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Abstract: Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a global
threat impacting the lives of millions of people worldwide. Automated detection of lung infections
from Computed Tomography scans represents an excellent alternative; however, segmenting infected
regions from CT slices encounters many challenges. Objective: Developing a diagnosis system based
on deep learning techniques to detect and quantify COVID-19 infection and pneumonia screening
using CT imaging. Method: Contrast Limited Adaptive Histogram Equalization pre-processing
method was used to remove the noise and intensity in homogeneity. Black slices were also removed
to crop only the region of interest containing the lungs. A U-net architecture, based on CNN encoder
and CNN decoder approaches, is then introduced for a fast and precise image segmentation to obtain
the lung and infection segmentation models. For better estimation of skill on unseen data, a fourfold
cross-validation as a resampling procedure has been used. A three-layered CNN architecture, with
additional fully connected layers followed by a Softmax layer, was used for classification. Lung and
infection volumes have been reconstructed to allow volume ratio computing and obtain infection rate.
Results: Starting with the 20 CT scan cases, data has been divided into 70% for the training dataset
and 30% for the validation dataset. Experimental results demonstrated that the proposed system
achieves a dice score of 0.98 and 0.91 for the lung and infection segmentation tasks, respectively,
and an accuracy of 0.98 for the classification task. Conclusions: The proposed workflow aimed at
obtaining good performances for the different system’s components, and at the same time, dealing
with reduced datasets used for training.

Keywords: SARS-CoV-2; CT scans; deep learning; lung segmentation; infection segmentation;
classification; 3D reconstruction

1. Introduction

COVID-19, provoked by the Severe Acute Respiratory Syndrome Corona Virus 2
(SARS-CoV-2), has been spreading exponentially around the world since December 2019
starting from Wuhan, China, resulting in a global health crisis [1]. This highly infectious
disease has been posing as the biggest current healthcare threat towards humanity, which
has led the World Health Organization (WHO) to declare this outbreak to be a Public
Health Emergency of International Concern (PHEIC), and it was recognized as a global
pandemic [2,3]. As of 5 April 2021, the WHO reported 131,309,792 worldwide cases with
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2,854,276 deaths and a mortality rate exceeding 2% [4]. The typical clinical characteristics of
COVID-19 cases range from asymptomatic to flu-like symptoms, fever, dry cough, tiredness,
loss of taste and smell, to even a life threatening Acute Respiratory Distress Syndrome
(ARDS) [5]. Up to this date, no effective treatment has yet been proven. Hence, accurate
and rapid testing is extremely pivotal to lessen the spread of the virus.

The Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test is considered
to be the gold standard method for confirming infected cases because it is able to identify
SARS-CoV-2 RNA from respiratory specimens, obtained by nasopharyngeal or oropharyn-
geal swabs, within 4 to 6 h [6]; however, the shortage of RT-PCR test kits is a major problem
in many countries around the world. Furthermore, the sensitivity of RT-PCR screening is
rather low as a result of high false-negative rates caused by several factors including sample
preparation and quality control [7–9]; therefore, chest radiography imaging, X-ray (CXR), or
computed tomography (CT scans), is usually used as a complementary examination in the
rapid diagnosis and control of the coronavirus. Hence, the use of chest CT scans, as men-
tioned in this review [10], can counteract the limitations of the low sensitivity of RT-PCR
tests, thus improving the accuracy and speed of diagnosis. Moreover, compared with the
chest X-ray, CT scans are generally recommended thanks to their three-dimensionality and
good visibility. There are various studies inspecting the imaging characteristics throughout
the diagnosis, follow-up, and treatment of COVID-19 [11,12]. It was found that patients
presented chest radiographic abnormalities which exhibited similar features, including
ground-glass opacities (GGO), an area of increased attenuation in the lung with preserved
bronchial and vascular markings in the early stages; moreover, they presented pulmonary
consolidation when the accumulation of fluid progresses to obscure bronchial and vascular
regions in the latter stages. Consequently, accurate and rapid detection and localization of
these tissue abnormalities is critical for early diagnosis and treatment of COVID-19.

Recently, with the rapid development of artificial intelligence, and more specifically,
deep learning technologies, Convolutional Neural Networks (CNNs) have been used a
great deal in medical image processing thanks to their powerful feature representation and
extraction. Several techniques based on CNNs have been published, showing promising
performances in other disease diagnosing cases, such as cancer and so forth [13,14], which
should also have the same achievability in this novel pneumonia detection. In biomedical
image analysis, the problems can be interpreted as classification and segmentation to
identify and detect abnormal features and regions of interest (ROIs) via deep learning
techniques, where the CNN and Unet based architectures are the most promising and
popular choice among the research community. In this work, a deep learning-based
diagnosis system was developed to automatically detect and analyze areas suspected to
be infected with the COVID-19 virus from clinical CT images extracted from a publicly
available chest CT scans dataset. Although training accurate and robust models requires
sufficient annotated medical imaging data, only one small yet sufficient public dataset is,
so far, available because of privacy restrictions and costly labelling. Not to mention that
it is likely problematic to combine data sets collected under different labelling regimes,
given that generally, the collected data is heavily influenced by the instructions provided
to the annotators. For this reason, the proposed framework is aimed at obtaining good
performances for the different system’s components while dealing with reduced dataset
used for training at the same time.

The remainder of this paper is organized as follows. In Section 2, a literature overview
is presented. Our proposed method is explained in Section 3. The experimental results
are introduced in Section 4, then discussed and compared with recent works in Section 5.
Finally, Section 6 concludes the paper, highlights limitations, and proposes future improvements.

2. Related Works

Recently, medical imaging processing techniques have been widely used to monitor
several diseases. The progress in this field has been reinforced by the introduction of
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Artificial Intelligence technologies that became a popular approach for detection and seg-
mentation of many medical problems thanks to their powerful feature representation [15].

In this context, many approaches have been proposed for the detection and the seg-
mentation of the lungs’ COVID-19 infection using chest X-rays and CT scans in the last few
months [16], which confirmed that a carefully designed image examination procedure plays
a vital role in reducing the diagnostic burden. The proposed methods can be classified
into three categories: (1) classification techniques; (2) infected regions and segmentation
techniques and; (3) diagnosis systems that worked on both tasks. Table 1 presents two
proposed methods for each category as well as the deep learning architectures used in each
one of them and the images’ modality they used.

Table 1. A summary of the recently published studies on COVID-19 detection approaches.

Method Images’ Modality Approach

Classification

Wang et al. COVID-Net [17] X-ray A deep residual CNN based model

El Araby et al. GSEN architecture [18] X-ray A novel Gray-Scale spatial exploitation learning Net
(GSEN) for COVID-19

Ahuja et al. Deep transfer learning [19] CT-scans ResNet18 pre-trained transfer learning-based model

Infection
Segmentation

Fan et al. Inf-Net [20] CT-scans DL approach based on three reverse attention modules
connected to a paralleled partial decoder

Shan et al. VB-Net [21] CT-scans A modified 3D CNN that combines V-Net with the
bottle-neck structure

Elzeki et al. (CNN-VGG19) [22] X-ray DL approach based on fusion algorithm using NSCT
with deep learning VGG19

Diagnosis
System

Wu et al. JCS [23] CT-scans
Classification: Res2Net; Infection segmentation:
VGG16 backbone + Enhanced Feature Module +
Attentive Feature Fusion

Gozes et al. [24] CT-scans

Classification: Resnet-50—2D deep CNN; ROI
extraction: Unet; Infection detection: Grad-cam
technique and a commercial off-the-shelf software for
lung pathology detection

Wang et al. [17] introduced COVID-Net, a densely-connected deep convolutional neu-
ral network design, tailored for the detection of COVID-19 cases from chest X-ray images,
and it achieved a 93.3% test accuracy. A three-phase detection model using deep transfer
learning is proposed, in the work of Ahuja et al. [19] to improve the detection accuracy, and
it was proven that the ResNet18 architecture helped to attain a better classification accuracy
(99.4%) compared with the other considered architectures. Fan et al. [20] developed a new
Deep Network called “Inf-Net” to automatically identify infected regions from chest CT
slices. The algorithm is based on a parallel partial decoder able to aggregate the high-level
features and to generate a global map. In their study, they used a small dataset of 100 CT
labeled images which achieved a dice score of 0.682. A semi-supervised segmentation
system was then introduced to alleviate the shortage of labeled data and it achieved a
dice score of 0.739. Similarly, Shan et al. [21] proposed a deep learning based system for
automatic segmentation and quantification of infection regions from chest CT scans. A
modified 3D CNN that combines V-Net [25] with the bottle-neck structure was used and
they achieved a Dice coefficient of 91.6%. Another study developed by Elzeki et al. [22] who
proposed a novel approach that combines CNN and VGG19 to detect COVID-19 features in
chest X-ray images. In their study, they used a dataset of eighty-seven chest X-ray images
associated with twenty-five cases and they obtained an accuracy of 96.93%, a sensitivity of
57.14%, and a specificity of 99.2%. A joint classification and segmentation system was pro-
posed by Wu et al. [23] for a real-time diagnosis of COVID-19. The classification model is a
Res2Net-based [26] classifier that achieved an average sensitivity of 95.0% and a specificity
of 93.0%. The segmentation model is based on an encoder, with VGG-16 backbone [27]
added with an Enhanced Feature Module, and a decoder based on Attentive Feature Fusion
strategy. The model succeeded to segment the infected regions with a dice score of 78.3.
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Gozes et al. [24] presented a system that detects cases suspected to have COVID-19 features
from CT images, using a Resnet-50—2D deep CNN architecture [28] with 94% sensitivity
and 98% specificity; then, for cases classified as positive, an abnormality localization mod-
ule will be executed to extract, using a Grad-cam technique [29], the network’s activation
maps that contributed most to the decision. An infection analysis will be further held using
commercial off-the-shelf software to detect nodules and small opacities to reinforce the
infection localization.

3. Method

In this section, our proposed approach is presented in detail. We start with demon-
strating the architecture design methodology behind the proposed approach. We then
describe the data set used for training our models and provide details of the proposed
network architectures, along with their different components, and we point out the training
strategy along with some implementation details. At the end, we display the real runtime
workflow of our proposed diagnosis system.

3.1. CNN and U-Net

Convolutional Neural Networks (CNN) [30,31] are a powerful tool which has already
demonstrated their success in classification tasks, where the output of an image is a single
class label. For almost any computer vision problems, CNN-based approaches surmount
other techniques, and it may even surpass human experts in the corresponding domain.

However, in several visual tasks, particularly in biomedical image processing where
reliable image segmentation is one of its crucial tasks because it demands us not only to
determine whether there is a disease, but also to delimit the abnormal regions, the desired
output ought to cover localization, meaning that a class label is supposed to be attributed
to each pixel. Over the last few years, different methods that improved traditional deep
learning approaches have been developed in order to address the problem of creating CNNs
producing a segmentation map for a whole input image in a sole forward pass [32,33].

One of the most acknowledged state of the art deep learning methods is the Fully
Convolutional Network [34]. Its key point is to use the CNN as an effective feature extractor.
It consists of replacing the fully connected layers with convolutional ones to output spatial
feature maps, which are further up-sampled to produce dense pixel-wise output, instead of
classification scores.

The FCN’s topology consists of two parts: a down-sampling path in charge of cap-
turing semantic information and an up-sampling path in charge of recovering spatial
information. A skip connection operation is used for mitigating information loss as a result
of pooling or down-sampling layers. The U-Net neural is another popular biomedical
segmentation model, originally proposed by Ronneberger et al. for biomedical image
processing, and the winner of the ISBI cell tracking challenge in 2015 by a large margin [35].
This architecture has so far proved itself in binary image segmentation competitions such
as satellite image analysis [36], medical image analysis [13], and others [37].

The encoder part is responsible for capturing context following the typical architecture
of a CNN with alternating convolution and pooling operations. It is composed of five
blocks, which are each composed of two convolutional layers, using a ReLU (Rectified
Linear Unit) activation function that provides nonlinearity to the network; they produce
feature maps through a convolution process; one max-pooling layer down-samples those
feature maps, hence, reducing their size, and increasing their number per layer at the same
time, so that the architecture can effectively learn the complex structures.

The decoder part is responsible for decoding the information, thus enabling precise
localization, by using transposed convolution (deconvolution) operations to finally produce
the segmentation mask of the image. It is also made of five blocks, each composed of two
convolutional layers, which also utilizes the ReLU as the activation function; one up-
sampling layer which is responsible for restoring the feature maps to their original size in
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the network by reverting the max-pooling operation; and a skip connection that combines
the up-sampled features with high-resolution encoded features from the encoder part.

The general architecture of a U-Net model is illustrated in Figure 1. It is made up of
two major sections, namely, the encoder and decoder.
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3.2. Dataset

In spite of the growing number of COVID-19 infected patients, along with their
volumetric CT scans, labeled CT scans are still only available in a limited capacity. Hence,
publicly accessible CTS datasets are very limited. For this reason, we chose to use the lung
CTS dataset of Ma Jun et al. [38] to train and evaluate our proposed network which is, to
the best of our knowledge, the first publicly available data-efficient learning benchmark for
medical image segmentation.

The dataset was collected from the Corona-cases Initiative [39] and Radiopaedia [40],
and was manually annotated in the work of Ma Jun et al. [41]. It is composed of twenty
axial volumetric CT scans related to confirmed COVID-19 subjects and it is composed of
a total of 3.138 lung CT images, labeled, segmented, and verified by expert radiologists,
along with their correspondent lung CT images, their corresponding lung masks, infection
masks, and a superposition of the two masks, respectively. Table 2 gives an overview of the
used database.
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Table 2. Three sample images from the used dataset. First column: original CT scans. Second
column: lung masks. Third column: infection masks. Fourth column: superposition of the lung and
infection masks.

Original CT Scan Lung Mask Infection Mask Lung and Infection Masks
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3.3. Network Architecture

In this section our proposed approach is provided and described in Figure 2. As the
figure shows, the architecture consists of four main processes. Starting with the 20 CT scan
cases, we portioned the data to be 70% for the training dataset and 30% for the validation
dataset. First, we started with the lung segmentation phase. We used the Contrast Limited
Adaptive Histogram Equalization preprocessing method to remove noise and intensity
inhomogeneity. Then, we removed all the black slices to only crop the region of interest
containing the lungs.

A Unet architecture, based on CNN encoder and CNN decoder approaches, is then
introduced for fast and precise image segmentation to obtain the lung segmentation model.
We then proceeded the exact same way to obtain the infection segmentation model in the
second phase, and to further improve the model and to better estimate its skill on unseen
data, we used fourfold cross-validation as a resampling procedure for the evaluation.

In the third phase, we augmented the data which was then fed to our proposed three
layer CNN architecture, with additional fully connected layers, followed by a Softmax
layer for the COVID-19 classification. The last phase is the volume reconstruction of the
twenty cases. We reconstructed the lungs’ volumes first, then the infection volumes for each
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case, in order to calculate the volume ratio to obtain, at last, the corresponding infection
rates. A detailed description of the four processes’ components will be described in the
later sections.
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3.4. Data Preprocessing

Since medical images suffer a lot from contrast problems such as noise and intensity
inhomogeneity, the Contrast Limited Adaptive Histogram Equalization (CLAHE) method,
proposed in [42], was used to enhance the contrast of the obtained images. It is a variant
of adaptive histogram equalization (AHE), and its main idea is to find the mapping for
each pixel based on its local (neighborhood) grayscale distribution using a transformation
function that limits the contrast amplification in highly concentrated regions. In fact, the
CLAHE demonstrated good results on medical images, and has shown its effectiveness in
assigning displayed intensity levels in chest CT scans in particular [43,44].

Furthermore, the CT scans contain a lot of black slices and parts which we are not
interested in, such as the diaphragm below the lungs, which takes up valuable RAM and
unnecessary computing in the network. For this reason, we chose to crop only the region of
interest (ROI) that contains the lungs: the contour (largest closed boundary) with the largest
area would be the contour covering the lungs. We concatenated the 2nd and 3rd largest
contours for the two lungs individually in order to get the maximum ROI in the same
resolution. In addition, when cropping a CT scan, we made sure that its corresponding
segmentation map is also cropped by the same limits, otherwise pixel level labeling will
go wrong. Below, Figure 3 illustrates the impact of applying the CLAHE filter on an input
chest CT scan.

The Figures 4 and 5 below illustrate a chest CT scan and its corresponding lung and
infection mask, respectively, before and after cropping and applying the CLAHE filter. The
impact of the filter on the sharpness of the image is clearly identifiable.
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3.5. Data Augmentation

In order to overcome the limited size of the dataset size and to avoid the overfitting
problem, we augmented our data by randomly applying typical transformation tech-
niques [45] including rotations, horizontal and vertical translations and flips, shearing
and scaling.

3.6. Models Description
3.6.1. Segmentation Models

The proposed network includes the segmentation of lung and COVID-19 infection
segmentation. Both models were trained separately. The standard U-Net was implemented
using the keras library with the tensorflow backend, consisting of five blocks encoding path
and a symmetric five blocks decoding path. At each level of the encoder, a convolution
operation, a ReLU activation function, and a batch normalization operation were applied
two times consecutively, followed by a max-pooling operation, to overcome the overfitting
issue by minimizing the spatial size of the convolved features, before moving to the next
level. The decoder recovers the original input size by applying the same sequence of
operations by replacing the max-pooling operation with the transposed convolution as an
up-sampling operation at every level. Additionally, the corresponding feature from the
encoder is concatenated to the decoder’s block input. A 1 × 1 convolution, with a sigmoid
activation function, was then finally added for the generation of the final binary prediction
map. The network used thirty-two feature maps at its highest resolution and 512 at its
lowest. The convolutions were applied with a kernel size of 3 × 3, and the transposed
convolutions were applied with a kernel size of 2 × 2 with a stride of 2 × 2. The network
was trained, and the parameters were updated using the Adam optimizer with 0.0005 as a
learning rate. To further optimize the training procedure, we used the cosine annealing
scheduler, implemented as a custom callback, where learning rate starts at 0.0005 and then
is dropped rapidly to 0.0001 before being increased again to the maximum. Both networks
were trained with a batch size of thirty-two, and 80 and 16 epochs for lung and infection
segmentations, respectively.
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3.6.2. Classification Models

For the classification task we implemented three layers CNN where each layer was
composed of two convolution operations, each followed by a batch normalization operation,
and a max-pooling operation. A dense layer, using the ReLU activation function with a
dropout of 0.4, was then introduced followed by the last dense layer for classification
using the Softmax activation function and the binary cross entropy loss function. The
network used sixteen feature maps at its highest resolution and sixty-four at its lowest.
The convolutions were applied with a kernel size of 3 × 3. The network was trained with
thirty-two batch size and twenty-five epochs, and the parameters were updated using the
Adam optimizer with 0.0005 as a learning rate.

3.7. Volume Reconstruction

The last phase is the volume reconstruction of studied cases. We reconstructed the
lungs’ volumes at first then the infection volumes in order to calculate the volume ratio
of each case to obtain at last the correspondent infection rate. For this step, we used
the platform Thermo Scientific Amira Software [46], which is a powerful multifaceted
2D–5D platform for visualizing, manipulating and understanding data from many image
modalities including CT, MRI, and others. Below, Table 3 demonstrates the volume ratios
calculated using the lung and infection reconstructed volumes of the 20 patients from the
used dataset which respects the fact that the proportion of infections in the lungs range
from 0.01% to 59% as stated in [41].

Table 3. Quantitative results of the volume reconstruction phase for three different patients from the
used dataset.

Slices
Number

Lungs
Volume

Infection
Volume

Volume
Ratio

Infection
Severity

P1 301 3312776 408920 0.1234 Moderate

P2 200 4622672 181422 0.0392 Mild

P3 200 3498208 1015819 0.2903 Severe

P4 270 4536387 59529.4 0.0131 Mild

P5 290 4746608 80654.7 0.0169 Mild

P6 213 4430680 125977 0.0284 Moderate

P7 249 2916567 88225.8 0.0302 Moderate

P8 301 3818469 278690 0.0729 Moderate

P9 256 2639075 101621 0.0385 Moderate

P10 301 2274445 396574 0.1743 Severe

P11 39 5516346 1067853 0.1935 Severe

P12 45 5736035 1044140 0.1820 Severe

P13 39 4617109 156231 0.0338 Moderate

P14 418 8186436 263209 0.0321 Moderate

P15 110 4138735 1023851 0.2473 Severe

P16 66 7882785 777185 0.0985 Moderate

P17 42 3136991 9.01817 0.003 Mild

P18 45 5729041 46320.6 0.0080 Mild

P19 45 6664643 148246 0.0222 Mild

P20 93 4842892 2844976 0.5874 Severe
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As the table shows, the used dataset contains a total of six mild infected patients
having a volume ratio inferior to 0.02, eight moderately infected patients having a volume
ratio between 0.02 and 0.15 and six severely infected patients having a volume ratio superior
to 0.15. This clearly demonstrates that we used a well-balanced dataset. Figure 6a–c below
illustrate the volume reconstruction of the lungs and its corresponding infection regions of
the most representative three patients, respectively. Volume reconstruction for all patients
is given in Figure 7.
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Figure 7. Volume reconstruction of the lungs and its corresponding infection regions of the twenty patients.

3.8. Real Runtime Flowchart

Below, Figure 8 presents the real run time flowchart of our proposed system. For input
CT scan slices, the lung segmentation model will first be executed to output the lung masks
that will be used for the region of interest extraction by superposing them with the input
slices. Then, as the user chose, either the classification model will be executed in case of
a rapid diagnosis choice, or the infection segmentation model will be executed in case of
a full diagnosis choice. In the first case, the classification model will be executed, using
the extracted ROIs, to verify whether the patient is infected or not. In the latter case, the
infection segmentation model will be executed, using the extracted ROIs, to obtain the
infection masks. The lung and infection volume construction will then be held for the
calculation of the infection rate by calculating the volumes’ ratios that will give us, at last,
an idea about the infection severity.
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4. Experimental Results

In this section, we demonstrate the aptness of our proposed method by providing a
detailed experimental analysis presenting both quantitative and qualitative results as well
as comparing our results with other state of the art methods.

4.1. Evaluation Metrics

There are several metrics that are used by the research community for medical image
analysis to measure the performance of classification and segmentation models, including
precision, recall, dice coefficient and intersection over union (IoU). To calculate these
metrics, the following four measures are required:

True Positive (TP): represents the number of pixels being correctly identified in the segmen-
tation tasks and the number of correctly predicted infected CTs in the classification task.
True Negative (TN): denotes the number of non-lung/infection pixels being correctly iden-
tified as non-lung infection in the segmentation tasks and the number of correctly predicted
healthy CTs in the classification task.
False Positive (FP): represents the number of non-lung/infection pixels being wrongly
classified as lung/infection pixels in the segmentation tasks and the number of mistakenly
predicted infected CTs in the classification task.
False Negative (FN): denotes the lung/infection pixels being wrongly classified as non-
lung/infection pixels in the segmentation tasks and the number of mistakenly predicted
healthy CTs in the classification task.
Accuracy: this metric measures the ratio of correctly identified predictions divided by the
entire predictions and it is defined in Equation (1).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision: this metric is a measure of exactness calculated as the ratio of true positive
predictions divided by the number of predicted positives and defined in Equation (2).

Precision =
TP

TP + FP
(2)

Recall: this metric is a measure of completeness calculated as the ratio of true positive
predictions divided by the number of actual positives and defined in Equation (3).

Recall =
TP

TP + FN
(3)

Area Under the Receiver Operating Characteristic Curve (AUROC): this metric is a mea-
sure of separability that summarizes the ROC curve which plots the rate of true positive
predictions versus the false positive ones for all possible thresholds.
Area Under the Precision Recall Curve (AUPRC): this metric is another measure of sep-
arability that summarizes the PR curve which plots the precision versus the recall for
all thresholds.
Dice Coefficient (also known as Dice score): it is the overlap ratio between the prediction
and the ground truth, giving more weight to the intersection between the two. Its value
ranges between 0 and 1, and the higher the value is, the better the segmentation result. It is
defined in Equation (4) as follows:

Dice =
2TP

2TP + FP + FN
(4)

Intersection over Union IoU (also known as Jaccard index/F1 score): it is another popular
metric that measures the overlap between the prediction and the ground truth and is
defined in Equation (5).
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IoU =
TP

TP + FP + FN
(5)

4.2. Quantitative Evaluation
4.2.1. Learning Phase

We start by studying the learning phase. Figure 9 demonstrates the Dice Coefficient
and the Dice Loss Training curves of the lung’s segmentation model, respectively.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 24 
 

Intersection over Union IoU (also known as Jaccard index/F1 score): it is another popular 
metric that measures the overlap between the prediction and the ground truth and is de-
fined in Equation (5). 

IoU = TPTP + FP + FN   (5)

4.2. Quantitative Evaluation 
4.2.1. Learning Phase 

We start by studying the learning phase. Figure 9 demonstrates the Dice Coefficient 
and the Dice Loss Training curves of the lung’s segmentation model, respectively. 

 
Figure 9. Dice Coefficient and Dice Loss Training curves of the lung’s segmentation model. 

As the figure shows, the plots of training and validation loss decreased to a point of 
stability which confirms the good performance of the proposed model on unseen data. 
Figure 10 demonstrates the Dice Coefficient and the Dice Loss Training curves of the in-
fection segmentation model respectively for the different folds. 

Figure 9. Dice Coefficient and Dice Loss Training curves of the lung’s segmentation model.

As the figure shows, the plots of training and validation loss decreased to a point of
stability which confirms the good performance of the proposed model on unseen data.
Figure 10 demonstrates the Dice Coefficient and the Dice Loss Training curves of the
infection segmentation model respectively for the different folds.

The curves clearly confirm the good performance of the proposed model on unseen
data in the different folds, as the training and validation loss decreased to a point of stability.
Figure 11 demonstrates the Loss Training curve of the classification model.
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Figure 10. (a) Dice Coefficient and Dice Loss Training curves of the infection segmentation model
using fold 1. (b) Dice Coefficient and Dice Loss Training curves of the infection segmentation model
using fold 2. (c) Dice Coefficient and Dice Loss Training curves of the infection segmentation model
using fold 3. (d) Dice Coefficient and Dice Loss Training curves of the infection segmentation model
using fold 4.
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Figure 11. Classification model’s loss curve.

4.2.2. Validation Phase

The quantitative evaluation demonstrated the good performance of our proposed
system as justified by the reached values of the evaluation metrics for the three tasks in
Table 4 below. The attained dice coefficient values are 0.98 for the lung segmentation model
and 0.91 for infection segmentation model. Additionally, we achieved an accuracy of 0.95,
0.94, and 0.98 for lung segmentation, infection segmentation, and classification models,
respectively.

Table 4. Quantitative results among different tasks on testing set in terms of accuracy and Dice
Coefficient values.

Task Accuracy Dice Coefficient

Lung Segmentation 0.95 0.98

Infection Segmentation 0.94 0.91

COVID-19 Classification 0.98 -

Figure 12 below displays fourfold obtained dice for different chosen thresholds.
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Figure 12. Fourfold obtained dice for different chosen thresholds.

As the figure shows, the maximum validation dice was on the second split as the
value reached 0.927999. Hence, we consider that the best threshold to be used later for the
calculation of the other metrics is 0.40. The mean of all obtained dice is 0.9189. The results
of the fourfold cross-validation for the different metrics are summarized in Table 5.

The model achieved a dice coefficient of 0.91, an IoU of 0.85, a precision 0.92, a recall
of 0.90, an AUROC of 0.95, and an AUPRC of 0.91. The high AUROC and AUPRC values
demonstrate that our model succeeded in handling and distinguishing both infected regions
and non-infected ones well.

Table 5. Fourfold cross-validation results of the Infection segmentation model calculated as the mean
of folds.

Dice Coefficient IoU Precision Recall AUROC AUPRC

0.91 0.85 0.92 0.90 0.95 0.91

4.3. Qualitative Evaluation

The qualitative evaluation proved that our predicted masks are notably close to the
ground-truth masks, as shown in Figures 13 and 14 below, which display four sample
images from the test set for the lung segmentation task and infection segmentation task,
respectively.
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5. Discussion

As previously mentioned, many deep learning algorithms have been used for the diag-
nosis of COVID-19 complications using CT or X ray images and they have achieved good
classification performances; however, most of the results are obtained without knowledge
of clinical characteristics of COVID-19. Moreover, the results analysis is only reported as
metric values such as accuracy and AUC, without showing a clinical image that could be
validated by radiologists. The aforementioned limitations constrain the translation of deep
learning model into clinical practice. In this study, we proposed a new a 3D visualization of
COVID-19 complications, which facilitate their interpretation by radiologists. An accurate
training model requires sufficient annotated medical imaging data. On the other hand,
high quantities of information from multiple sources are likely to overfit training and to
lose the main clinical features. Not to mention that the collected data is heavily influenced
by the instructions provided to the annotators. For this reason, the proposed framework
achieved good performances for the different system’s components, and at the same time,
dealt with the reduced dataset used for training.
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For further evaluation, we quantitatively compared the performance of the proposed
lungs and infection segmentation models with other state of the art methods that used
the same publicly available dataset we used for training and testing, which renders the
comparison to be interesting. We considered the works of Ma et al. [41] who proposed a
U-net based deep learning system, Muller et al. [47], where a standard 3D U-Net architec-
ture was implemented, Omar Alirr [48], where two cascaded deep FCNs are connected
sequentially to segment the lung organ and then the COVID-19 infection areas with an
adjustment of U-net architecture as a backbone, and Punn et Agarwal [49], who developed
their network with a two cascaded residual attention inception U-Net (RAIU-Net) model
to generate lung contour maps and COVID-19 infected regions. Quantitative results, using
the dice coefficient metric as a reference and including lungs and infection segmentation
models, are reported in Table 6 below.

Table 6. Quantitative comparison of COVID-19 CT lung and infection segmentation results in terms
of Dice Coefficient.

Works Lungs Segmentation Infection Segmentation

Ma et al. [38] 0.977 0.673

Muller et al. [44] 0.956 0.761

Omar Alirr [45] 0.961 0.780

Punn et Agarwal [46] 0.96 0.81

Proposed method 0.98 0.91

The results prove the effectiveness of our models that outperformed the other listed
methods by achieving the highest Dice Coefficient value for both lungs and infection
segmentation models.

6. Conclusions

In this study, the development and deployment of a deep learning-based diagnosis
system to assist novel coronavirus pneumonia screening using CT imaging is proposed.
The segmentation subsystem, developed using the popular U-Net architecture as the
main framework, will highlight the position of the infected areas, whereas the classification
subsystem and the semi-automated 3D reconstruction subsystem will give an idea about the
probability of being infected with the virus, along with the infection rate in case of positive
findings. The quantitative and qualitative evaluation results demonstrated the effectiveness
of our system in accurately localizing and quantifying the infection regions from CT
scans. It also showed that the developed models outperform the other recently proposed
approaches which were evaluated using standard benchmark performance metrics such as
the dice score, for which we achieved 0.98 and 0.91 for the lung and infection segmentation
tasks, respectively, and the accuracy, for which we achieved 0.98 for the classification task.
The main limitation of this study is the use of a small, but sufficient number, of model
training data. Confidentiality restrictions and the high cost of labeling partly explain the
absence of a large number of COVID-19 clinical CT images. Indeed, combining datasets
collected under different labeling regimes is often problematic because, in general, the data
collected is heavily influenced by the instructions provided to annotators. For this reason,
a workflow aimed at obtaining good performances for the different systems’ components,
while at the same time, dealing with reduced datasets used for training, is proposed. For
future work, we intend to fully automate the volume reconstruction module to enable a
real time 3D screening result.
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