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ABSTRACT Bearing fault diagnosis is of great significance to ensure the safe operation of mechanical
equipment. This paper proposes an intelligent fault diagnosis method of rolling bearings based on deep belief
network (DBN) with hyperparameter optimization by using parallel computing. Different with traditional
diagnosis methods that extract the features manually depending on much prior knowledge about signal
processing techniques and diagnostic expertise, DBN extracts fault features automatically by machine
learning mechanism. Considering the time consuming problem, parallel computing is adopted to the DBN
training process by using a Master/Slave mode to improve the training speed so that the global optimization
with Genetic Algorithm and higher diagnosis accuracy can be achieved. Finally, the proposed method is
verified with the public datasets provided by Case Western Reserve University (CWRU) with various fault
depths in different locations and loads of rolling bearings. The results indicate that the proposed method can
identify bearing faults under different conditions correctly which significantly enhances the intelligence of
fault classification and reduces the time for parameter selection of deep learning models.

INDEX TERMS Deep belief network, hyperparameter optimization, parallel computing, fault diagnosis.

I. INTRODUCTION

With the proposal of ‘‘Industrial Internet’’ and ‘‘Industry
4.0’’, many countries from all over the world put for-
ward different strategies to explore and promote intelligent
manufacturing. Key equipment such as numerical control
machines and engines has become more automatic, pre-
cise and efficient, while big data are collected constantly
from these equipment after long-time operation by sorts
of sensors, which pushes the fault diagnosis field into the
era of ‘‘mechanical big data’’ [1]. However, traditional
fault diagnosis is mostly completed by professional tech-
nicians and diagnostic experts, which requires much prior
knowledge and users’ experience. Moreover, it is obviously
unrealistic for professional technicians to analyze massive
data of mechanical equipment without using new advanced
methods [2]–[4]. As one of the most commonly used parts
in rotating machinery, failures of rolling bearings can cause
expensive shutdowns, drifts in production and even human
casualties. Condition monitoring is an effective method to
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ensure the process safety and improve product quality, where
process safety and production quality are two important per-
formance indicators [5], [6]. Therefore, it is necessary to
develop new efficient and reliable intelligent fault diagno-
sis methods to detect performance-indicator-related faults of
rolling bearings.

Recently, deep learning has been widely used in vision,
speech and language processing, image recognition [7], [8],
as well as fault diagnosis [9], [10]. Deep learning network
constructs a deep model to simulate the learning process
of human brain and is a powerful tool used in wide fields
in the big data era. When it is applied to fault diagnos-
tics, the complex mapping relation between fault features
and fault types can be established so that the rich internal
information behind the data is extracted, which is effective
to improve the accuracy of fault diagnosis [1]. However,
the performance of most deep learning models hinges on
many internal hyperparameters, e.g., architectures of the deep
neural networks, learning rates, momentum terms, and train-
ing batches. In the deep learning community, hyperparame-
ter selection is usually accomplished manually by properly
fine-tuning deep learning parameters and selecting the most

131248 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0001-7093-0180
https://orcid.org/0000-0003-0764-5365
https://orcid.org/0000-0003-2491-7473


C. Guo et al.: Deep Learning Based Fault Diagnosis Method With Hyperparameter Optimization by Using Parallel Computing

appropriate values. The tuning process requires a human
expertise and is known to be computationally expensive. As a
result, automatic optimization of deep learning hyperparam-
eters is an effective and highly desirable way to find the
appropriate parameter values and their optimal combination
[11]. Genetic Algorithm (GA) is a powerful population-based
robust search and global optimization method that simu-
lates the natural biological evaluation. It searches from a
population of solutions rather than from a single point and
thus prevents the convergence to suboptimal solutions [12],
which provides a possible way to perform the hyperparameter
optimization for deep leaning networks.
On the other hand, with the development of big data, rapid

computing speed and strong computational capacity of algo-
rithms are of vital importance. Because of the great numerical
calculation and data processing capacity, parallel computing
has been used as the theoretical basis and supporting tool
of large-scale scientific computing [13], [14]. As known,
the training process of DBN is time consuming especially
for massive data. Considering the strong computing ability,
parallel computing is introduced to the training process of the
DBN based fault diagnosis model with parameter optimiza-
tion so that faster computing speed and higher classification
accuracy can be achieved. Therefore, the main contributions
of this study can be summarized as follows:
1. In order to obtain the optimal hyperparameters of DBN,

GA optimization is used for DBN hyperparameter selection
so that the optimal hyperparameters can be found to ensure
higher diagnosis accuracy for performance-indicator-related
faults. This provides an effective way for parameter selection
of DBN and other deep learning models.
2. Parallel computing is employed to improve the

computing speed of the training process of a deep belief
network based diagnosis model with GA optimization. This
GA and parallel computing integration method is a useful
tool for performance-indicator-related fault diagnosis based
on deep learning model when dealing with big data in the era
of intelligent manufacturing.
The rest sections of this paper are organized as follows.

In Section II, related work about deep learning based fault
diagnosis and parallel computing is discussed. In Section III,
theories of DBN and parallel computing are presented.
In Section IV, the DBN based diagnosis method with param-
eter optimization is proposed. Section V provides an appli-
cation of the proposed method on the bearing fault data
provided by Case Western Reserve University (CWRU).
Finally, Section VI draws the conclusions.

II. RELATED WORK

Many works have been done for fault diagnosis by using
traditional methods which usually include two steps: manual
feature extraction and fault classification [15]–[19]. In recent
years, more and more scholars have introduced deep learning
tomechanical fault diagnosis considering the adaptive feature
learning ability, and lots of research achievements have been
made [20]–[23]. Kong et al. [20] proposed a multi-ensemble

method based on deep auto-encoders (DAEs) for fault diag-
nosis of rolling bearings. The final diagnosis result was
obtained by majority voting among the results of several
DAEs. Shao et al. [21] developed an adaptive deep belief
network with dual-tree complex wavelet packet to diagnose
the rolling bearing faults of CWRU datasets. Ding et al. [22]
combined SAE-based raw signal sensing and deepQ-network
for fault diagnosis of rotating machinery, and the proposed
method was verified by using rolling bearing datasets and
hydraulic pump datasets. In [23], a multiscale cascading deep
belief network (MCDBN) for automatic fault identification
of rotating machinery was presented to learn the broader
feature representation and improve the recognition precision.
However, in the field of deep learning networks, there is not a
systematic method to determine the structure and parameters
at present [24]. The trial-and-error method is widely used to
find the relatively appropriate value for critical parameters
by repeated attempts, according to which, the researchers can
choose the network topology and model parameters based on
their sufficient experience [25]. Ghasemi et al. [26] selected
batch size, number of hidden layers and number of neurons
in each hidden layer, and learning rate by trial and error
experiments. In the selection experiment for each parameter,
all the other parameters were predefined so that the effect of
the selected parameter can be tested. Ma et al. [27] also deter-
mined the structure and the learning rate by using the trial and
error method. In [16], the authors claimed that it is difficult
to determine the best network architecture due to the lack of
scientific guidance. Several different DBNmodels were taken
for performance evaluation, and the structures were designed
entirely by experience from which the most outstanding one
was selected. Whereas in some other literature, heuristic
optimization methods are utilized to determine the optimal
structure and parameters of deep learning network, such as
particle swarm optimization [28], [29], simulated annealing
[30]. These researches provide good references for this work.

In terms of parallel computing, Randall and Lewis [31]
accomplished the ant colony optimization algorithm by using
parallel computing. Bekas et al. [32] used the Message Pass-
ing Interface (MPI) cluster platform in Matlab to implement
the large-scale matrix pseudo-spectral calculation. Żurek [33]
introduced the parallel calculation technology to GA on a
small computer cluster to improve the optimization effi-
ciency. Recently, parallel computing has been applied in the
field of deep learning. Zhao et al. [34] proposed a parallel
computing method of deep belief networks for traffic flow
prediction. The data features were learnt by multiple com-
puting nodes by a master-slave parallel computing structure.
Cybenko [35] discussed the future of parallel computing
in deep learning for social network analysis. Chuang et al.
[36] proposed a method to enable parallel deep neural net-
work training on the IBM Blue Gene/Q computer sys-
tem to solve the time consuming problem by using the
data-parallel Hessian-free 2nd order optimization algorithm.
The literature shows that parallel computing is an effec-
tive tool to reduce training time of deep learning networks.
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FIGURE 1. Architecture of deep belief network.

Therefore, in this paper the parallel computing is adopted to
speed the training process of DBN with GA optimization of
the hyperparameters for bearing fault diagnosis.

III. DEEP BELIEF NETWORK AND PARALLEL COMPUTING

A. DEEP BELIEF NETWORK

Deep belief network was first proposed by Hinton and
Salakhutdinov [37] in 2006 which has the powerful ability
of unsupervised feature learning. This is of great help when
introducing DBN to fault diagnosis for large systems with
multiple sensors. In fact, a DBN is composed of multiple
unsupervised restricted Boltzmann machines (RBMs) and a
supervised back-propagation (BP) network [38], as shown in
Fig. 1, where a RBM includes one visible layer to represent
data and one hidden layer to increase learning capacity. The
unsupervised learning is performed in RBM with energy
based propagation. Assume νi represents the state of the i-th
visible unit and hj represents the state of the j-th hidden unit.
The energy function of the standard RBM is shown as (1).

FE (ν, h|θ ) = −

n∑

i=1

biνi −

m∑

j=1

cjhj −

n∑

i=1

m∑

j=1

viwijhj (1)

where θ represents the energy function set θ = {w, b, c},
wij indicates the connection weights between visible units
and hidden units; bi indicates the biases of visible units, and
cj is the biases of hidden units. The energy based joint and
probability distribution are calculated as (2) and (3).

P(ν, h|θ ) =
e−FE (ν,h|θ )

Z (θ )
(2)

Z (θ ) =
∑

v,h

e−FE (ν,h|θ) (3)

where Z is the partition function. The activation probabilities
of the j-th hidden unit and the i-th visible unit are given in (4)
and (5).

P(hj|v) = σ (cj +
∑

i

wijvi) (4)

P(vi|h) = σ (bi +
∑

j

wijhj) (5)

where σ (x) = 1/(1 + exp(−x)) is the sigmoid function.

FIGURE 2. Different diagnosis frameworks with the traditional method
and DBN model.

The contrastive divergence (CD) algorithm is an
approximation of the log-likelihood gradient and is effective
in RBM training. The contrastive divergence based training
procedure can be descripted as bellow [24].

1. Given the initial bias values of the visible and hidden
units, and learning rates.

2. Compute the output of the hidden layer h0j according to

(4) by using the forward propagation to variables ν0i of the
visible layer.

3. Compute the output of the visible layer ν0i according to
(5) by applying the back propagation to variables h0j of the
hidden layer.

4. Apply the forward propagation to variables ν1i to obtain
new variables h1j .

5. Update the critical parameters of RBM using (6) to (8).

1wij = λw(E[v
0
i h

0
j ] − E[v1i h

1
j ]) (6)

1bi = λb(E[v
0
i ] − E[v1i ]) (7)

1cj = λc(E[h
0
j ] − E[h1j ]) (8)

where E[.] represents the mathematical expectation.
6. Repeat the above steps for a given number of

epochs or until the reconstruction error converges to a certain
value.
In general, DBN trains each RBM layer by layer, where

the input of visible layer of upper RBM is the output of
hidden layer of lower RBM. It leads to the fact that these
features obtained from high layer are more representational
than that obtained from lower layer. In terms of the last layer,
a supervised method is used to train the BP network, and the
errors between the actual output and the expected output is
propagated back step by step to realize fine tuning of DBN
weights.
The frameworks for fault diagnosis with the traditional

method and theDBNbasedmethod are given in Fig. 2 accord-
ing to [1], [39]. In the traditional procedure, feature extrac-
tion is used to extract the fault related features from data
collected by multi-sensors based on signal processing tech-
niques. Then fault diagnosis is performed to identify fault
classes based on the selected features, which is a two-step
process. This process highly depends on the experts’ experi-
ence which affects the accuracy of the diagnosis. Whereas by
using the unsupervised feature learning based DBN model,
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FIGURE 3. Distributed parallel computing platform architecture.

features can be adaptively learned from mechanical raw data
with a general-purpose learning procedure instead of being
extracted by diagnosticians, which is more intelligent than
traditional diagnosis methods [1]. Therefore, the DBN based
diagnosis method will be adopted for bearing fault diagnosis
in this paper.

B. PARALLEL COMPUTING BASED ON MatlabMPI

Time consuming is still a problem that restricts the train-
ing process of DBN models when dealing with massive
data. Parallel computing is an efficient method to improve
the processing speed by using multiple processors and the
training time of DBNs is much reduced. Therefore, the
hyperparameter optimization can be achieved for DBN based
fault diagnosis by using a parallel computing technique.
Parallel computing refers to solving computing problems

by taking advantage of multiple computing resources at the
same time to improve the computing speed and processing
capacity of computer systems effectively. The basic idea of
parallel computing is to use multiple processors to solve
the same problem in a cooperative way, which means a
given calculation task is divided into several sub-tasks and
each sub-task will be assigned to an independent processing
unit for computing. One of the most widely used parallel
programming techniques is MPI. It is based on information
transfer application interface which can achieve multi-host
networking collaboration for parallel computing. Due to the
coming of big data era, MPI has been applied in many
fields, especially in distributed storage parallel machine due
to universality, point-to-point communication, diversity of
implementation mode, efficiency and so on. In MATLAB
programming environment, parallel computing is imple-
mented with the message passing interface, named as Mat-
labMPI, which is utilized in the DBN based fault diagnosis in
this paper to perform parallel computing for hyperparameter
optimization of the DBN model.
In details, this paper makes full use of the existing

computer resources in our laboratory including four 2U
multi-core servers in the same local area network (LAN),
to realize the establishment of a distributed parallel
computing platform of computer cluster, as shown in Fig. 3.

FIGURE 4. Flowchart of parallel computing.

The parallel computing runs in a Master/Slave mode.
One server is chosen as the master node to assign computing
tasks to other servers as slave nodes, coordinate scheduling
parallel computing between processes of slave nodes, and
aggregate the calculation results of slave nodes. The flow
chart is available in Fig. 4.

IV. AN INTELLIGENT DIAGNOSIS MODEL BASED

ON PARAMETER OPTIMIZATION BY USING

PARALLEL COMPUTING

During the DBN training process, hyperparameters such as
number of hidden layers, number of nodes of each hidden
layer, learning rate, momentum, and batch size are the key
factors to the DBN performance. Among these parameters,
the learning rate and momentum affect the update speed and
gradient descent direction of RBMs in the fine tuning phase
which are very critical to guarantee the faster convergence of
DBNs. An inappropriate learning rate can lead to poor local
optimum or make the training algorithm diverge [40], [41].
Momentum helps to accelerate or decelerate the base learning
rate with respect to the changing gradient of the network.
Traditionally these two parameters are determined by trial
and error method separately, or given directly based on expe-
riences, which limits the performance of DBNs. Therefore,
in this section, GA is used to find the optimal combination
of the learning rate and momentum so that accurate diagnosis
can be achieved. GA is a popular meta-heuristic optimization
algorithm based on Darwinian evolution and survival of the
fittest. It maintains diversity of population to enhance the
ability to converge on the global optimum.Moreover, because
of the inherent data parallel nature, GAs can be parallelized
efficiently which further results in faster solutions [42]. In this
paper, GA is introduced to the DBN training process to
find the optimal learning rate a and momentum b by using
the established distributed parallel computing platform of
computer clusters. The flowchart of the GA combined DBN
training process is shown in Fig. 5. Generally, the procedure
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FIGURE 5. Flowchart of GA-DBN training process.

can be divided into two stages. In the first stage, GA is used to
obtain the optimal learning rate a and momentum b with the
search ranges for both parameters setting as [0, 1]. It is noted
that regarding this optimization problem, we only focus on
the effect of learning rate and momentum on the DBN perfor-
mance and treat them as variables. Other parameters such as
the number of hidden layers (Maxlayer), the number of neural
nodes of each layer, the maximum number of DBN training
epochs (Maxepoch) and the maximum number of GA itera-
tions, etc. are predefined and treated as constants [43]–[45].
Herein, the objective of GA optimization is to find the min-
imum of the root mean square error (RMSE) between the
original data and the reconstructed data of validation samples.
During the GA-DBN training process, the parallel computing
technique is utilized to reduce the computing time by divid-
ing the GA population (chromosomes) into several groups
and distributing them to sub-servers for traversal calculation,
where each sub-server starts the multi-core computing pool
to implement the ‘‘parallel’’ calculation. The fitness values
corresponding to the distributed chromosomes are calculated,
and the operations of selection, mutation and crossover are
performed until the optimal parameters are found. Then
the DBN model with optimal parameters (a, b) are trained
as described in Section III. The scheme of the proposed

FIGURE 6. Scheme of the proposed intelligent diagnosis method.

FIGURE 7. The testbed of the bearing system.

intelligent fault diagnosis based on DBN model with parallel
computing can be shown in Fig. 6. After the well trained
DBN model is obtained, the fault identification of the testing
samples is performed.

The proposedmethod integrates single-machinemulti-core
computing and computer cluster distributed computingwhich
provides a feasible solution for the fault diagnosis system to
process massive data in the era of intelligent manufacturing.

V. FAULT DIAGNOSIS OF ROLLING BEARING

A. INTRODUCTION OF FAULT DATASETS

The datasets used to verify the proposed method are the
public bearing data provided by the electronic engineering
laboratory of CWRU. The structure of the rolling bearing
testbed is shown in Fig. 7. The left part is a 3 horsepower
(hp) motor, the right part is a dynamometer. A toque trans-
ducer is placed in the middle of the testbed. There are three
types of faults located in the inner ring, outer ring and ball.
For each type of fault, three broken depths of 0.007, 0.014,
and 0.021 inch are introduced by using electric spark. The
vibration signals of the rotor system under four different
loads of 0, 1, 2, and 3 hp were collected while the sampling
frequency is 12 kHz. Table 1 lists four datasets A, B, C,
and D, corresponding to data under four types of loads, where
each dataset is composed of totally 9 failure types of inner
ring failure, ball failure, outer ring failure in three different
fault depths and a normal state. Each dataset corresponding
to one fault condition contains 50 samples and each sample
includes 2,048 sampling data points. Therefore, 500 samples
with 9 fault types and one normal state are obtained. A dataset
E was created by synthesizing dataset A–D to simulate the
multiple working conditions in practical situations.
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TABLE 1. Introduction of bearing fault datasets.

In Table 1, ‘Normal’ represents the normal state of the
bearing, ‘RF’, ‘IF’, and ‘OF’ represent the failure of the
ball, inner ring and outer ring of the rolling bearings,
respectively.

B. RESULTS AND DISCUSSIONS

Following the procedure shown in Fig. 6, the original
vibration data is processed by using the fast Fourier transform
(FFT) to obtain the frequency spectrum. Then the normal-
ized spectrum values are regarded as the input of the DBN
model. During the modelling process, 40% of the samples
are randomly selected as the training data and 20% of the
samples are regarded as the validation data while the remain-
ing ones are treated as the test data. Considering the FFT
spectrum length is 1,024 points and the output is 10 fault
types, the dimensions of DBN input and output are set as
1,024 and 10. The numbers of neural nodes of three hidden
layers are predefined as 100, 50, and 20 based on experience
and trials. Therefore, the DBN structure for fault diagnosis
is 1,024-100-50-20-10. The initial weights are randomly set
according to the normal distribution, the biases of which
are set as 0. The maximum training epoch is set as 100.
After predefining of the DBN topology, GA optimization
method is used to obtain the optimal DBN parameters with
the evolutionary algebra as 100, the population number as
20, the crossover probability as 0.7 and the mutation rate as
0.1. The root mean square error (RMSE) between the original
data and the reconstructed data of validation samples is used
as the evaluation indicator to obtain the optimal learning rate
a and momentum b within the search ranges of [0, 1]. Then
the DBN model is trained with the training and validation
samples. The computing time, the optimization parameters
and the corresponding RMSE of each dataset (A, B, C, D,
and E) are listed in Table 2. Three computing modes includ-
ing: (1) Single PC, single-core processor (SPSP), (2) Single
PC, multi-core processors (SPMP), (3) Multi-PC, multi-core
processors (MPMP), are investigated to test the computing
ability of parallel computing. Herein, for each sub-server the
number of processors is 12, and three sub-servers are used to
implement the MPMP calculation as slave nodes. It is noted
that the number of samples in dataset A, B, C and D is 500,
separately, and the number of samples in dataset E is 2000,
as known from Table 1.

TABLE 2. Comparison of time consumed with and without parallel
computing.

Based on Table 2, it can be calculated that the ratios of
computing time of SPSP to SPMP for all the datasets (A–E)
are 6.28, 6.29, 6.40, 6.40, 6.22, and 6.57, and that of SPSP
to MPMP is 15.00, 15.06, 15.48, 14.26, and 16.25. It indi-
cates that by introducing 12-parallel processors in the SPMP
mode, the computing speed has been improved over 6 times
than using the SPSP mode. And the computing speed can
be improved up to 16.25 times by using the MPMP mode.
Moreover, the ratio of computing time of SPSP to SPMP
for multi-condition dataset E (6.57) is greater than the ratios
for single condition datasets A–D (6.28, 6.29, 6.40, 6.40,
6.22), and the same phenomenon can be seen for that of
SPSP to MPMP, which indicates that the computing ability
is enhanced with the increase of sample size. The reason is
that the communication time between multiple cores remains
almost the same, whereas the proportion of communica-
tion time to the total running time decreases with larger
sample size. These results show that using parallel comput-
ing can reduce the time greatly on parameter optimization
and the computing performance improves as the task size
increases, which proves the effectiveness of parallel computa-
tion in the parameter optimization of deep learning model for
massive data.

After the DBN model is well trained, the remaining
samples are used to test the classification performance of
the proposed method with different conditions and loads.
In order to eliminate the random error of the DBN test pro-
cess, the final diagnosis accuracy is calculated as the average
value of 10 repeated test results for each dataset. The final
results are listed in Table 3. It can be seen that the diagnosis
accuracies of the proposed GA-DBN method for the single
load datasets (A, B, C, and D) are all 100%. The accuracy
can reach to 98.44% even when identifying 10 states under
4 different loads (dataset E). The results indicate that the
proposed model has high accuracy in bearing fault diagnosis
under various conditions with different fault locations, fault
degrees and loads.

The proposed method is compared with other traditional
methods and deep learningmethods using the CWRU bearing
datasets as shown in Table 3. In terms of the traditional
methods, the average accuracy of a proposed fuzzy expert
method was 96.08% for the CWRU dataset with the defect
sizes of 0.007, and 0.021 inch under 2 hp load [15]. In [16],
the average diagnosis accuracy was 96.97% for the dataset
including totally 11 types of fault labels under 0 hp load
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by using a grey relation algorithm. In [17], the diagnosis
accuracy of a k-nearest neighbor model for CWRU dataset
with three fault types under four loads was 92.94%. Similarly,
in [18], feature vectors calculated from the Intrinsic Mode
Functions of Empirical Mode Decomposition of raw vibra-
tion signals were used as the inputs of a typical classifier, and
the testing accuracy was 93.82%. In [19], an optimized SVM
model was used to identify the fault type and fault severity
of the CWRU datasets. The average accuracies for the single
load datasets under the loads of 0, 1, 2, 3 hp and the mixed
load of 0–3 hp were 97.64%, 99.12%, 99.64%, 97.56%,
and 97.91%.
In terms of deep leaning methods, in [20] a multi-ensemble

method based on deep auto-encoders was proposed for fault
diagnosis of rolling bearings. The diagnosis result of the
CWRU dataset under 0 load with 12 health conditions is
96.44%. In [21], an adaptive DBN with dual-tree complex
wavelet packet was developed to identify the fault types of
CWRU dataset. The testing accuracy for samples with 1 hp
load was 98.75%. Whereas in [22], a deep Q-network based
fault diagnosis method was proposed for fault diagnosis of
CWRU datasets with 10 health conditions under three loads
of 1, 2, and 3 hp and one mixed dataset that contains 10 health
conditions under loads of 1–3 hp. The average accuracies
for these single load datasets were 93.58%, 90.43% and
91.87. Considering the mixed dataset with three loads, the
average accuracywas 94.08%. Similarly, in [10] a deep neural
network model was used to diagnose the bearing fault of the
CWRU dataset under loads of 1–3 hp. The average classifi-
cation accuracies for these single load datasets were 99.95%,
99.61%, and 99.74%, and the accuracy for the mixed dataset
was 99.68%. It can be seen that for single load datasets,
the proposed GA-DBN method has higher accuracy up to
100%. But for the mixed load dataset, our classification accu-
racy is a little lower. The reason is that in our work dataset
E contains four loads which make it more complicated in
fault diagnosis than the case of three loads. In [23], a mul-
tiscale cascading deep belief network (MCDBN) was used
to identify the bearing faults under four health conditions of
0–3 hp load. The accuracies were 99.57%, 99.32%, 99.54%,
and 99.43% for each single load dataset.
FromTable 3, it can be seen that the diagnosis accuracies of

the popular benchmark dataset are all over 90% for both the
traditional and deep learningmethods. Especially, the average
accuracies in our paper are 100% for the four single load
datasets, and 98.44% for the mixed load dataset, which indi-
cates that the proposedmethod is relativelymore accurate and
robust compared to previous works listed in Table 3.
In order to visualize feature extraction capability of DBN,

the PCA method is employed to obtain the principal features
of the bearing fault with different types. The scatter plots
of the original data and the first three main components of
the feature matrix extracted from different hidden layers are
shown in Figs. 8 to 11, taking dataset C for example.
Fig. 8 shows that the principal components of original data

are interwoven, making it difficult to identify various faults.

TABLE 3. Comparisons of diagnosis results.

FIGURE 8. Scatter plots of principal components of original data.

FIGURE 9. Scatter plots of principal components of the feature matrix
extracted from the 1st hidden layer.

With gradual increasing of the number of hidden layers,
the classification performance is getting better as shown
in Figs. 9 to 11. The final output features of the DBN
model shown in Fig. 11 indicates that the proposed method
has strong ability to learn the fault features for different
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FIGURE 10. Scatter plots of principal components of the feature matrix
extracted from the 2nd hidden layer.

FIGURE 11. Scatter plots of principal components of the feature matrix
extracted from the 3rd hidden layer.

fault types adaptively, which ensures high accuracy of the
diagnosis results.

VI. CONCLUSION

This paper proposed a DBN based fault diagnosis method
with hyperparameter optimization and parallel computing
technique. GA was adopted to optimize hyperparameters of
the DBN model during its training process. Considering the
time consuming problem, parallel computing was introduced
to the hyperparameter optimization process to improve the
calculation speed by using MatlabMPI in a Master/Slave
mode, where one server was chosen as the master node,
and the other three servers were set as the slave nodes.
The public CWRU dataset was used to verify the proposed
method. The results show that with parallel computing,
the calculation speed has been improved over 15 times,
and the proposed method has better diagnosis performance
than several methods presented in previous works. This
paper provides a reference for the deep learning algo-
rithm to process massive data with parameter optimiza-
tion for performance-indicator-related fault diagnosis in the

mechanical big data environment. In the future work, GAwill
be used to optimize other parameters of deep learning model
such as the connecting weights, the number of hidden layer
nodes, etc., and new experiments will be set up to further
verify the proposed method for fault diagnosis.
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