate the training time required for the NSL-KDD dataset.
The results of this comparison are shown in Table 6.

TABLE 6
NSL-KDD Time Comparison

No. Neurons
in Hidden Layers

Training Time (s) Time
Saving (%)DBN S-NDAE

8 1198.08 644.84 46.18
14 10984.04 722.54 93.42
22 21731.76 1091.97 94.98

From these results, we can see that through the different
hidden layer compositions, our model is able to consistently
reduce the required training time compared with DBN.

6 DISCUSSION

Our evaluations show that our proposed stacked NDAE
model has produced a promising set of results.

6.1 5-Class KDD Cup ’99 Classification

With regards to the KDD Cup ’99 dataset evaluation, the
results show that our model is able to offer an average
accuracy of 97.85%. more specifically, the results show that
our accuracy is better than or comparable with the work in
[18], in 3 out of 5 classes. It is also a significant improvement
on other deep learning methods such as [23]. However, it is
noted that the results for “R2L” and “U2L” attack classes
are anomalous. The stacked NDAE model requires greater
amounts of data to learn from. Unfortunately, due to the
smaller number of training datum available, the results
achieved are less stable. Despite this, it is evident from the
performance analysis that our model can offer improved
precision, recall and F-score, especially for larger classes.

Furthermore, our model managed to produce these com-
parable performance results, whilst consistently reducing
the required training time by an average of 97.72%.

6.2 5-Class NSL-KDD Classification

With regards to the NSL-KDD dataset, we can see from the
results that throughout all of the measures our model yields
superior level of performance in 3 of the 5 classes. Notably,
the model offered a total accuracy rate of 85.42%, which
improves upon the DBN model by just under 5%. It also
offered a 4.84% reduction in the false alarm rate. The results
also re-emphasise the point made, that our model doesn’t
handle smaller classes (“R2L” and “U2R”) as well.

Another important factor is that the time required to
train our model is drastically reduced, yielding an average
time saving of 78.19% against DBN. This is of critical impor-
tance particularly for application in a NIDS.

6.3 13-Class NSL-KDD Classification

The results from the 13-Class classification evaluate demon-
strate that our model was able to offer a 3.8% improvement
on its own accuracy simply by using a more granular
dataset. This supports our claim that the model is able to
work more effectively with larger and complex datasets.

Furthermore, the larger dataset gives a better insight
into the weakness in our model. As it can be seen from
the results, there is a direct correlation between the size of
the training datasets for each label and the accuracy/error
rates. This supports our observation that the smaller classes
(in this case “back”, “guess password”, “tear drop” and
“warez client”) yield lower levels of accuracy using our
model.

However, it must also be noted that the larger classes
yielded consistently high rates throughout all of the perfor-
mance measures.

6.4 Comparison With Related Works

We have also compared the results from our stacked
NDAE model against the results obtained from similar deep
learning-based NIDSs.

In [26], the authors claim their 5-class classification of
the NSL-KDD dataset produced an f-score of 75.76%. Their

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, NOVEMBER 2017 9

TABLE 5
NSL-KDD 13-class Performance

Label No. Training No. Attack Accuracy (%) Precision (%) Recall (%) F-score (%) False Alarm (%)
’back’ 956 359 36.77 100.00 36.77 53.77 0.00

’buffer overflow’ 30 20 0.00 0.00 0.00 0.00 100.0
’guess password’ 53 1231 0.00 0.00 0.00 0.00 0.00

’ipsweep’ 3599 141 98.58 100.00 98.58 99.29 6.71
’neptune’ 41214 4657 98.05 100.00 98.05 99.01 0.00

’nmap’ 1493 73 100.00 100.00 100.00 100.00 0.00
’normal’ 67343 9711 97.91 100.00 97.91 98.94 14.70

’pod’ 201 41 92.68 100.00 92.68 96.20 28.30
’portsweep’ 2931 157 95.54 100.00 95.54 97.72 44.03

’satan’ 3633 735 82.45 100.00 82.45 90.38 13.92
’smurf’ 2646 665 99.10 100.00 99.10 99.55 0.15

’teardrop’ 892 12 100.00 100.00 100.00 100.00 75.51
’warezclient’ 890 0 0.00 0.00 0.00 0.00 0.00

Total 125881 17802 89.22 92.97 89.22 90.76 10.78

recall and precision results are not listed but the bar charts
show them to be around 69% and 83% respectively. Our
model has produced superior results by offering f-score of
87.37%, recall of 85.42% and precision of 100.00%.

Tang et al. [23] claim that their Deep Neural Network
(DNN) approach achieved an accuracy of 75.75% when
performing a 5-class classification of the NSL-KDD dataset.
This is result is lower than our achieved accuracy of 85.42%.

Whilst classifying the KDD Cup ’99 dataset, Kim et al.
[37] claim they have achieved an accuracy of accuracy of
96.93%. Also Gao et al. [38] claim their deep learning DBN
model achieved an accuracy of 93.49%. Both of these results
are less than the 97.85% accomplished by our model.

These comparisons show that our model’s results are
very promising when compared to other current deep
learning-based methods.

7 CONCLUSION & FUTURE WORK

In this paper, we have discussed the problems faced by
existing NIDS techniques. In response to this we have
proposed our novel NDAE method for unsupervised feature
learning. We have then built upon this by proposing a novel
classification model constructed from stacked NDAEs and
the RF classification algorithm.

We have implemented our proposed model in Tensor-
Flow and performed extensive evaluations on its capabil-
ities. For our evaluations we have utilised the benchmark
KDD Cup ’99 and NSL-KDD datasets and achieved very
promising results.

Our results have demonstrated that our approach offers
high levels of accuracy, precision and recall together with
reduced training time. Most notably, we have compared
our stacked NDAE model against the mainstream DBN
technique. These comparisons have demonstrated that our
model offers up to a 5% improvement in accuracy and train-
ing time reduction of up to 98.81%. Unlike most previous
work, we have evaluated the capabilities of our model based
on both benchmark datasets, revealing a consistent level of
classification accuracy.

Although our model has achieved the above promising
results, we acknowledge that it is not perfect and there is
further room for improvement.

In our future work, the first avenue of exploration for
improvement will be to assess and extend the capability of

our model to handle zero-day attacks. We will then look
to expand upon our existing evaluations by utilising real-
world backbone network traffic to demonstrate the merits
of the extended model.

ACKNOWLEDGEMENTS

The authors would like to thank the Royal Academy of
Engineering for their support provided through the Newton
Research Collaboration Programme.

REFERENCES

[1] B. Dong and X. Wang, “Comparison deep learning method to
traditional methods using for network intrusion detection,” in
2016 8th IEEE International Conference on Communication Software
and Networks (ICCSN). Beijing, China: IEEE, jun 2016, pp. 581–
585.

[2] R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, and R. X. Gao, “Deep
Learning and Its Applications to Machine Health Monitoring: A
Survey,” submitted to IEEE Transactions on Neural Networks and
Learning Systems, vol. 14, no. 8, pp. 1–14, dec 2016. [Online].
Available: http://arxiv.org/abs/1612.07640

[3] S. Hou, A. Saas, L. Chen, and Y. Ye, “Deep4MalDroid: A Deep
Learning Framework for Android Malware Detection Based on
Linux Kernel System Call Graphs,” in 2016 IEEE/WIC/ACM Inter-
national Conference on Web Intelligence Workshops (WIW). Omaha,
Nebraska, USA: IEEE, oct 2016, pp. 104–111.

[4] IDC, “Executive Summary: Data Growth, Business Opportunities,
and the IT Imperatives — The Digital Universe of Opportunities:
Rich Data and the Increasing Value of the Internet of
Things,” IDC, MA, USA, Tech. Rep., 2014. [Online].
Available: https://www.emc.com/leadership/digital-universe/
2014iview/executive-summary.htm

[5] Juniper Networks, “Juniper Networks - How many Packets
per Second per port are needed to achieve Wire-Speed?”
2015. [Online]. Available: https://kb.juniper.net/InfoCenter/
index?page=content{\&}id=KB14737

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[7] L. Deng, “Deep Learning: Methods and Applications,” Foundations
and Trends in Signal Processing, vol. 7, no. 3-4, pp. 197–387, aug 2014.

[8] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion,” Journal of
Machine Learning Research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[9] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimension-
ality of data with neural networks,” science, vol. 313, no. 5786, pp.
504–507, 2006.

[10] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensional-
ity reduction,” Neurocomputing, vol. 184, pp. 232–242, 2016.

[11] Z. Liang, G. Zhang, J. X. Huang, and Q. V. Hu, “Deep learning for
healthcare decision making with EMRs,” in 2014 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), no. Cm. IEEE,
nov 2014, pp. 556–559.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, NOVEMBER 2017 10

[12] S. P. Shashikumar, A. J. Shah, Q. Li, G. D. Clifford, and S. Ne-
mati, “A deep learning approach to monitoring and detecting
atrial fibrillation using wearable technology,” in 2017 IEEE EMBS
International Conference on Biomedical & Health Informatics (BHI).
Florida, USA: IEEE, 2017, pp. 141–144.

[13] F. Falcini, G. Lami, and A. M. Costanza, “Deep Learning
in Automotive Software,” IEEE Software, vol. 34, no. 3, pp.
56–63, may 2017. [Online]. Available: http://ieeexplore.ieee.org/
document/7927925/

[14] A. Luckow, M. Cook, N. Ashcraft, E. Weill, E. Djerekarov,
and B. Vorster, “Deep learning in the automotive industry:
Applications and tools,” in 2016 IEEE International Conference on
Big Data (Big Data). IEEE, dec 2016, pp. 3759–3768. [Online].
Available: http://ieeexplore.ieee.org/document/7841045/

[15] H. Lee, Y. Kim, and C. O. Kim, “A Deep Learning Model for
Robust Wafer Fault Monitoring With Sensor Measurement Noise,”
IEEE Transactions on Semiconductor Manufacturing, vol. 30, no. 1, pp.
23–31, feb 2017.

[16] L. You, Y. Li, Y. Wang, J. Zhang, and Y. Yang, “A deep learning-
based RNNs model for automatic security audit of short mes-
sages,” in 2016 16th International Symposium on Communications and
Information Technologies (ISCIT). Qingdao, China: IEEE, sep 2016,
pp. 225–229.

[17] R. Polishetty, M. Roopaei, and P. Rad, “A Next-Generation Secure
Cloud-Based Deep Learning License Plate Recognition for Smart
Cities,” in 2016 15th IEEE International Conference on Machine
Learning and Applications (ICMLA). Anaheim, California, USA:
IEEE, dec 2016, pp. 286–293.

[18] K. Alrawashdeh and C. Purdy, “Toward an Online Anomaly
Intrusion Detection System Based on Deep Learning,” in 2016 15th
IEEE International Conference on Machine Learning and Applications
(ICMLA). Anaheim, California, USA: IEEE, dec 2016, pp. 195–200.

[19] Jin Kim, Nara Shin, S. Y. Jo, and Sang Hyun Kim, “Method of
intrusion detection using deep neural network,” in 2017 IEEE
International Conference on Big Data and Smart Computing (BigComp).
Hong Kong, China: IEEE, feb 2017, pp. 313–316.

[20] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning
approach for network intrusion detection system,” in Proceedings
of the 9th EAI International Conference on Bio-inspired Information
and Communications Technologies, ser. BICT’15. ICST, Brussels,
Belgium, Belgium: ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2016,
pp. 21–26. [Online]. Available: http://dx.doi.org/10.4108/eai.
3-12-2015.2262516

[21] S. Potluri and C. Diedrich, “Accelerated deep neural networks for
enhanced Intrusion Detection System,” in 2016 IEEE 21st Interna-
tional Conference on Emerging Technologies and Factory Automation
(ETFA), vol. 2016-Novem. Berlin, Germany: IEEE, sep 2016, pp.
1–8.

[22] C. Garcia Cordero, S. Hauke, M. Muhlhauser, and M. Fischer,
“Analyzing flow-based anomaly intrusion detection using Repli-
cator Neural Networks,” in 2016 14th Annual Conference on Privacy,
Security and Trust (PST). Auckland, New Zeland: IEEE, dec 2016,
pp. 317–324.

[23] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and
M. Ghogho, “Deep learning approach for network intrusion de-
tection in software defined networking,” in 2016 International Con-
ference on Wireless Networks and Mobile Communications (WINCOM).
IEEE, Oct 2016, pp. 258–263.

[24] M.-J. Kang and J.-w. Kang, “Intrusion Detection System Using
Deep Neural Network for In-Vehicle Network Security,” PLOS
ONE, vol. 11, no. 6, p. e0155781, jun 2016.

[25] E. Hodo, X. J. A. Bellekens, A. Hamilton, C. Tachtatzis, and
R. C. Atkinson, “Shallow and deep networks intrusion detection
system: A taxonomy and survey,” CoRR, vol. abs/1701.02145,
2017. [Online]. Available: http://arxiv.org/abs/1701.02145

[26] Q. Niyaz, W. Sun, and A. Y. Javaid, “A deep learning
based ddos detection system in software-defined networking
(SDN),” CoRR, vol. abs/1611.07400, 2016. [Online]. Available:
http://arxiv.org/abs/1611.07400

[27] Y. Wang, W.-d. Cai, and P.-c. Wei, “A deep learning approach for
detecting malicious JavaScript code,” Security and Communication
Networks, vol. 9, no. 11, pp. 1520–1534, jul 2016.

[28] H.-W. Lee, N.-r. Kim, and J.-h. Lee, “Deep Neural Network
Self-training Based on Unsupervised Learning and Dropout,” The
International Journal of Fuzzy Logic and Intelligent Systems, vol. 17,

no. 1, pp. 1–9, mar 2017. [Online]. Available: http://www.ijfis.
org/journal/view.html?doi=10.5391/IJFIS.2017.17.1.1

[29] S. Choudhury and A. Bhowal, “Comparative analysis of machine
learning algorithms along with classifiers for network intrusion
detection,” in 2015 International Conference on Smart Technologies
and Management for Computing, Communication, Controls, Energy and
Materials (ICSTM), May 2015, pp. 89–95.

[30] M. Anbar, R. Abdullah, I. H. Hasbullah, Y. W. Chong, and
O. E. Elejla, “Comparative performance analysis of classification
algorithms for intrusion detection system,” in 2016 14th Annual
Conference on Privacy, Security and Trust (PST), Dec 2016, pp. 282–
288.

[31] Y. Chang, W. Li, and Z. Yang, “Network intrusion detection based
on random forest and support vector machine,” in 2017 IEEE
International Conference on Computational Science and Engineering
(CSE) and IEEE International Conference on Embedded and Ubiquitous
Computing (EUC), July 2017, pp. 635–638.

[32] Y. Y. Aung and M. M. Min, “An analysis of random forest al-
gorithm based network intrusion detection system,” in 2017 18th
IEEE/ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD),
June 2017, pp. 127–132.

[33] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[34] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan, “Cost-
based modeling for fraud and intrusion detection: Results from
the jam project,” in In Proceedings of the 2000 DARPA Information
Survivability Conference and Exposition. IEEE, 2000, pp. 130–144.

[35] M. Tavallaee, E. Bagheri, W. Lu, and A.-A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in Second IEEE Symposium
on Computational Intelligence for Security and Defence Applications.
IEEE, 2009, pp. 53–58.

[36] J. McHugh, “Testing intrusion detection systems: a critique of the
1998 and 1999 darpa intrusion detection system evaluations as
performed by lincoln laboratory,” ACM Transactions on Information
and System Security, vol. 3, no. 4, pp. 262–294, 2000.

[37] J. Kim, J. Kim, H. L. T. Thu, and H. Kim, “Long short term memory
recurrent neural network classifier for intrusion detection,” in 2016
International Conference on Platform Technology and Service (PlatCon).
IEEE, Feb 2016, pp. 1–5.

[38] N. Gao, L. Gao, Q. Gao, and H. Wang, “An intrusion detection
model based on deep belief networks,” in 2014 Second International
Conference on Advanced Cloud and Big Data, Nov 2014, pp. 247–252.

Nathan Shone is a Lecturer in the Department
of Computer Science at Liverpool John Moores
University (LJMU) in the UK. He completed his
PhD at LJMU in Network Security, focusing on
misbehaviour detection in complex system-of-
systems. His research interests include anomaly
detection, misbehaviour monitoring, IoT security
and security monitoring.

Tran Nguyen Ngoc is the Head of Department
for Information Security at Le Quy Don Technical
University in Vietnam. He received PhD in Sys-
tem analysis, control and information processing
from Don State Technical University, Russia. His
research interests focus on the pattern recogni-
tion, cyber security and artificial intelligence.

Vu Dinh Phai is a Researcher in the Department
for Information Security at Le Quy Don Technical
University in Vietnam. Since 2013, he has been
involved in various research projects and teach-
ing at LQDU. He received his Masters degree
in Information Systems from LQDU in 2016. His
research interests include network security, wire-
less security and machine learning.

Qi Shi is a Professor in Computer Security in
the Department of Computer Science at Liv-
erpool John Moores University (LJMU) in the
UK. He received his PhD in Computing from
the Dalian University of Technology, P.R. China.
His research interests include security protocol
deign, ubiquitous computing security, cloud se-
curity, sensor network security, computer foren-
sics and intrusion detection.

