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Abstract

Background: Automatic and reliable characterization of cells in cell cultures is key to several applications such as

cancer research and drug discovery. Given the recent advances in light microscopy and the need for accurate and

high-throughput analysis of cells, automated algorithms have been developed for segmenting and analyzing the cells

in microscopy images. Nevertheless, accurate, generic and robust whole-cell segmentation is still a persisting need to

precisely quantify its morphological properties, phenotypes and sub-cellular dynamics.

Results: We present a single-channel whole cell segmentation algorithm. We use markers that stain the whole cell,

but with less staining in the nucleus, and without using a separate nuclear stain. We show the utility of our approach

in microscopy images of cell cultures in a wide variety of conditions. Our algorithm uses a deep learning approach to

learn and predict locations of the cells and their nuclei, and combines that with thresholding and watershed-based

segmentation. We trained and validated our approach using different sets of images, containing cells stained with

various markers and imaged at different magnifications. Our approach achieved a 86% similarity to ground truth

segmentation when identifying and separating cells.

Conclusions: The proposed algorithm is able to automatically segment cells from single channel images using a

variety of markers and magnifications.
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Background
The cell is the basic structural, functional and biolog-

ical unit in all living organisms. The ability to image,

extract and study cells and their sub-cellular compart-

ments is essential to various research areas. Examples

include cellular dynamics characterization in normal and

pathologic conditions [1] as well as drug discovery where

it is important to assess the efficacy of different drug

treatments [2]. Recent advancements in high-resolution

fluorescent microscopy paved the way for detailed visu-

alization of the cells and their sub-cellular structures [3].

These advancements have been accompanied by the evo-

lution of computing capabilities and the development of

novel techniques in computer vision and machine learn-

ing for image segmentation and classification [4].
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Automatic analysis of 2-D cellular images enables accu-

rate and high-throughput cell quantification and pro-

vides reproducible information. Such quantification may

enable researchers to address different biological prob-

lems instead of relying on the subjective and time-

consuming interpretation of human experts.

Often, the term cell segmentation has been used to

refer to segmentation of the cell nuclei as opposed to

segmenting the entire cell body including the cytoplasm.

In this work, we focused on whole cell segmentation

in 2D microscopy images where the cytoplasm appears

bright, the background is dark, while the nucleus has lit-

tle or no staining. Our approach involves 1) detecting

the cells, 2) separating touching cells and 3) segmenting

sub-cellular compartments (i.e. nucleus vs. cytoplasm).

Segmenting and separating cell boundaries is a challeng-

ing task. Unlike the nuclei that are blob-like similar-sized

structures, the cytoplasm shows significant variation in

shape and size (Fig. 1). Moreover, touching cells can have

weak boundary gradients rendering difficult the separa-

tion task.
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Fig. 1 Various channel markers allow the visualization of cells a,b dsRed, c TexasRed, and d Cy5. A large variability exists in the appearance of cells,

based on the utilized marker and magnification

Over the past decades, several algorithms have been

proposed to segmenting cells in 2-D images [4, 5]. Some

approaches rely only on one-channel images but perform

the segmentation of only the cell nuclei as opposed to

segment the cytoplasm. For instance, watershed-based

segmentation [6, 7] and levelset methods [8, 9] have

been used to separate touching and overlapping nuclei.

Other techniques included morphology-based segmenta-

tion [10], which assumes a blob-like shape for the cell

nucleus, or blob-based detection that initializes a graph-

based method [11]. Active contours models and snake

algorithms have also been utilized, e.g. [12].

On the other hand, fewer algorithms perform single-

channel whole cell segmentation. For instance, machine

learning algorithms were used for pixel-based classifi-

cation and segmentation of cells in bright-field / phase

contrast images, e.g. [13, 14]. Moreover, an iterative

threshold-based approaches was used in [15]. Those

algorithms were evaluated on images with uniform cell

appearance and did not show evidence of segmenting

images with large variations in cell appearance, as seen in

the examples in Fig. 1.

Other approaches rely on using two-channel images.

First they segment the nuclei using nuclear stain channel,

and then use the nuclei as seeds to segment the whole cell

based on a second channel of a cell body/cytoplasm stain

(i.e. showing the entire cell), e.g. [16–18]. More recently,

deep learning techniques [19] have also been applied for

the segmentation of cell nuclei and cytoplasm [20–23].

Van Valen et al. [21] used a two-channel approach with

both phase contrast images and fluorescent (nuclear)

images to segment the mammalian cell cytoplasm. The

authors utilized both channels simultaneously when seg-

menting the cell cytoplasm. Recent deep-learning based

methods have also been focusing on differentiating sub-

cellular compartments/organelles, including nuclei, cyto-

plasm, fibers, etc., using multiple channels [22, 23]. Some

methods were used to identify cells of different classes

either using multiple channels, including one showing a

nuclear marker and one showing the cytoplasm, [21, 24].

However, no actual segmentation of the cell boundary

was performed [24]. On the other hand, a convolutional

neural network approach was used to segment brightfield

images of cells in [25]. However, clustered cells were not

separated.

The recent interest in segmenting and tracking cells

has prompted the organization of three Cell Tracking

Challenges [20]. The goal of the challenge was to track

the cells over time, as cells are moving or dividing. Having

multiple frames may either help segment individual cells,

as multiple instances of the same data is available, but at

the same time requires tracking trajectories and divisions

which are also challenging. Few of the images included

in the challenge dataset have the same characteristics as

the images included in our test datasets, i.e. hyperintense

cytoplasm and hypointense nuclei and background, the

segmentation task in our dataset is rather different.

Given the limited number of channels available in

most multiplexed fluorescent microscopes, it is very often

desirable to maximize the number of channels used for

analytical (discovery) biomarkers to better study different

biological phenomena. Moreover, often researchers prefer

not to use nuclear markers that might be toxic to the cells,

especially in live cell imaging.

The use of different markers and different cell types

results in high variability in the cell shape and appearance

between different images or between the different cells

in the same image. For example, Fig. 1 shows five sam-

ple cell images using different markers at two different

magnifications. These images were arbitrarily selected to

show the variability in the appearance of the stains within

the cytoplasm for different cells and experimental condi-

tions. Furthermore, treatment of cells with compounds,

such as drugs, leads to dramatic changes in the number

of cells and their cellular morphology. Hence, it is very

challenging to design generic algorithms that can be eas-

ily applied and extended to different and new types of

markers and cells. Therefore, there is a persisting need

to develop automated and generic algorithms for 2-D cell

segmentation.
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Segmenting cells in images that show the nuclei and

background as hypointense regions while the cytoplasm

is hyperintense (Fig. 1) is a challenging task for var-

ious reasons. First, microscopy images including ours

usually show large variability in the data: 1) appearance

and morphology of the nuclei and cells varies greatly

between experiments and within experiments, especially

drug titration treatments, 2) different markers are used to

show various organelles or regions in the cytoplasm, and

3) the images can be acquired at different magnifications.

Second, the edges between nuclei and background may

be very subtle or even not visible at all in some images

(e.g. Fig. 1b), thereby being able to segment the cytoplasm,

which encompasses the nuclei can be a daunting task,

especially in images showing tightly-packed cells .

In this work, we present an algorithm for automated

segmentation of the whole cells, including nuclei and

the cytoplasm, in 2-D cellular images. The approach was

specifically designed to be robust for images that show

hyperintense cytoplasm and nuclei with little or no stain-

ing. We evaluated the approach on a wide range of cell

markers, drug treatment conditions and magnifications.

Our work brings the following contributions to the

state-of-the-art methods in 2-D cell segmentation:

1 We present a deep learning-based framework to

provide per-pixel probabilities for nuclei, cytoplasm

and background using a single channel image.

2 We present an efficient algorithm that applies blob

detection and shape-based watershed to detect the

individual nuclei from the nucleus prediction map

3 We present a seeded-watershed algorithm for

individual cell segmentation using the cell prediction

map as well as the segmented nuclei.

Methods
We introduce a single-channel cell segmentation algo-

rithm that uses a cytoplasm marker that usually shows

hypointense nuclear regions and hyperintense cellular

regions. Our method does not rely on cell nuclei or mem-

brane markers for the cell segmentation. The algorithm

requires an offline step to train the deep network model

(step 0) to predict cells and nuclei based on one channel

images. Given an unseen image to be segmented, the algo-

rithm proceeds in 3 steps as illustrated in Fig. 2: Step 1)

Deep learning-based prediction of nuclei and cytoplasm,

Step 2) Nuclei seeds detection and Step 3) Seed-based

cell segmentation. The details about each step is provided

below.

Image preprocessing

As preprocessing steps prior to training and inference,

we corrected the uneven illumination by suppressing the

image background via top-hat filtering with a kernel size

Fig. 2 Overview of the 2-D cell segmentation algorithm. Labeled

images are used as training set for deep learning. The unseen images

are passed through the inference engine to create the probability

maps for the nuclear seeds and cytoplasm. Multiple steps are

required for the nuclear seed prediction and the cell segmentation

of 200x200 pixels. Also, to account for the differences

in image magnification (and thus pixel size), images are

down-sampled to be (approximately) at 10x magnification

(e.g. pixel size = 0.65µmx0.65µm).

Step 0) Train deep learning predictive model

Our deep learning framework used the MXNet library

[26] and a UNet-like architecture [27] to compute pixel-

level predictions for multiple classes. More specifically,

our model is trained using image patches of 160x160 pix-

els to predict 3 different labels: nuclei, cytoplasm and
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background. Each label has its own predominant charac-

teristics (see examples in Fig. 1). For instance, nuclei have

low-intensity signal compared to the cell body. Often, the

intensity range for the nucleus is close to that of the image

background. On the other hand, the texture patterns of

the brighter cell body, i.e. cytoplasm, vary from one image

into another based on the used marker and its concentra-

tion. From the input image patch, a series of 5 convolution

and pooling steps are applied in the contracting path as

detailed in Table 1. The convolution kernel size is 3x3 and

the numbers of filters for the 5 layers are 32, 64, 128, 128

and 256. Thus, the lowest layer results with 5x5 images.

We found this sequence of filters to be stable and to pro-

vide good results. In addition, it is computationally less

expensive than using a sequence with 1024 filters at the

bottom of the contracting path. The contracting path is

followed by an expanding path that includes a series of

deconvolution layers (i.e. transposed convolution). Fur-

thermore, we added three layers of dropout regularization

to our architecture to reduce model over-fitting on the

training data. Notice that our architecture is asymmetric,

with minor differences in the number of filters and convo-

lution steps between the contracting and expanding paths

as can be seen in Table 1. Our motivation for choosing

such architecture was to optimize the network to better

solve our problem.

To set the number of epochs, we carried out multiple

experiments in which our model was iteratively trained

for 30–50 epochs. Then, we found that using 30 epochs

to be sufficient for our model to converge. In each epoch,

the goal is to estimate the network weights such that a

loss function is minimized. More specifically, let ln ∈

{0, 1}, lc ∈ {0, 1} and lb ∈ {0, 1} respectively denote the

nuclei, cytoplasm and background labels in the training

dataset, and let pn ∈ [0, 1], pc ∈ [0, 1] and pb ∈ [0, 1]

be the predictions of the deep learning architecture for

the nuclei, cytoplasm and background respectively. Then,

the loss function is defined as the root mean square devi-

ation (RSMD) of the prediction and label. In addition,

it includes a constrain for the relationship between the

different labels as follows:

f (x) =wn ∗ RMSD(pn, ln) + wc ∗ RMSD(pc, lc)+ (1)

wb ∗ RMSD(pb, lb) + w ∗ RMSD(ln + lc + lb, 1)

where wn, wc, wb and w represent the weights associated

with the nuclei, cytoplasm and the background. In our

tests, the weights were equal with one. The training input

images were divided into overlapping patches of 176x176

pixels, with an overlap of 16 pixels from each side. There-

fore, only the internal 160x160 pixels are unique for each

patch and were used to train our model. The training

data is augmented by rotating the original patches by 90

degrees. Other parameters included the batch size, which

was set to 32 in order to achieve good accuracy while

being memory efficient, and the learning rate, which was

initiated to 0.001.

Step 1) deep learning inference

Following image preprocessing, the unseen images are

divided into 176x176 patches, which are used to create

a probability map with a range [ 0, 1] for the nucleus,

Table 1 The used U-net architecture

L# Type Size Output L# Type Size Output

1 Input 1,160,160 17 Concatenate 256,20,20

2 Convolution 32 filters 32,160,160 18 Dropout 50% 256,20,20

3 Max pool 2 stride 2x2 32,80,80 19 Convolution 128 filters 128,20,20

4 Convolution 64 filters 64,80,80 20 Deconvolution 2 stride, 128x2x2 128,40,40

5 Max pool 2 stride 2x2 64,40,40 21 Convolution 128 filters 128,40,40

6 Convolution 128 filters 128,40,40 22 Concatenate 192,40,40

7 Max pool 2 stride 2x2 128,20,20 23 Dropout 50% 192,40,40

8 Convolution 128 filters 128,20,20 24 Convolution 128 filters 128,40,40

9 Max pool 2 stride 2x2 128,10,10 25 Deconvolution 2 stride, 128x2x2 128,80,80

10 Convolution 256 filters 256,10,10 26 Convolution 128 filters 128,80,80

11 Max pool 2 stride 2x2 256,5,5 27 Concatenate 160,80,80

12 Dropout 50% 256,5,5 28 Concatenate 160,80,80

13 Deconvolution 2 stride, 256x2x2 256,10,10 29 Convolution 64 filters 64,80,80

14 Convolution 128 filters 128,10,10 30 Deconvolution 2 stride, 128x2x2 64,160,160

15 Deconvolution 2 stride, 128x2x2 128,20,20 31 Convolution 64 filters 64,160,160

16 Convolution 128 filters 128,20,20 32 Output 3,160,160
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cytoplasm and background. Once the prediction is

completed, the predicted patches are stitched together to

build the prediction of the full image. Figure 3b shows

an example of Nuclei (Yellow-Red) and Cells (Blue-Cyan)

prediction map.

Step 2) nuclei seed detection

The Nuclei prediction map shows larger probabilities at

the locations of nuclei inside the cells. Yet, these nuclei

need to be individually segmented as they will serve as

seeds to segment the entire cells. In images with sparse

cells, simple image thresholding at 0.5 may be sufficient

to extract a nuclear mask and identify the independent

nuclei. However, this approach is sensitive to false posi-

tives and may result in large connected components for

touching nuclei of adjacent cells.

Therefore, we propose a nuclei seed detection step that

extracts and segments the individual nuclei seeds in the

image. Given the nuclei prediction map, a multi-level

Laplacian of Gaussian (LoG) blob detector [28] is applied

to enhance regions containing blob-like nuclei at multi-

ple scales. The LoG blob detector takes into consideration

the expected morphology as well as the intensity profile

of the nucleus. The rationale behind applying the LoG at

multiple scale is to detect nuclei with different sizes. Next,

we extracted the binary nuclear mask, which is achieved

through an automated multi-level Otsu thresholding [29].

First, the selected threshold depended on the sensitiv-

ity parameter that was used. In our experiments, we set

the sensitivity to 60, which was converted into using the

third threshold (out of five) as the final threshold to define

image background, hypointense nuclei (blobs) and hyper-

intense nuclei (blobs). Then, we combine all detected

nuclei to create a binary image.

The binary mask separates the nuclei from the back-

ground. However, touching nuclei may end up forming

large connected components. Using these multi-nuclei

connected components as seeds for cell segmentation

will result with merging adjacent cells. Hence, the last

final step of nuclei segmentation delineates the individ-

ual nuclei using a shape-based watershed approach. This

step starts by computing the inverse distance transform of

the binary nuclear mask such that the value at each pixel

equals its Euclidean distance from the background. Then,

an extended h-minima transform [30] is applied on the

distance transform. This starts by applying the H-minima

transform at a level h to suppress all regional minima in an

image whose depth is less than a value h. Then it extracts

Fig. 3 Prediction and segmentation step-by-step outcome. a Input image. b Nuclei (Yellow-Red) and Cells (Blue-Cyan) prediction map.

c Segmented Nuclei (seeds), d Segmented Cells
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the regional minima of the resulting image. The parame-

ter h is set by the user and its default value is 3 µm. In the

last step, a seeded watershed transform is applied on the

inverse distance transform and uses the regional minima

extracted in the previous step as seeds. Figure 3c shows a

nuclear seed segmentation example for the input image in

panel (a) and the nuclei prediction map in panel (b).

Step 3) cell segmentation

The segmentation of the cells is achieved in multiple steps

(Fig. 2) and uses as inputs the cell marker image and

the cytoplasm prediction map as obtained from the deep

learning step. The cytoplasm prediction map (Cyan-Blue

heat map in Fig. 3b) alone was not sufficient to segment

the cells, especially when seeking to split touching cells. To

ensure the robustness of our approach, we used the seg-

mented nuclei (see the Yellow-Red heat map in Fig. 3b) as

seeds for the cell segmentation.

Next, we combined the transformed version of the

intensity image with the cell probability maps to enhance

the cells by simply multiplying the two images. The trans-

formation of the intensity image consists of applying a

Gaussian filter (for simple denoising) followed by inten-

sity scaling and then conversion to log space. Then, we

determine the background based on a three-level Otsu

thresholding. This step utilizes the number of detected

nuclei and the expected cell area to compute the total

expected cell area. More specifically, the optimal Otsu

threshold is selected to be equal or between the three

thresholds such that it results in an area estimated to be

the closest to the expected area.

The identified background label, along with the seg-

mented nuclei, are used in the seeded watershed seg-

mentation of the cell marker image. This approach allows

for the identification and separation of cells. For each

nucleus, the approach will identify a corresponding cell.

The approach is robust to a wide variety of stains, cell

types, drug treatments and image magnifications.

Evaluation of the classification results

A 10-fold cross-validation was performed to assess the

receiver operating curve (ROC), the Area under the curve

(AUC) and the accuracy (ACC) of the nuclei and cell pre-

dictions. The cross-validation was performed using the

108 independent images (datasets 1–5 in Table 2). In each

cross-validation fold, the images were split into three non-

overlapping sets of images: training set (80%), validation

set (10%) and a test set (10%).

For each fold, we assess the ACC to show the values of

the mean and standard deviation when assessing either

cells or nuclei. Note that the AUC and ACC are computed

on binarymasks, assuming that all nuclei are one label and

respectively all cytoplasm are another label. To obtain the

AUC, we thresholded the prediction maps resulting from

Table 2 Summary of datasets used for the training and testing of

the deep learning framework

Data
set

Training or testing Image no Marker channel

Experiment 1 Experiment 2 Experiment 3

1 Training Training,
Testing

Training 22 Green-dsRed,
Red-Cy5

2 Training Training,
Testing

Training 12 Green-dsRed

3 Training Training,
Testing

Training 24 Red-Cy5

4 Training Training,
Testing

Training 30 TexasRed-
TexasRed

5 10 Training,
10 Testing

Training,
Testing

Training 20 Green-dsRed,
Red-Cy5

6 Testing 15 TexasRed-
TexasRed

Each images has a 2048 x 2048 resolution

each deep-learning testing step (without post-processing),

using threshold values ranging between 0 and 1 which

cover the entire span of predicted values. The thresh-

olding allows us to obtain the sensitivity and specificity

values at each level, thus enabling the plotting of the AUC

curves. The ACC values are computed using a 0.50 thresh-

old value, which were similarly applied to the predictions

maps resulting from the deep-learning testing.

Segmentation similarity metric

We assess the quality of the automated segmentation by

comparing it to the ground truth or reference segmen-

tation. For the images with one or just a few segmented

objects, simple binary similarity metrics, e.g. Dice overlap

ratio, may be sufficient to assess the quality of the segmen-

tation. However, simple binary measures are not sufficient

for cell segmentation given the large number of segmented

cells (e.g. hundreds). Therefore, we introduced here a cell

segmentation similarity metric and use it to compare our

segmentation results to the ground truth.

Let IR be the reference segmentation image and IT be

the automated target segmentation image. Let the set of

labels in the reference and target segmentation be defined

as R = {r1, r2, ..., rN } and T = {t1, t2, ..., tM} respectively.

Then, we define a one-to-any mapping F : R → T such

that each label in the reference segmentation ri ∈ R is

mapped to the corresponding zero or more labels that

overlaps within T. The set of zero or more labels in T that

are mapped to ri is denoted as T ri . Also, define a bijective

mapping P : R → T such that each label in the refer-

ence segmentation corresponds to one label in the target

segmentation, and vice-versa. The set of labels that meet

this one-to-one relationship is denoted as PRT . Then, the

segmentation similarity function SM(R,T) is defined as

follows:
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SM(R,T)=k

(

1

N

N
∑

i=1

max
tj∈T

ri

2|ri ∩ tj|

|ri| + |tj|

)

+(1−k)

(

2
∣

∣PRT
∣

∣

N + M

)

(2)

where 0 ≤ k ≤ 1.0 is a weighting factor and | | represents

the cardinality of the set. In this work, we empirically set

k = 0.6. In the equation above, the first term computes the

average maximum overlap between each label in the ref-

erence segmentation ri ∈ R with the corresponding labels

(if any) in the target segmentation T ri ∈ T while the sec-

ond term computes the ratio of true positive labels to all

the labels.

Experimental design

To evaluate the performance of our approach, we used

a dataset containing images of five cellular assays in 96-

well microplates (will refer to them as plates for simplicity)

acquired using GE’s IN Cell Analyzer systems. We used

different types of cell lines including Hela, fibroblasts,

HEPG2 and U2OS. In addition, we used different types of

markers. For examples a eGFP bound to a tandem FYVE

domain construct, was used in two of the plates (first

and fifth). In those plates, compounds were added to the

cells to deplete intracellular levels of PI(3)P which caused

a redistribution of the eGFP signal from punctate endo-

somes to a more diffuse cytosolic localization. In two of

the other plates (second and fourth), we usedMitoTracker

Red (Thermo Fisher), which stains mitochondria in live

cells and its accumulation is dependent on cell membrane

potential. In the last (third) plate, the used marker was a

proprietary dye reagent from the GE Cytiva Cell Health

kit that localizes to the mitochondria.

The different plates were scanned at different magnifi-

cations including 10x (pixel size: 0.65µm x 0.65µm) and

20x (pixel size: 0.325µm x 0.325µm). Regardless of the

magnification, each image dimension is 2048x2048 pix-

els. In addition, different fluorescent markers were used

to identify cell body or the cytoplasm (Fig. 1). Only a

small subset of the wells in each plate (e.g. one or two

rows) were used in our experiments, with a total of 123

images. Table 2 lists the data sets that were used in the

different experiments for either training or testing our

algorithm.

Ground truth

A set of ground truth segmentations is needed to train

our deep learning model as well as to evaluate the good-

ness of our segmentation results. Ideally, a human expert

should create such ground truth segmentation. However,

this is a time-consuming process, especially since each

image may contain several hundreds of cells. To over-

come this limitation, we trained our algorithm using the

automatic segmentations obtained when using a two-

channel method that utilizes both the nuclear and cell

marker channels. We refer to these segmentations as

the 2-channel automated (sub-optimal) cell segmentation.

Specifically, we first detected the nuclei based on the

nuclear (e.g. DAPI) channel using the algorithm described

in Step 2 and utilized those nuclei as seeds in Step 3 to

segment the cells in the cell marker channel. Segmenta-

tion parameters were iteratively optimized and the results

were reviewed by experts for feedback and to confirm on

segmentation quality.

In addition to the automatically generated ground truth

segmentations, a small set of 10 images were semi-

automatically segmented by an expert and used in one of

our experiments to validate our automated segmentation

results as will be explained later (we will refer to them as

ground truth segmentations). The expert biologist used

Cell Profiler [31] to generate an initial sub-optimal seg-

mentation and further refine and edit the segmentation

results by splitting, merging, adding and removing cells.

Results
Given the automated (sub-optimal) and semi-automated

ground truth segmentations, we performed three experi-

ments. For each experiment, the automated two-channel

sub-optimal ground truth segmentations were used for

training. However, the dataset was divided between train-

ing and testing differently. Furthermore, we optimized the

network architecture in the first experiment and then used

the same architecture in the two other experiments.

Experiment 1

In Experiment 1, we used the datasets 1–5 in Table 2,

which include 108 images. The 10 images with semi-

automated ground truth segmentations were utilized for

testing while the remaining 98 images were divided into

training (88) and validation (10). Examples of segmenta-

tion results are shown in Fig. 4. Each example (a-c) shows

the automated segmentation results obtained using our

proposed algorithm (left column) as well as the semi-

automated ground truth segmentation provided by the

expert (right column). Although it is apparent that the two

segmentations are not identical, they show high similarity

when visually comparing them.

To assess the accuracy of the proposed segmentation

algorithm, we used our similarity metric (SM) to compare

the results of the proposedmethod to the semi-automated

ground truth as well as the automated two-channel seg-

mentation. The ground truth segmentations of the 10 test

images contained 1666 cells. Then, segmentation quality

was computed for each individual cell by comparing it to

the corresponding ground truth segmentation of the same

cell. Figure 5a shows a histogram of the cell-level quality

measures, which showed ∼0.87 overall average cell seg-

mentation quality when compared to the semi-automated
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Fig. 4 Examples of segmentation results from Experiment 1. a-c Different stains and cell cultures. Right column: segmentation results using our

deep learning-based approach. Left column: semi-automated ground truth segmentation. Bottom row shows close-ups of the area in the white

box. Different cell contours are shown in different colors

ground truth segmentation. Moreover, when comparing

our segmentation results to the automated two-channel

segmentation results, we found an average score of ∼0.86.

Notice that the average quality score between automated

two-channel segmentation and the ground truth segmen-

tation was ∼0.93.

In addition to the cell-level segmentation quality scores,

we also computed the image-level quality scores by sim-

ply averaging the cell scores at the image level. The details

of the image-level segmentation quality assessment are

given in Table 3. We compared our proposed deep learn-

ing segmentation results to the automated two-channel

segmentation and the semi-automated ground truth seg-

mentation. The average image-level quality scores were

at 0.85 and 0.86 respectively. Clearly, the image level

score is slightly lower than the overall cell-level score

because one of the images (no 8) showed lower qual-

ity than the other images. That image shows actin fiber

staining in which the cells are more challenging to seg-

ment. These fibers appear elongated and in most cases

uniform across the cell. Therefore, no significant differ-

ent can be seen between the nucleus and the cytoplasm

of the cell. This image is also shown in Fig. 1e). To get

a better insight on the quality of our segmentation, we

compared the two-channel segmentation, which was used

for training, to the semi-automated ground truth, and

that resulted with an average image-level score of 0.93.

This is slightly higher than that of our deep-learning

based approach, but on the expense on using an addi-

tional channel staining the cell nuclei (e.g. DAPI) in the

segmentation.

Experiment 2

In this experiment, we performed 5-fold cross-validation,

which used the 108 independent images in the datasets

1–5 (Table 2), with 80% of the images used for the train-

ing set, and 10% for each of the validation and test sets.

The ROC curve (Fig. 5b) suggests a good performance in

identifying both nuclei and cells, with an AUC larger than

0.95 and ACC of 0.915 and 0.878 for the nuclei and cell

respectively.

Furthermore, Table 4 shows a summary of the seg-

mentation accuracy for the different datasets. The overall

accuracy for the four datasets was computed to be ∼0.84.

a b

Fig. 5 a Experiment 1: Histogram of the cell-level quality scores, for a total of 1666 segmented cells. The overall (average) quality score is ∼0.87.

b Experiment 2: Receiver Operating Curve for a 10-fold cross validation the proposed approach
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Table 3 Experiment 1: Image level segmentation comparisons

Image ID Deep learning to
two-channel
similarity

Deep learning to
ground truth
similarity

Two-channel to
ground truth
similarity

1 0.88 0.90 0.94

2 0.86 0.85 0.94

3 0.89 0.91 0.94

4 0.92 0.91 0.91

5 0.88 0.90 0.93

6 0.83 0.84 0.94

7 0.76 0.80 0.87

8 0.72 0.72 0.96

9 0.83 0.86 0.94

10 0.89 0.90 0.95

Avg. 0.85 0.86 0.93

We found it more intuitive to summarize the results at the

dataset level because we wanted to study the performance

of the algorithm given the variability we see between the

different datasets. For instance, the segmentation quality

score for the third datasets was significantly lower than

the others (∼0.62). Such results may be attributed to the

higher variability in the cell shape and appearance in that

dataset and therefore, were more difficult to segment. In

this table, the number of detected cells is provided to give

more details about the dataset size, but it is not be directly

related to the accuracy.

Experiment 3

The third experiment included datasets 1–5when training

the network, and split the 108 images into 98 images for

training and 10 images for validation. Unlike experiment

1, we tested our model using dataset 6, which contains 15

images (Table 2), and is a completely independent experi-

ment than datasets 1–5. Since no semi-automated ground

truth segmentation was available for the dataset 6, we gen-

erated two-channel sub-optimal segmentations and used

them as ground truth for the purpose of computing the

segmentation similarity (i.e. accuracy).

Similar to experiment 1, we first computed the overall

cell-level segmentation quality scores, which was found to

Table 4 Experiment 2 - Summary of segmentation similarity - SM

(accuracy) for the 10-fold cross-validation

Data set Number of detected cells Segmentation SM (accuracy)

1,5 6378 0.86 ±0.14

2 2162 0.62 ±0.09

3 2735 0.91 ±0.12

4 7961 0.85 ±0.17

Total cell no = 19236 Avg. Accuracy = 0.84 ±0.14

be at ∼0.84. Then, we computed the image-level segmen-

tation quality scores by averaging the cell-level scores for

each image. The detailed list of scores is given in Table 5.

Most of the scores ranged between 0.8 and 0.9 with an

average similarity score of 0.84. An example is shown in

Fig. 6 comparing our single-channel deep learning-based

segmentation to the two-channel segmentation for one

image.

Implementation and processing time

The presented deep learning algorithm was implemented

in python using the MXNet library [26], while the nuclei

and cell segmentations were developed using C++, ITK

[32] and Python. The deep learning approach was trained

on an Amazon cloud environment (AWS) based on

Ubuntu Linux using an NVIDIA graphics card Tesla K80.

The training of the deep learning predictor takes 11–13

min per epoch, for ∼6h per fold. Applying our approach

on an unseen image takes 4–6s/image.

Discussion
Despite our very encouraging segmentation results, a few

aspects of our algorithms could be improved. These areas

will be the focus of our future. First, we will make fur-

thermodifications to the existing deep learning algorithm,

which include slight optimization to the network architec-

ture, and optimization of the loss function. Second, we will

explore new network architectures that will result in bet-

ter predictions and will reduce the risk of post-processing

errors. Third, we will investigate and test additional data

augmentation strategies, which include generating syn-

thetic data. Fourth, we will work on improving the speed

and accuracy of the post-processing algorithm. Further-

more, a possible improvement to our algorithm will be to

predict the locations of cell boundaries using the CNN

model, and therefore to eliminate or, at least, to reduce

the number of post-processing steps. In one of our early

experiments, we tried to define a cell boundary class using

Table 5 Experiment 3: Image level segmentation comparisons

Image ID Deep learning to
two-channel similarity

Image ID Deep learning to
two-channel
similarity

1 0.88 9 0.84

2 0.83 10 0.80

3 0.82 11 0.86

4 0.81 12 0.85

5 0.84 13 0.85

6 0.76 14 0.88

7 0.85 15 0.79

8 0.87 Avg. 0.84
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the cell-to-cell borders in the ground truth segmenta-

tion. Unfortunately, that resulted with poor prediction

of the cell boundaries. That poor performance could be

attributed to the imperfect nature of our ground truth

segmentation results. In future work, we may investigate

adding higher weights in the loss function on pixels close

to the cell boundaries.

Conclusions
We presented an algorithm for 2-D cell segmentation in

microscopy images using a single channel/marker. Given

the significant variability in cell appearance that resulted

from using different stains and different cell types, achiev-

ing robust cell segmentation results via traditional image

analysis or machine learning approaches may require

carefully engineered/handcrafted image features that cap-

ture intensity and morphological properties of the cells.

To overcome this limitation, we trained a deep convo-

lutional neural network (CNN) that uses a cascade of

layers of non-linear processing units for feature extraction

and transformation to form a hierarchy from low-level

to high-level features. The deep CNN was then used

to predict locations of cells and nuclei in test images.

Our deep learning prediction was followed with a few

post-processing steps to help generate the final cell seg-

mentation mask. Given the accuracy of our predictions,

we relied on traditional image analysis techniques for

post-processing such as LoG blob detection and water-

shed transforms since they were efficient, computationally

attractive and produced sufficiently good results. Our seg-

mentation results were assessed both qualitatively (by

an expert) and quantitatively. The quantitative assess-

ment was performed by computing a similarity measure

Fig. 6 Segmentation examples from Experiment 3. Right column:

segmentation results using our deep learning-based approach. Left

column: semi-automated ground truth segmentation. Bottom row

shows close-ups of the area in the white box. Different cell contours

are shown in different colors

between each segmented image and the correspond-

ing semi-automated ground truth segmentation and/or

the automated two-channel segmentation. In general,

the accuracies are slightly higher when comparing our

results to the semi-automated ground truth than to the

automated two-channel segmentation. That is expected

because the automatic two-step segmentation algorithm

had errors that were manually corrected in the semi-

automated ground truth segmentation. Our proposed

algorithm did not reproduce some of those errors and

therefore, it was closer to the semi-automated ground

truth segmentation. Both the qualitative and quantita-

tive results showed that we could use a single channel

(cell marker) to obtain a segmentation that is comparable

to that obtained when using two-channels (i.e. with the

addition of a nuclear channel).

Additional file

Additional file 1: Sample images and results. Sample datasets used in this

paper (# 1 and #5 in table 2). The dataset includes input images of both

dsRed and Cy5 channels and the corresponding cell segmentation.

(ZIP 245,472 kb)
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