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In order to support smart construction, digital twin has been a well-recognized concept for virtually representing the physical
facility. It is equally important to recognize human actions and the movement of construction equipment in virtual construction
scenes. Compared to the extensive research on human action recognition (HAR) that can be applied to identify construction
workers, research in the field of construction equipment action recognition (CEAR) is very limited, mainly due to the lack of
available datasets with videos showing the actions of construction equipment.)e contributions of this research are as follows: (1)
the development of a comprehensive video dataset of 2,064 clips with five action types for excavators and dump trucks; (2) a new
deep learning-based CEAR approach (known as a simplified temporal convolutional network or STCN) that combines a
convolutional neural network (CNN) with long short-termmemory (LSTM, an artificial recurrent neural network), where CNN is
used to extract image features and LSTM is used to extract temporal features from video frame sequences; and (3) the comparison
between this proposed new approach and a similar CEAR method and two of the best-performing HAR approaches, namely,
three-dimensional (3D) convolutional networks (ConvNets) and two-streamConvNets, to evaluate the performance of STCN and
investigate the possibility of directly transferring HAR approaches to the field of CEAR.

1. Introduction

Human action recognition (HAR) is one of the most popular
research areas in computer vision (CV), and the outcomes
have been extensively applied in video surveillance and
human-machine interaction for a variety of application
scenarios such as safety monitoring and control [1]. A basic
methodology for recognizing human actions is to detect a
human in a video/photograph, segmenting and mapping the
body attributes followed by the result [2]. A number of
methods for achieving HAR have been developed in the past
few decades. Poppe [3] and Purohit and Chauhan [4]
reviewed and classified different recognition algorithms for
human actions. )e deep learning (DL) method has
attracted more attention in the area of CV following the
success of AlexNet [5] in using convolutional neural net-
works (CNN) for image classification, gradually replacing

the traditional HAR approaches based on the spatial and
temporal structure of body movements. With advances in
action recognition and the popularization of high-end
hardware such high-resolution surveillance cameras, HAR is
increasingly applied at work (e.g., in video surveillance at
airports for security purposes) and at home (e.g., in health
monitoring for elderly people).

In the construction industry, digital twin has been a well-
recognized concept for smart construction. Beside the
analysis and optimization supported by a digital represen-
tation of the facility itself, there is also a need to enhance the
performance of workers and equipment, which is facilitated
by automated perception and analysis of on-site activities.
)is requires the computer to not only identify workers and
equipment but also recognize their locations and actions [6].
Many potential benefits could be realized if HAR could be
applied for the monitoring and control of construction
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equipment. With a detailed analysis of equipment actions
and a continuous optimization of equipment operation, a
construction project can be better managed: for example,
equipment productivity would be improved by reducing the
idle time, the environment would be protected by lowering
carbon emissions, and accidents would be avoided by co-
ordinating the movement of workers and equipment [7].
Currently, the analysis of construction machinery activity is
mainly performed by human workers, a process that can be
time-consuming, costly, and prone to errors. A low-cost,
reliable construction equipment action recognition (CEAR)
method can enable automated analysis of many scenarios at
construction sites and can support smart construction
applications.

Researchers have long studied the recognition of con-
struction equipment actions and shown promising results.
)e CEAR methods can be roughly divided into sensor-
based methods and visual-based methods. In the works that
use sensors for recognizing the activity of construction
equipment, of note are real-time location systems (RTLS)
[8, 9], audio signals [10, 11], inertial measurement units
(IMU) [12, 13], and so forth. In the works using visual-based
methodology, many studies have adopted image processing-
based approaches. Zou and Kim [14] used image color space
(hue, saturation, and value) as the basis for image seg-
mentation and tracing algorithms to identify the changing
centroid coordinates of an excavator in successive images
taken at fixed time intervals to achieve recognition of
equipment movement. Gong et al. [15] proposed a visual
learning approach to classify actions of construction workers
and equipment using the Harris 3D interest point detector as
the feature detector, local histograms as the feature repre-
sentation, a bag-of-words model as the feature model, and
Bayesian network models as the learning mechanism. Using
a similar method, Golparvar-Fard et al. [7] studied single
actions of construction equipment used for earthmoving. In
this method, a video is initially represented as a collection of
spatiotemporal visual features by extracting space-time in-
terest points and describing each feature with a histogram of
oriented gradients (HOG). )e algorithm automatically
learns the distributions of the spatiotemporal features and
action categories using a multiclass support vector machine
(SVM) classifier.

Many existing CEAR approaches rely on hand-crafted
features, which is necessary to manually segment the time-
series data to extract statistical features. )is feature ex-
traction process will be limited by human knowledge and
can only extract shallow features specified by humans. )us,
they will only work well for simple actions that can be easily
distinguished. )e results will no longer be reliable once the
viewpoint has changed, more background noise is present,
and the views become blocked [3], which will be inevitable
due to the dynamic nature of a construction site. Further-
more, these traditional methods require manual interven-
tion at multiple points to adjust parameters, which limits the
application of these methods in cases where end-to-end
output is desired. Moreover, nearly all current methods for
action recognition are data driven; that is, they require a
large amount of data in order to train the recognition model

to achieve a better recognition rate. As such, a large-scale
dataset is of considerable significance. Golparvar-Fard et al.
[7] developed the first comprehensive video dataset for
action recognition of excavators and dump trucks. However,
it is rare to find similar datasets for other types of con-
struction equipment.

As a part of this research, a video dataset for excavators
and dump trucks is first established to expand the size of the
existing datasets on construction equipment, along with a
corresponding optical flow dataset that can be used for
related algorithm studies. Second, a deep learning-based
CEAR model was proposed by taking advantage of deep
learning, which has good generalization performance, is
capable of end-to-end training, and requires no feature
engineering [16]. Lastly, the deep learning-based method is
compared with existing similar methods and some of the
best HAR methods to determine whether the proposed
method is advanced and whether advanced HAR algorithms
could be directly transferred to CEAR. Related research
works in HAR and CEAR are discussed in the next section,
along with their limitations. Following that, the dataset
development is illustrated in terms of camera arrangement,
data acquisition method, and data processing method, and a
detailed presentation of proposed deep learning-based
CEAR model is provided. )e experimental results and a
comparison of the results of the proposed model to those of
twoHAR algorithms are discussed.)e final section presents
the conclusions that can be made based on the results of this
research study.

2. Materials and Methods

2.1. Related Works. In recent years, numerous research
efforts have been made to apply action recognition tech-
nologies in the construction industry. Some of these studies
used construction workers as their research subjects and
focused on worker health and safety, while other studies
used construction equipment as the research subject and
aimed to improve productivity and reduce costs for the
construction project. According to different data sources,
the approaches used in these studies can be divided into
methods based on visual data and methods based on
sensors data. In the current construction industry, cameras
are generally installed for surveillance and other purposes.
)is makes the acquisition of visual data more convenient
and cost-effective. Moreover, visual data can usually pro-
vide richer information. As such, this research focuses on
determining the activities of construction equipment from
visual data. Previous works that use vision-based methods,
known as computer vision (CV), are discussed in this
section. Seo et al. [17] reviewed previous attempts to apply
CV for construction safety and health monitoring from
both a technical perspective and a practical perspective.
)ey categorized previous studies into three group-
s—object detection, object tracking, and action recog-
nition—based on the type of information required to
evaluate unsafe conditions and actions. However, in the
current status of CV application in construction sites, even
the most advanced theories are faced with challenges such
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as a lack of high-quality datasets and the slow development
of algorithms. At the same time, the development of deep
learning technology, the increased image processing power
provided by a graphics processing unit (GPU), and the
decrease in price of specialized cameras bring about new
opportunities for adopting CV-based applications in the
construction industry.

2.1.1. Human Action Recognition. Many research studies
have investigated CV-based human action recognition
(HAR) systems, including both traditional hand-crafted and
learning-based action representation approaches. )e dif-
ference between these two approaches lies mainly in the
method used to extract features from images. A traditional
hand-crafted representation-based approach relies on the
expert-designed feature detectors and descriptors such as
Hessian3D, scale-invariant feature transform (SIFT), HOG,
enhanced speeded-up robust features (ESURF), and local
binary pattern (LBP). On the contrary, a learning-based
representation approach uses a trainable feature extractor
that automatically learns features from the raw data, elim-
inating the need for manual assignment and enabling end-
to-end learning.

)e traditional hand-crafted action representation ap-
proach has been popular in the HAR community and has
achieved remarkable results when using various well-known
public datasets [18]. )is approach includes four techniques:
the space/time-based method [19], the appearance-based
method [20, 21], the LBP-based method [22], and the fuzzy
logic-based method [23]. Using these methods, the im-
portant features from a sequence of image frames are
extracted to build the feature vector prior to classification by
a trained classifier. For example, dense trajectory (DT) uses
trajectories to capture the local motion information of the
video, and a dense representation guarantees good coverage
for capturing foregroundmotions as well as the surrounding
context [24]. Wang and Shmid [25] proposed an improved
DT (iDT) approach to improve the performance of video
representation by making corrections that take camera
motion into account. Currently, researchers are aiming to
increase the quantity and quality of the dataset for human
action recognition. However, most successful hand-crafted
representation methods are based on local densely sampled
descriptors, which will result in a higher computational cost.

)e appropriate and efficient representation of data is
the key to HAR. Unlike the above-mentioned approaches,
where an action is represented by hand-crafted feature
detectors and descriptors, learning-based representation
approaches have the ability to learn a feature automati-
cally from the raw data, thus introducing the concept of
end-to-end learning, which refers to transformation from
the pixel level to an action classification and is not limited
by human knowledge [18]. Some learning-based ap-
proaches are based on genetic programming [26] and
dictionary learning [27], while others employ deep
learning-based models for action representation.

Deep learning is an important area of machine learning
which aims to achieve learning at multiple levels of

representation and abstraction in order to make sense of
data such as speech, images, and text. )e research of
Karpathy et al. [28] showed the potential of CNN for large-
scale video classification tasks. Simonyan and Zisserman
[29] proposed a two-stream convolutional networks (two-
stream ConvNets) architecture that incorporates spatial and
temporal networks and demonstrated that a ConvNet
trained on multiframe dense optical flow is able to achieve
very good performance despite the limited amount of
available training data. Tran et al. [30] argued that deep
three-dimensional (3D) ConvNets trained on a large-scale
supervised video dataset are effective for spatiotemporal
feature learning. )e 3D ConvNets build on two-dimen-
sional (2D) ConvNets but include a time dimension; thus,
they solve the issue of the inability of CNNs to extract
temporal features. Carreira and Zisserman [31] introduced a
new two-stream inflated 3D (I3D) ConvNet, where filters
and pooling kernels of very deep image classification
ConvNets are expanded into 3D, making it possible to learn
seamless spatiotemporal feature extractors from video while
leveraging successful ImageNet architecture designs and
even their parameters. Varol et al. [32] made identifications
from video representations using neural networks with long-
term temporal convolutions (LTC) and demonstrated that
LTC-CNN models with increased temporal extents improve
the accuracy of action recognition. Ng et al. [33] employed a
recurrent neural network that uses long short-term memory
(LSTM) cells that are connected to the output of the un-
derlying CNN. )is LSTM-CNN approach exhibits signif-
icant performance improvement over previously published
results on the Sports 1 million dataset and the UCF101
dataset [34]. Donahue et al. [35] developed a novel recurrent
convolutional architecture suitable for large-scale visual
learning, which is end-to-end trainable, and they demon-
strated the value of these models for benchmark video
recognition tasks. Sevilla-Lara et al. [36] investigated the
impact of different flow algorithms and input transforma-
tions to better understand how these would affect a state-of-
the-art action recognition method, and they recommended a
better way of using optical flow in the future.

Recently, the research community has paid a great deal
of attention to deep learning-based approaches, mainly due
to their excellent performance as compared to hand-crafted
action representation approaches. However, some of the best
learning-based methods still rely on hand-crafted features.
)e main reason is the lack of huge datasets for action
recognition which are required to train the feature extrac-
tors. As no huge dataset such as ImageNet in the field of
object recognition exists, the HAR community is working on
the development of useful datasets. HMDB [37] is an action
video database with 51 action categories, which in total
contain around 7,000 manually annotated clips. UCF101
[34] consists of 101 action classes in a total of 13,320 clips of
video data. More recently, the development of a large-scale
dataset called ActivityNet [38] provides samples from 203
activity categories with an average of 137 untrimmed videos
per class and 1.41 activity instances per video, for a total of
849 hours of video. YouTube-8M is the largest multilabel
video classification dataset [39] and it includes about 8
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million videos (approximately 500,000 hours of video),
annotated with a vocabulary of 4,800 visual entities.

2.1.2. Construction Equipment Action Recognition.
Although many research studies have investigated the use of
HAR in the construction industry for health/safety moni-
toring and for the control of construction workers, the study
of construction equipment action recognition (CEAR) is still
premature. )e first work that can be found in CEAR was
conducted by Gong and Caldas [40], who developed an
intelligent video computing method to interpret videos of
cyclic construction operations and translate the images
automatically into productivity information through the
recognition of actions of a concrete bucket in the concrete
pour process. Akhavian and Behzadan [41] used built-in
smartphone sensors as ubiquitous multimodal data collec-
tion and transmission nodes in order to detect detailed
construction equipment activities, which can ultimately
contribute to the process of simulation input modeling. In a
case study of front-end loader activity recognition, certain
key features are extracted and are used to train supervised
machine learning classifiers. Cao et al. [42] proposed a
classification algorithm based on acoustics processing for
four types of excavation equipment. )ey developed new
acoustic statistical features (short frame energy ratio, con-
centration of spectrum amplitude ratio, truncated energy
range, and pulse interval) to characterize acoustic signals;
then, based on the probability density distributions of these
acoustic features, a novel classifier was proposed. )is ap-
proach has a great potential to be generalized. Han and
Golparvar-Fard [43] investigated current strategies for
leveraging emerging big visual data in construction per-
formance monitoring from the standpoints of reliability,
relevance, and speed, and they structured a road map for
research in visual sensing and analytics for construction.
Roberts and Golparvar-Fard [44] presented a new bench-
mark dataset consisting of ten videos that can be used to
detect, track, and analyze construction work activities of
excavators and dump trucks. )ey also gave an action
recognition framework composed of detection module,
tracking module, and recognition module. )is method can
automatically identify excavators and dump trucks from
per-frame of the video sequence and track their activities and
finally identify their construction actions. Rashid and Louis
[45] proposed a data-augmentation framework for gener-
ating synthetic time-series training data for RNN-based deep
learning networks. )eir research results show that deep
learning framework outperformed the shallow network
regarding model accuracy and generalization, and the data-
augmentation methodology has the ability to correctly
simulate real-world dataset. Kim and Chi [46] proposed a
vision-based action recognition framework that considers
the sequential working patterns of earthmoving excavators.
)e framework includes three main processes: excavator
detection, excavator tracking, and excavator action recog-
nition. Among them, the action recognition process used
CNN-DLSTM model. )e framework demonstrates good
generalization performance and proves the important

positive impact of sequential pattern modeling on recog-
nition performance. Rashid and Louis [13] researched the
use of activity-specific equipment motions instead of vi-
bration for action recognition. )e study showed that using
inertial measurement unit (IMU) data of different articu-
lated elements can significantly improve the activity rec-
ognition results.

Previous CV-based research in the construction industry
mainly focused on either identifying/tracking workers and
equipment or recognizing workers’ actions. Although deep
learning-based action recognition algorithms have domi-
nated the field of HAR, they are not widely investigated for
CEAR. )e challenges in doing so are threefold.

)e most significant challenge is the lack of compre-
hensive datasets for CEAR. Deep learning-based approaches
largely rely on large numbers of high-quality raw video clips
to train the feature extractor for a better performance in the
later classification task. Although the number of available
datasets for HAR is increasing, as mentioned earlier, this is
not the case in the field of CEAR. A comprehensive dataset
for CEAR needs to include video clips from a variety of
working environments, from different viewing angles, and
with various amounts of background clutter.

Currently, there is a shortage of algorithms that can be
applied at real construction sites. Most existing researches of
CEAR in the construction industry use pattern recognition
methods and those algorithms rely on hand-crafted features
and will be limited by human knowledge. When they are
applied to actual cases, their recognition performance will be
greatly affected by human factors.

At the present time, there is no clear benchmark for
CEAR.)e number of studies in CEAR is fewer than that for
HAR and, due to the shortage of standard video datasets for
construction equipment, it is hard to compare different
approaches that are based on the same dataset.

Focusing on these three aspects, in this study, a new
dataset for excavators and dump trucks was initially de-
veloped. )is dataset was used to expand the existing dataset
for the same types of equipment [7] and to train/verify the
feature extractor using the deep learning-based method
proposed in this research. )e action recognition method is
based on deep learning theory, which can automatically
extract high-level features from raw data without feature
engineering. )e possible problems of manual operation
features can be avoided. Comparison with existing similar
CEAR method [46] proves that it has comparable perfor-
mance. By comparing the results after applying two ad-
vanced deep learning-based HAR approaches to the same
dataset, this research study investigates the possibility of
transferring some of the best HAR algorithms to CEAR and
broadens the path of researching CEAR methods.

2.2. Dataset Development

2.2.1. Dataset Collection. )e construction equipment
considered in the new dataset includes an excavator and a
dump truck. For these two pieces of equipment, there are five
activities in all, as listed in Table 1 and shown in Figure 1.
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To take advantage of the recent improvements to
cameras in smartphones, this research used smartphones
with a 12-megapixel rear camera to collect raw data. Video
footage was collected at a resolution of 720 progressive scan
(720p) and at 25 frames per second (fps). )e selection of
camera placement needs to be taken into account to prevent
possible obstructions and to ensure a good proportion of
construction equipment in the picture. Based on the site
survey, it was found that the front views and the side views of
construction equipment can provide more effective infor-
mation about their actions than other views. )e front view
refers to the projection view from the direction that the
driver faces when driving the device normally moving
forward. )erefore, in order to capture the various views of
the construction equipment and their actions from different
perspectives, four cameras were used to collect videos within
a 180-degree range around the construction equipment, as
shown in Figure 2. Cameras 1, 2, and 3 were used to capture
the front view, the side view, and the rear view, and Camera 4
was placed at a position in between Camera 1 (front view)
and Camera 2 (side view), as can be seen in Figure 2, in order
to provide supplemental information. )is camera config-
uration guarantees a sufficient number of action views while
using a minimum amount of video capturing resources.
Finally, an annotation document was created based on the
five action types for construction equipment. Table 2 shows
the annotations for the action types, the total number of
video clips of each type, and the numbers of video clips for
various subsets of data.

2.2.2. Data Processing. DivX, a video codec developed by
DivX, LLC, was used to transcode the original videos to
MPEG-4 format with a resolution of 480 pixels by 360
pixels. )e transcoded videos were classified according to
the four recording angels as shown in Figure 2; then
videos were cut into shorter clips to ensure that each video
clip, which had a duration ranging from 3 to 20 seconds,
would contain only one complete action of a single piece
of equipment. )e format for the file-naming convention
for the shorter video clips is “v_equipment_action_ID#”
(e.g., v_evacuator_swing_001.MPEG). Finally, in the
category of each recording angle, video clips were clas-
sified according to the five action types, and stratified
sampling was performed according to a ratio of 6 : 2:2 to
form a training set, a test set, and a verification set.

For the processed data, corresponding optical flow
dataset was developed by the method of Lucas-Kanade al-
gorithm [46]. )is dataset will be used to verify the per-
formance of the HAR algorithm used for CEAR and can be
used as a complement to the development of CEAR datasets.
)e examples of the optical flow dataset are shown in
Figure 3. )e video dataset developed in this research was of

open source. Everybody can obtain the dataset from https://
github.com/hnpyn/CEAR_dataset. )e authors will update
and maintain this project regularly.

2.3. Development of a Simplified Temporal Convolutional
Network (STCN). Ng et al. [33] proposed a method for
modeling video frames into ordered frame sequences by
using a recurrent neural network (RNN), which connects the
LSTM units to the output of the CNN.)e CNN structure is
based on GoogLeNet [47], while the RNN adopts a deep
LSTM structure [48] with five LSTM layers. )is model
performed very well in action recognition as compared to
the best approaches available at the time. Similarly, Donahue
et al. [35] also employed a method of directly connecting the
RNN to the CNN structure and found that when nonlin-
earity is incorporated into the network status updates,
learning of long-term dependencies is possible. As such,
temporal dynamics and convolutional perceptual repre-
sentations can be learned by jointly training the RNN and
the CNN. It has been proved that the joint architecture of the
RNN and the CNN is effective and feasible. Inspired by these
studies, the authors have proposed a CEAR process (de-
scribed in Figure 4) that can automatically extract video data
features and perform end-to-end training for action rec-
ognition. )e core of this process is the neural network
shown in the dashed frame, which combines a CNN for
extracting features from video clips and a LSTM for
extracting the temporal dynamics. A fully connected layer is
employed to connect the CNN and the LSTM, and a softmax
layer is used to determine the classification of the equipment
action.

2.3.1. Deep Learning. As an emerging research direction in
the field of machine learning [49], deep learning was first
proposed by Hinton et al. [50]. )e merit of deep learning
lies in the additional levels of nonlinear operation that it
encompasses [51], and deep learning is able to form more
abstract high-level representations or features by combining
low-level features, thereby displaying the hierarchical feature
representation of the data.)erefore, deep learning is able to
automatically learn to obtain the hierarchical feature rep-
resentations [16] that are more conducive to classification
tasks. Traditional machine learning and pattern recognition
methods require the manual extraction of features. )e
model itself only classifies or predicts according to the
features, and the hand-crafted features, to a large extent, will
determine the quality of the method. It requires both pro-
fessional knowledge and enough time to allow for manual
extraction of features. )us, it will be limited by human
knowledge, and most of the models can only obtain shallow
features. )is is the intrinsic driving force of this research to
develop action recognition algorithm based on deep
learning.

2.3.2. Convolutional Neural Network. A convolutional
neural network (CNN) refers to a class of feedforward neural
networks (FNNs) having a convolutional structure, and this

Table 1: Construction equipment activities.

Equipment Activities

Excavator Digging, swinging, dumping
Dump truck Moving forward, moving backward
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type of network is one of the representative algorithms in
deep learning. )e CNN uses the idea of sparse connection
and weight sharing to solve the parameter explosion in
ordinary FNNs, and it adopts convolution and pooling
operations to obtain local features and reduce the dimension
of feature space. )e CNN generally completes the final

classification through softmax by connecting to a fully
connected layer.

CNN can use the original data as the input character-
istics, which avoids the complex feature extraction process in
a traditional machine learning algorithm, and it reduces the
number of weights in the weight-sharing structure, thus

(a) (b) (c)

(d) (e) (f )

Figure 1: Examples of the activities of an excavator and a dump truck: (a) excavator digging, (b) excavator swinging, (c) excavator dumping,
(d) excavator swinging, (e) dump truck moving forward, and (f) dump truck moving backward.

1

4

2

45°

90°

3
Construction

equipment

Figure 2: Camera setup used for recording the movement of construction equipment.

Table 2: Dataset composition and action annotations.

Equipment Action type Type annotation Videos of this type Videos in training set Videos in test set Videos in validation set

Excavator
Digging 0 498 298 100 100
Dumping 1 513 307 103 103
Swinging 2 940 565 187 188

Dump truck
Moving
backward

3 54 32 11 11

Moving forward 4 59 34 13 12
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decreasing the complexity of the model. At the same time,
the feature map is subsampled by using the principle of local
correlation in images at the subsampling stage, which ef-
fectively reduces the amount of data processing required
while retaining useful structural information [49]; because of
this, CNNs have been widely used in CV-related tasks in
recent years.

LeNet-5 [52] was a milestone in early CNN develop-
ment, and it has been used to determine the basic structure
of a CNN—which contains convolutional layers, pooling
layers, and fully connected layers. Later CNNs have basically
followed this same structure, with less or more optimization
and improvement. AlexNet [5] adopted a structure con-
sisting of five convolutional layers and three fully connected
layers, which helped it to succeed in the ImageNet com-
petition. )e success of AlexNet indicates that deep learning
is a reliable method, and it lays the foundation for using deep
learning in image classification and object recognition tasks.

2.3.3. Long Short-Term Memory. Long short-term memory
(LSTM) [53] is a variant of RNN, which is a feedback neural
network that not only inherits most features of the RNN
model but also solves the issue of vanishing gradients in
regular RNNs [54]. As a nonlinear model, it can be used to
build larger and more complex deep neural networks. A
common LSTM architecture is composed of a cell (the
memory part of the LSTM unit) and three “gates” of the flow
of information inside the LSTM unit: an input gate, an
output gate, and a forget gate, as shown in Figure 5. )ese
gates are used to either remove or add information to the
cell. Cells are circularly connected to each other, replacing
the hidden unit in the regular recurrent network. )e state
unit has a linear self-loop structure whose weight is con-
trolled by the forget gate.

LSTM has two states, the cell state and the hidden state.
)e cell state changes slowly with time, while the hidden
state can vary widely at different times. )e gate mechanism

can adjust the focus of memory according to the training
target and then recode to control the trade-off between the
input at one time and the input at a subsequent time.
)erefore, LSTM can remember the information that needs
to be remembered for a long time, while forgetting any
relatively unimportant information. With LSTM, it is easier
to learn long-term dependency than in the simple RNN
architecture, and it is useful for dealing with problems that
are highly related to time series, such as the video sequences
used for CEAR.

2.3.4. Simplified Temporal Convolutional Network for CEAR.
Considering that video sequences contain dynamic images
that include information on both space and time, that it is
difficult to extract temporal features using a simple CNN,
and that a regular RNN is not able to extract image features
well, a combination of CNN and LSTM is proposed in this
research for CEAR [54], where the CNN is used to extract
the image features of the video frame sequences and LSTM is
used to extract the temporal features. In this process, the
probabilities for all frames generated by the softmax layer are
averaged, and the label with the highest probability is se-
lected as the final classification result. )is proposed method
is called a simplified temporal convolutional network
(STCN), and the structure of the STCN is shown in Figure 6.

)eoretically, a model with more parameters will have a
higher complexity, and when the amount of training data is
insufficient, a complex model is easy to be subjected to
overfitting [55]. At present, considering the small amount of
data in the field of CEAR, a less complex CNN model

(a) (b) (c)

Figure 3: Examples of the optical flow dataset.

Video

dataset

Video

frames
CNN + LSTM Action

Figure 4: Flow chart for the process of construction equipment
action recognition.

Input

Input gate

Cell

Self–loop

Forget gate

Output gate

Output

Figure 5: Cell structure in long short-term memory (LSTM).
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consisting of five convolutional layers is employed in this
research, as shown in Figure 7. In order to obtain a sufficient
number of effective receptive fields [56], the CNN model
uses 7× 7 and 5× 5 convolution kernels in the Conv1 and
Conv2 layers, respectively, and 3× 3 convolution kernels for
the other convolutional layers. In order to ensure the sta-
bility of data distribution in each layer to improve the
training efficiency, batch normalization is used in all con-
volutional layers [57]. Because the maximum pooling op-
eration can reduce the estimated mean shift caused by
parameter errors in the convolutional layers while main-
taining translation invariance, thereby minimizing the
number of parameters and reducing model complexity [58],
a max pooling layer is added at the end of each convolutional

layer, and 2× 2 convolution kernels are used in all pooling
layers.

)ere is no pretraining in STCN because, based on the
research result of Glorot et al. [59], the performance of a
rectified linear unit (ReLu) network is far better than those of
other activation function networks even without pretrain-
ing. Sparsity can be introduced to the ReLu activation
function to allow each neuron to fully play its screening
effect—those values matching the median value of a certain
feature will be amplified, while the outlying values will be
abandoned. Since the ReLu activation function only needs to
perform the calculation for the maximum value, it is also
superior in terms of calculation speed. As a result, ReLu is
chosen as the activation function in the proposed model.

So�max So�max

Fully connected
layer

Fully connected
layer

Fully connected
layer

Fully connected
layer

Fully connected
layer

Fully connected
layer

Dropout Dropout

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

CNN
module

CNN
module

Video
frame

Video
frame

So�max So�max

Fully connected
layer

Fully connected
layer

Fully connected
layer

Fully connected
layer

Fully connected
layer

Fully connected
layer

Dropout Dropout

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

CNN
module

CNN
module

Video
frame

Video
frame

Action

Average layer

16 frames

Figure 6: Structure of the simplified temporal convolutional network (STCN).

8 Advances in Civil Engineering



A fully connected layer is used to transmit the output of
the CNN model to the three subsequent layers of the LSTM
network. LSTM units for all continuous image subsequences
were connected to each other. )e probability of each action
category is then generated using the fully connected layers
and the softmax function. In order to generate the action
prediction label of a given video clip, an average layer is
employed to take the average probability of all image frames
in the video clip, and the category label with the maximum
probability is used as the result for action recognition.

3. Results and Discussion

3.1. Results. Using the dataset introduced in Section 2.2, the
authors extracted 16 image frames from each video clip to
train the algorithm discussed in Section 2.3. For video clips
that are less than 4 seconds, between 5 and 10 seconds, and
longer than 10 seconds, image frames were extracted at an
interval of 5 frames, 10 frames, and 15 frames. If there were
less than 16 frames that can be extracted based on this rule
for a very short video clip, the last frame was repeated to
complement 16 frames. After that, all images were adjusted
to a resolution of 320 pixels by 240 pixels, and a random
cropping with a size of 224 pixels by 224 pixels was used as
data augmentation. Finally, all these frames were sent into
the STCN model in a chronological order.

All the work was carried out by PyTorch on a work-
station with a 6-core 3.8GHz Intel processor, 16GB
memory, a GTX1060 graphics card with 6GB memory, and
Windows 10 operating system. In order to quantify the
performance of the action recognition algorithm, three
common performance metrics are employed, that is, pre-
cision, recall, and F-1 score. Calculating the precision and
recall rate of the model can assess the costs associated with
misclassification. )e F-1 score is the harmonic mean of
accuracy and recall, which takes into account both precision
and recall. )eir mathematical equations are shown as
follows:

Precision �
True Positive

True Positive + False Positive
× 100%,

Recall �
True Positive

True Positive + False Negative
× 100%,

F1 score � 2 ×
Precision × Recall

Precision + Recall
.

(1)

As mentioned above, STCN model is mainly composed
of two parts, that is, CNN module and LSTM module. )e
inputs to the model are the video clip frames. Experiments
were conducted on the parameter configuration of the STCN

model. In the experiment for weight initialization, this study
performed Xavier initialization [60] on the CNN module.
)e results showed that the model with weights initialization
has a better F-1 score (2.31% higher) than a scenario where
no parameter initialization was performed. )en there was
an experiment on the parameter settings of the CNN
module. )is experiment mainly studies the influence of the
size of the convolution kernels on the recognition perfor-
mance. )e experimental results are shown in Table 3. Four
sets of convolution kernels configurations were used for
control experiments. )e results indicated that this model
has the best performance, when Conv1 and Conv2 used 7× 7
and 5× 5 convolution kernels and the other convolution
layers used 3× 3 convolution kernels.

Next, the experimental research on LSTM parameter
settings showed that the number of LSTM layers has a
greater impact on recognition performance of the dataset
developed in this research. In this study, the LSTM model
architecture used is shown in Figure 5. Experiment shows
that the three-layer LSTM model has the highest F-1 score,
which is at least 2% higher than the F-1 score of other LSTM
layer settings. )e result is shown in Figure 8. In contrast, it
was found that the number of hidden units in the LSTM had
little effect on the F-1 score. )e authors tested the STCN
model with 64, 128, and 256 hidden units in the LSTM
module, and the difference in F-1 score was within 1%, as
shown in Table 4. )erefore, in order to reduce the com-
plexity of the model to save computational cost and reduce
overfitting, this model employs 64 hidden units.

In the experiment of this research, all models use Adam
optimization algorithm [61] as the optimizer, the learning
rate is set at 0.001, and the other parameter settings are
β1� 0.9, β2� 0.999, and ε� 10e− 8. Under the above set-
tings, the STCN model achieves a precision of 77.55%, a
recall rate of 75.00%, and an F-1 score of 76.25%, as shown in
Table 5.

In addition, this research also studied the recognition
effect of the STCN model for each action category. )e
experimental results are shown in Table 6. In this experi-
ment, accuracy was used as the main evaluation metric, that
is, the ratio of the number of examples that are correctly
predicted to the number of all examples that are predicted to
be that category for each action category.)e results indicate
that in general this model can recognize the action of ex-
cavators better than dump truck.

3.2. Discussion. In order to compare the performance of the
STCN method and investigate the possibility of transferring
some of the best HAR methods for use in CEAR, the dataset
developed in this research was used to examine the
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Figure 7: Structure of the convolutional neural network (CNN) used in this study.
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performance of the CNN-DLSTM model used by Kim and
Chi [46] for CEAR, 3D ConvNets proposed by Tran et al.
[30], two-stream ConvNets proposed by Simonyan and
Zisserman [29], and I3D ConvNets proposed by Carreira
and Zisserman [31]. )e results, which are summarized in
Table 5, indicate that the STCN method has a performance
comparable to those of the method proposed by Kim and
Chi, the 3D ConvNets method, and the two-stream Con-
vNets in precision, recall, and F-1 score.

)e results of using CNNmodule and LSTMmodule for
CEAR, respectively, are also presented in Table 3. )eir
performance when working alone is not very satisfactory,
and it is also verified that extracting key visual features and
extracting context features have a significant positive impact
on CEAR performance. )e CNN-DLSTM model refers to
the method used by Kim and Chi [46] in the action

recognition process. Its CNN consists of 10 convolutional
layers and 5 pooling layers, and the sequential patterns
learning module consists of two LSTM models.

)e 3D ConvNets model was reproduced as shown in
Figure 9. )e convolutional and pooling operations of the
3D ConvNets model were performed in the temporal di-
mension. All 3D convolution filters are 3× 3× 3 in size with
a stride of 1× 1× 1.)e first 3D pooling layer is 1× 2× 2 with
a stride of 1× 2× 2, and the remaining 3D pooling layers are
2× 2× 2 with a stride of 2× 2× 2. )is design preserves the
temporal information in the early stages. )e model can
simulate both appearance information and action infor-
mation simultaneously, and it produces excellent results in
HAR tasks. Using the same dataset, the 3D ConvNet model
achieved F-1 score of 73.55%.

Two-stream ConvNets were also examined using the
same dataset. As shown in Figure 10, the two-stream
ConvNet consists of two convolutional network structures: a
spatial stream and a temporal stream. )e spatial stream
convolution network is essentially an image classification
network that acquires static appearance features using the
input of a single frame image. )e temporal stream network
uses multiframe optical flow images as input, as shown in
Figure 11. In order to employ the two-stream ConvNets, a
corresponding optical flow dataset was created to extract
temporal features. An action classification result was ob-
tained by taking the average of the classification scores. )e
two-stream ConvNets model is in a leading position in HAR
tasks in terms of its performance, and it achieved an F-1
score of 76.26% in CEAR in this research.

By comparing the results for the STCN method, the
CNN-DLSTM method, the 3D ConvNets method, the two-
stream ConvNets method, and the I3D ConvNets method, it
is found that the STCN method proposed in this study
exhibits a performance in CEAR tasks which is comparable
to those of other deep learning-based methods that have
proven to have good results. Figure 12 shows the time
consumption of training these methods. It can be seen that,
in the case of close performance, STCN requires the shortest
training time, so it has a certain speed advantage. As what
has been mentioned before that the two-stream ConvNets
model achieved a slightly better F-1 score than STCN
(76.26% versus 76.25%) but the two-streamConvNets model
and I3D ConvNets model consumed much more computing
time (9 h 28m and 17 h 22m versus 7 h 43m), the STCN
model is still better in general. In addition, the study
demonstrates the feasibility of directly transferring some
HARmethods to the CEAR field, as the 3D ConvNets model
and the two-stream ConvNets model both achieved an
acceptable rate of accuracy when using the same dataset as
input.

Table 3: F-1 scores of STCN models under different size convolution kernels configurations.

Conv1 Conv2 Conv3 Conv4 Conv5 F-1 score (%)

3× 3 3× 3 3× 3 3× 3 3× 3 75.26
5× 5 5× 5 3× 3 3× 3 3× 3 74.88
7× 7 5× 5 3× 3 3× 3 3× 3 76.25

7× 7 7× 7 3× 3 3× 3 3× 3 74.33
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Figure 8: )e F-1 score of different LSTM layer settings in STCN.

Table 4: F-1 scores of STCN models with different LSTM hidden
units.

)e number of hidden units F-1 score (%)

64 76.25

126 76.09
256 76.28

Table 5: Performance measures of different action recognition
methods.

Method Precision (%) Recall (%) F-1 score (%)

CNN 71.26 68.01 69.60
LSTM 44.48 44.43 44.46
CNN-DLSTM 76.40 74.14 75.25
STCN 77.55 75.00 76.25
3D ConvNets 75.45 71.74 73.55
Two-stream ConvNets 77.80 74.79 76.26
I3D 78.13 75.02 76.54
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Table 6: Construction equipment action recognition results per activity.

Equipment Activity Precision (%) Recall (%) F-1 score (%)

Excavator
Digging 76.38 74.06 75.20
Dumping 83.78 80.57 82.14
Swinging 78.58 76.10 77.32

Dump truck
Moving backward 56.27 55.13 55.69
Moving forward 54.48 53.72 54.10
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Figure 11: An example of optical flow images for the input of the two-stream ConvNets.
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4. Conclusions

Digital twin is not only for the facility to be built but also for
the workers and construction equipment on a construction
site. Research in CEAR is no less significant than that of
HAR in terms of smart construction, because the perception
of a construction activity needs to understand the what
(object identification), where (object tracking), and how
(action recognition) for both construction workers and
equipment. Much of the research in the field of HAR can be
applied in the construction industry. However, the research
in the field of CEAR is very limited to date, due to a lack of
high-quality datasets, the complexity of the application
environment at construction sites, and the difficulty to
benchmark the performance in CEAR.

In this research, the authors developed an open-source
video dataset of 2,064 video clips with five action types for
excavators and dump trucks, including a corresponding
optical flow dataset. )is dataset supplements the existing
datasets for CEAR research and could potentially be used by
other researchers in later studies. One major reason that
hinders the research in the area of CEAR is the lack of high-
quality datasets, and the authors encourage other researchers
to share their datasets. Another contribution of this research
in the field of CEAR is a new deep learning-based approach,
STCN, which combines CNN and LSTM—where CNN is
used to extract the image features from the video frame
sequences and LSTM is used to extract the temporal features.
)e STCN proposed in this research achieved an F-1 score of
76.25% for the dataset developed earlier. In order to evaluate
the performance of the STCN, a similar CEAR method and
three of the best-performing deep learning-based ap-
proaches in the field of HAR, namely, the 3D ConvNets
method, the two-stream ConvNets method, and I3D Con-
vNets method, were examined using the same dataset as
input, and they achieved the F-1 scores of 75.25%, 73.55%,
76.26%, and 76.54, respectively. )ose four methods either
underperformed in comparison to STCN method or had a
similar performance but needed significantly higher com-
puting time. )e time consumption of training the STCN is
the shortest. )is comparison indicates not only the ad-
vantage of the STCN but also the possibility of directly
transferring some HAR methods to the field of CEAR.

)ere are some limitations in this research. First, the
dataset developed in this study is still relatively insufficient

compared to datasets available in other application areas
using deep learning-based solutions. It is expected that a
better accuracy rate would be achieved once a much larger
dataset is developed. With a limited dataset, one possible
solution is to pretrain the recognition algorithm using
datasets for HAR. Second, this research only studied the
recognition of actions for two types of construction
equipment (excavators and dump trucks) and did not in-
vestigate whether different types of equipment (e.g.,
equipment with apparent joints such as excavators and
equipment with no joints such as dump trucks) require
different recognition algorithms in order to achieve better
action recognition.

)ere is much important work to be done in the future.
)ere exist hundreds of types of construction equipment in
the construction industry, and each type of equipment has
multiple actions. It is important to develop more compre-
hensive video datasets for various types of equipment under
different conditions, for example, camera motion or dis-
ruptive weather (e.g., heavy winds or rain). In addition, it is
important to study the perception of activities where mul-
tiple types of construction equipment are moving at the
same time. In many cases, a surveillance camera will capture
a scene of a construction site containing several pieces of
equipment; this becomes a challenge when different types of
equipment in the same frame require different action rec-
ognition algorithms to achieve better recognition
performance.
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