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ABSTRACT Coronavirus disease 2019 has seriously affected the world. One major protective measure for

individuals is to wear masks in public areas. Several regions applied a compulsory mask-wearing rule in

public areas to prevent transmission of the virus. Few research studies have examined automatic face mask

detection based on image analysis. In this paper, we propose a deep learning based single-shot light-weight

face mask detector to meet the low computational requirements for embedded systems, as well as achieve

high performance. To cope with the low feature extraction capability caused by the light-weight model,

we propose two novel methods to enhance themodel’s feature extraction process. First, to extract rich context

information and focus on crucial face mask related regions, we propose a novel residual context attention

module. Second, to learnmore discriminating features for faces with andwithoutmasks, we introduce a novel

auxiliary task using synthesized Gaussian heat map regression. Ablation studies show that these methods

can considerably boost the feature extraction ability and thus increase the final detection performance.

Comparison with other models shows that the proposed model achieves state-of-the-art results on two public

datasets, the AIZOO andMoxa3K face mask datasets. In particular, compared with another light-weight you

only look once version 3 tiny model, the mean average precision of our model is 1.7% higher on the AIZOO

dataset, and 10.47% higher on the Moxa3K dataset. Therefore, the proposed model has a high potential to

contribute to public health care and fight against the coronavirus disease 2019 pandemic.

INDEX TERMS Face mask detection, residual context attention, synthesized Gaussian heat map regression,

coronavirus disease 2019.

I. INTRODUCTION

The World Health Organization (WHO) has stated that coro-

navirus disease 2019 (COVID-19) had infected over 160 mil-

lion people and caused over 3.4 million deaths worldwide

as of May 2021 [1]. Related large-scale respiratory diseases,

severe acute respiratory syndrome (SARS) and Middle East

respiratory syndrome (MERS), have occurred in the last

two decades [2], [3]. SARS coronavirus 2 (SARS-CoV-2),

the viral agent of COVID-19, has a higher reproductive num-

ber than SARS [4]. Increasing numbers of people are con-

cerned about their health, and public health is a major priority

of governments [5]. Various machine learning based methods

have been applied in health care to assist the detection of

The associate editor coordinating the review of this manuscript and
approving it for publication was Huiyu Zhou.

COVID-19 cases frommedical images [6]–[8]. One issue that

limits machine learning methods for detecting COVID-19

cases is the lack of data. Fortunately, generative adversarial

network based methods can be adopted to increase the size of

datasets as in [9], [10].

For individuals, face masks could reduce the spread of

coronaviruses by decreasing their emission in respiratory

droplets [11]. N95 masks, medical masks, and homemade

masks can block approximately 100%, 97%, and 95% of

virus particles [12]. Currently, the WHO recommends that

people should wear face masks if they have respiratory symp-

toms, or they are taking care of people with symptoms [13].

A recent study pointed out that most environments and con-

tacts are under conditions of virus-limitedwhere wearing face

masks can effectively prevent virus spread [14]. Regions that

had universal wearing of face masks have contributed more
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to the control of COVID-19 than those without this require-

ment [15]. Many public service providers require customers

to wear masks. However, some people still do not wear masks

in public areas, which might lead to infection of themselves

or others. Therefore, automatic detection of the wearing of

face masks may help global society, but research related to

this is limited.

The task of detecting face masks, or their being worn,

refers to the localization of faces and judging whether masks

are worn or not. Other recognition tasks relating to face

masks include identifying their service stage [16] and effi-

ciency [17], as these are useful to detect whether face masks

can be re-used or their quality. These methods could play a

complementary role with face mask detection algorithms to

protect people fromCOVID-19. Face mask detection systems

could be deployed in surveillance systems, internet of things

systems, or smart cities to help public area managers ensure

that all visitors are wearing masks, to reduce the risk of the

spread of COVID-19. Facemask detection systems could take

the place of workers who need to check the mask wearing

status of visitors at supermarkets, universities, libraries, and

similar locations.

Several studies have explored the detection of face masks.

One approach is a two-step method which firstly detects

faces using face detectors and then separately classifies

whether a face mask is worn based on face mask classifiers

[18], [19]. Although two-step methods may be sufficient in

some scenarios, the operation of passing the results from the

first step to the second step can degrade the speed signifi-

cantly. End-to-end convolution neural network (CNN) based

face mask detectors, which jointly detect faces and recognize

face masks, may be more suitable for real-time face mask

detection. A you only look once (YOLO) model with a

residual network (ResNet) based face mask detector [20] can

achieve high detection accuracy, but the network is heavy and

not fast enough for edge devices. RetinaFaceMask proposed

a light-weight version with MobileNet as its backbone, but

it did not solve the problem of the light-weight model sub-

stantially decreasing the detection performance [21]. Other

challenges in face mask detection come from the diversity

of in-the-wild scenarios, which include, non-mask occlusion,

various types of masks, different face orientations, and small

or blurred faces (Fig. 1).

In this paper, we propose a novel single-shot light-weight

face mask detector (SL-FMDet), which is able to detect

face masks accurately and has a low hardware requirement.

SL-FMDet uses a depthwise separable convolution based

MobileNet as its backbone. It utilizes a feature pyramid

network (FPN) to fuse high-level semantic information with

low-level layers, and performs detection in multi-scale fea-

ture maps. However, FPN does not solve the problem that a

light-weight model leads to worse feature extraction, so we

propose two novel methods to achieve this. First, to extract

rich context features and focus on crucial face mask related

regions, we propose a novel residual context attentionmodule

(RCAM). Second, to learn more discriminating features for

FIGURE 1. Challenges in face mask detection.

faces with and without masks, a novel auxiliary task is used to

perform synthesized Gaussian heatmap regression (SGHR).

Evaluations of this study were performed on two pub-

licly available face mask datasets, the AIZOO [22] and

Moxa3K [23] face mask datasets. Experimental results

showed that the proposed model achieved state-of-the-art

results on both datasets. Compared with another light-weight

model, YOLOv3-tiny, the mean average precision (mAP)

of our model was 1.7% higher on the AIZOO dataset, and

10.47% higher on the Moxa3K dataset. The source code of

our work is publicly available online.1

The rest of this paper is organized as follows. In Section II,

we review related work on object detection, and face

mask detection. The proposed methodology is presented in

Section III. Section IV describes the datasets, implementation

details, evaluation metrics, an ablation study, and quantitative

and qualitative results. Section V concludes the paper and

discusses future work.

II. RELATED WORK

A. OBJECT DETECTION

The Viola-Jones detector [24] achieves real-time detection

of objects by an algorithm that extracts features using a

Haar feature descriptor with an integral image method and

a cascaded detector. It is still computationally expensive,

even though it utilizes integral images to facilitate the

algorithm. An effective feature extractor to detect humans,

called histogram of oriented gradients (HOG), computes the

directions and magnitudes of oriented gradients over image

cells [25]. [26] detects object parts as a deformable part-based

model and then connects them to judge classes that objects

belong to.

Deep learning based detectors can performwell due to their

robustness and high ability to extract features [27]. There are

two popular categories, one- and two-stage object detectors.

One-stage detectors directly regress the bounding boxes in

a single step. The approach in YOLOv1 [28] divided the

image into several cells and tried to find objects in each cell,

but this was not good for small objects. YOLOv1 does not

perform well by only using the last feature output, as the last

feature map has a fixed receptive field and can only observe

1https://github.com/xinqi-fan/SL-FMDet
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FIGURE 2. The pipeline of the proposed SL-FMDet. The backbone uses depthwise separable convolutions; FPN is used to fuse the
high-level semantic information; RCAM can extract rich context information and focus on crucial face mask related regions; SGHR learns
more discriminating features for faces with and without masks.

certain areas on the original images. Therefore, multi-scale

detection was introduced into a single shot detector (SSD)

to conduct detection on several feature maps and detect

faces of different sizes [29]. To improve detection accuracy,

Lin et al. [30] proposed RetinaNet by combining an SSD

and an FPN architecture, which included a novel focal loss

function to mitigate the class imbalance problem. In terms

of the architecture, YOLOv2 has a similar improvement to

SSDs using multi-scale features, and YOLOv3 is similar to

RetinaNet by utilizing an FPN.Two-stage detectors generate

region proposals in the first stage and then fine-tune these pro-

posals in the second stage. The two-stage detector can provide

high detection performance but at a low speed. Region-based

CNN (R-CNN) [31] uses selective search to propose can-

didate regions that may contain objects. The proposals are

fed into a CNN model to extract features, and a support

vector machine (SVM) is used to recognize classes of objects.

However, the second-stage of R-CNN is computationally

expensive, since the network has to detect proposals in a one-

by-one manner and uses a separate SVM for final classifica-

tion. Fast R-CNN solved this problem by introducing a region

of interest (ROI) pooling layer to input all proposed regions

at once [32]. A region proposal network (RPN) introduced

by faster R-CNN took the place of selective search, the speed

limiting step of two-stage detectors [33]. Faster R-CNN inte-

grated each detection component, region proposal, feature

extractor, and detector into an end-to-end neural network

architecture.

B. FACE MASK DETECTION

Face mask detection algorithms have become more topical

recently, since masks can help control the spread of COVID-

19 during the pandemic. The algorithmic task focuses only

on detecting physical masks, as shown in [18], [20], [21],

[23], [34], [35]. Among these, YOLO based models are the

most popular detectors. ResNet based YOLOv2 was used

by [20] to improve feature extraction for face mask detec-

tion. To enhance the robustness of detection by YOLOv3,

an image mix-up and multi-scale method was utilized in [34].

A distance intersection over union non-maximum suppres-

sion (DIOU-NMS) algorithm was used to improve the

post-processing stage of YOLOv3 [35]. YOLOv3 achieved

the highest mAP in a comparison of YOLOv3, YOLOv3-tiny,

SSD, and Faster R-CNN on the newly-established Moxa3K

face mask detection dataset [23]. A person tracking system

with a three-part face mask recognition system, a person

detector, a tracker, and a face mask classifier, was devel-

oped to facilitate face mask detection applications in smart

cities [36]. Face mask classification or recognition, assuming

faces were detected, has also been studied [19], [37], [38].

III. METHODOLOGY

The overall pipeline of the proposed SL-FMDet is shown

in Fig. 2. We first introduce the general architecture of the

SL-FMDet, followed by two novel modules, RCAM and

SGHR. Finally, we discuss the loss function, and the infer-

ence procedure.

96966 VOLUME 9, 2021
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FIGURE 3. Illustration of the RCAM. (a) Overall architecture of the RCAM. (b) The structure of the CAB. (c) The structure of the SAB.

A. NETWORK ARCHITECTURE

To reduce the size of the neural network, we propose to use

a depthwise separable convolution network based backbone

- MobileNet [39] that uses a depthwise convolution and a

pointwise convolution in series to reduce the computational

load. Assume the output shape of a standard convolution

is C × H × W , and there are C standard 2D convolution

kernels of size K × K × M , the number of multiplications

is K × K × M × C × H × W . For a depthwise separable

convolution, this is (K×K×M×1+1×1×M×C)×H×W ,

which is 1
C
+ 1

K2 times smaller. Since the number of chan-

nels significantly influences the speed, we use the thinnest

MobileNet, Mobilenet 0.25, with 0.25 times the number of

channels of the ordinary MobileNet to make it smaller and

have lower latency. Then, since each feature map corresponds

to different receptive fields on the input images, we apply

a multi-scale strategy to perform detection on three feature

maps to find faces of different sizes. However, lower layers do

not contain high-level semantic information, so we apply the

FPN [40] to fuse high-level semantic information with lower

layer feature maps. The size of the three feature maps used

are f1 ∈ R
64×80×80, f2 ∈ R

64×40×40 and f3 ∈ R
64×20×20.

We then generate two different size anchors on each feature

map, and the details are given in section IV-B.

Although FPN can use high-level semantic information,

it does not solve the problem caused by the separation of

convolutions which reduces the capability of feature extrac-

tion. To cope with this problem, we propose two novel mod-

ules - RCAM, to focus on learning important information,

in section III-B, and SGHR, to learn more discriminating

features for faces with and without masks, in section III-C.

RCAMs are directly applied to the fused feature maps from

FPN. Then, we add a heatmap branch by performing a 1× 1

convolution kernel on the output of RCAM to generate a

one-channel map for SGHR. For the detection heads, we use

a 1 × 1 convolutional kernel to form a 4 × 2 dimensioned

bounding box of coordinates, and nc×2 dimensioned classes,

where the size 4 dimension is formed by the left corner x1,

y1 and right corner x2, y2 coordinates, nc is the number of

classes, and the size 2 dimension is formed by the two prior

anchors of different sizes for each pixel.

B. RESIDUAL CONTEXT ATTENTION MODULE

Comparedwith face detection, the task of facemask detection

is more difficult, because it has to locate the face as well as

distinguish faces with and without masks. To focus on face

areas where masks may appear, we propose a novel RCAM

(Fig. 3 (a)). RCAM contains three major blocks - a context

enhancement block (CEB), a channel attention block (CAB),

and a spatial attention block (SAB).

For the CEB, we form three parallel branches with 3 × 3,

5×5 and 7×7 receptive fields to enhance context information,

similar to the context module in single-stage headless [41].

To reduce the number of parameters while maintaining the

same receptive field size, all branches are implemented by

3× 3 convolution kernels. The branch with a 5× 5 receptive

field is implemented by two consecutive 3 × 3 convolution

kernels, and that with a 7×7 receptive field is realized by three

VOLUME 9, 2021 96967
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consecutive 3 × 3 convolution kernels. We then concatenate

all feature maps from the branches to form an enhanced

context feature map.

To focus on the important face mask related features, we

cascade a convolutional block attentionmodule (CBAM) [42]

after the CEB, and add a skip connection. This attention

module consists of a CAB (Fig. 3 (b)) and a SAB (Fig. 3 (c)).

The CAB assigns the weights on each channel of the input

features, while the SAB calculates a spatial attention map to

focus on the specific part of the input feature. The computa-

tion of the CAB with input fc ∈ R
D×H×W is

Ac = σ

(
MLP

(
GAP(fc)

)
+MLP

(
GMP(fc)

))
, (1)

and that of SAB is

As = σ

(
Conv2D

(
Concat

(
CAP(fc),CMP(fc)

)))
, (2)

where Ac ∈ R
D and As ∈ R

H×W denote the channel and

spatial attention; σ is the sigmoid function to normalize the

output to (0, 1); MLP refers to the multi-layer perceptron,

which is a 3-layer fully connected networkwith the number of

neurons of the intermediate layer (D/8); GAP andGMP stand

for global average pooling and global maximum pooling;

CAP and CMP stand for channel average pooling and chan-

nel maximum pooling; Conv2D represents 2 dimensional

convolution; Concat is the channel concatenation operation.

Finally, we add a skip connection to avoid information loss

and gradient vanishing.

C. SYNTHESIZED GAUSSIAN HEATMAP REGRESSION

Although the light-weight network is small and fast, it has

a relatively weak feature extraction ability. To solve this

problem, and enhance the feature learning of discriminating

features for face areas with and without masks, we propose a

novel auxiliary learning task as SGHR.

We consider an image containing n1 bounding boxes of

face masks and n2 bounding boxes of faces. For the n1 face

mask bounding boxes, we first generate the face Gaussian

heatmaps Hm
j1 , j ∈ {1, . . . , n1} as

Hm
j1 (x, y) = exp

(
−

1

2

(
(x − cjx)

2

σ 2
jx

+
(y− cjy)

2

σ 2
jy

))
, (3)

where (cjx , cjy) is the central position, hj and wj are the height

and width of the jth face bounding box; σjx and σjy control the

radii of the corresponding heatmaps, and σjx = hj/6, σjy =

wj/6. Then, we generate the Gaussian heatmaps for masks as,

Hm
j2 (x, y) = exp

(
−

1

2

(
(x − ĉjx)

2

σ̂ 2
jx

+
(y− ĉjy)

2

σ̂ 2
jy

))
, (4)

where (̂cjx , ĉjy) is the estimated central position of facemask j,

which is calculated by ĉjx = cjx+hj/4, ĉjy = cjy. σ̂jx = hj/12,

σ̂jy = wj/6. Then we sum Hm
j1 and H

m
j2 to obtain the Gaussian

heatmap for face masks,

Hm
j = Hm

j1 + H
m
j2 . (5)

For the n2 bounding boxes for faces without masks, their

heatmaps only contain single face Gaussian heatmaps H
f
i ,

i ∈ {1, . . . , n2}, which is the same as the calculation in (3).

Finally, we sum the face mask and face heatmaps and sup-

press the maximum value to obtain the final synthesized

Gaussian heatmaps (SGHs) as

H =

n1∑

i=1

H
f
i +

n2∑

j=1

Hm
j (6)

H ← clip(H , 1), (7)

where clip (H , 1) is to avoid the maximum of H exceeding 1.

An example for computing an SGH is shown in Fig. 4.

FIGURE 4. An example of computation of SGH. ⊕: pixel-wise addition.

The objective of SGHR is to predict heatmaps as close

as possible to ground truth SGHs. Thus, an l2 loss performs

regression between the predictive heatmap Ĥ and the ground

truth heatmap H as

Lh(Ĥ ,H ) = ‖Ĥ − H‖22. (8)

D. LOSS FUNCTION

The model gives three outputs for each input image, a local-

ization offset prediction Ŷl ∈ R
p×4, a classification confi-

dence prediction Ŷc ∈ R
p×nc , and a predictive heatmap Ĥ ,

where p and nc denote the number of generated anchors and

the number of classes. We also have the prior anchors P ∈

R
p×4, the ground truth boxes Yl ∈ R

o×4 and the classification

label Yc ∈ R
o×1, where o refers to the number of objects.

Before calculating losses, we match and decode anchors P

with the ground truth boxes Yl and the classification label Yc
to obtain Pml ∈ R

p×4 and Pmc ∈ R
p×1, where each row in

Pml or Pmc denotes the offsets or top classification label for

each anchor, respectively. The positive localization prediction

and class are defined as Ŷ+l ∈ R
p+×4 and Ŷ+c ∈ R

p+×1. The

positive matched anchors’ localization offsets and class are

defined as P+ml ∈ R
p+×4 and P+mc ∈ R

p+×1, where p+ denotes

the number of anchors whose top classification label is

not zero.
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To be robust to outliers, we use the smooth L1 loss [33] to

regress the localization offsets as

Ll(Ŷ
+
l ,P+ml) = SmoothL1(Ŷ

+
l − P

+
ml). (9)

Hard negative mining [43] is performed to obtain sampled

negative matched anchors and the corresponding predictions,

P−mc ∈ R
p−×1 and Ŷ−c ∈ R

p−×1, where p− is the number of

sampled negative anchors. The classification loss is computed

by positive and negative samples using cross-entropy (CE) as

Lc(Ŷ
+
c , Ŷ−c ,P+mc,P

−
mc)

= CE(Ŷ+c ,P+mc)+ CE(Ŷ
−
c ,P−mc). (10)

Together with the heatmap loss Lh in (8), we derive the

total loss as

L =
1

N
(Lc + αLl)+ βLh, (11)

where N is the number of matched default anchors and

α and β are hyperparameters to weight the losses.

E. INFERENCE

In the inference stage, the model produces the object localiza-

tion L ∈ R
p×4 and object confidence Ŷc ∈ R

p×3. The second

column of Ŷc is the confidence of faces, Ŷcf ∈ R
p×1, and the

third column of Ŷc is the confidence of face masks, Ŷcm ∈

R
p×1. Then, we remove objects with confidence lower than

tc and perform non maximum suppression (NMS) with a

threshold tnms to produce the final localization and confidence

of faces L ′f ∈ R
nf×4, Ŷ ′cf ∈ R

nf×1, and those of face masks

L ′m ∈ R
nm×4, Ŷ ′cm ∈ R

nm×1, where nf and nm denote the

number of selected faces and masks.

IV. EXPERIMENT AND RESULT

A. DATASET

1) AIZOO FACE MASK DETECTION DATASET

The AIZOO face mask detection dataset is a public

open-source dataset created by AIZOOTech [22] that is

integrated with approximately 8,000 images selected from

the WIDER FACE [44] and MAsked FAces (MAFA) [45]

datasets, and re-annotated to fit the face mask detection con-

text. To cover more real-world conditions, most normal faces

came fromWIDER FACE (50%), while faces wearing masks

were from MAFA (50%), giving the dataset a good balance

among different scenarios. A subset of 1,839 images was

pre-defined for testing.

2) Moxa3K FACE MASK DETECTION DATASET

The Moxa3K face mask detection dataset is a public dataset

to facilitate face mask research [23]. It contains 3,000 images

with 2,800 for training and 200 for testing. The dataset was

constructed by combining images from a Kaggle dataset and

Internet images. The disadvantage of the dataset is that it

contains only a few faces without masks.

B. IMPLEMENTATION DETAIL

In the experiments, we employed an adaptivemoment (Adam)

optimizer with an initial learning rate of αLR = 10−3.

A reducing on plateau LearningRateScheduler was used to

dynamically reduce the learning rate by a power of 10, if there

was no change in the validation loss over 20 epochs. The

hyperparameters of loss were: α = 2 and β = 10−3. The

network was initialized by weights pre-trained on ImageNet.

The models were trained on an NVIDIA GeForce RTX

2080 Ti and an Intel Xeon Silver 4108. The algorithm was

developed with the PyTorch [46] deep learning framework.

Each experiment operated for nep = 250 epochs with batch

size m = 32. The threshold of NMS was tnms = 0.3. The

number of anchors, coordinates of the anchors’ centers and

anchor sizes are given in Table 1. The details of the training

of our models are shown in Algorithm 1, where MiniBatch-

Sampler refers to the operation of randomly selectingm pairs

of samples from dataset D, denoted as B; DataAugmenta-

tion is the data augmentation operation including random

image cropping, distorting and flipping; Preprocess resizes

the image into 640 × 640 pixels and normalizes the pixel

values by subtracting the mean red green blue (RGB) values.

Algorithm 1 Details of the Training Procedure

Require: Training set Dtrain = {(xi, yi)}
n
i=1; Validation set

Dval = {(xi, yi)}
n′

i=1; A parameterized model fθ ; Ima-

geNet pretrained weights θ ′; Number of epoch nep; Batch

size m; Learning rate αLR; Loss hyperparamters α, β;

Minimal valitation loss Lmin = +∞

Ensure: A parameterized model after training fθ ′′

1: Initialize the model parameters θ by θ = θ ′.

2: for i = 1 to nep do

3: for j = 1 to ⌊n/m⌋ do

4: B←MiniBatchSampler(Dtrain,m)

5: B←DataAugmentation(B)

6: B←Preprocess(B)

7: L(fθ )←
1
m

∑
(x,y)∈B Lα,β ((x, y), fθ )

8: fθ ←Adam(fθ ,L(fθ ), αLR)

9: Lval =
1
n′

∑
(x,y)∈Dval

Lα,β ((x, y), fθ )

10: αLR←LearningRateScheduler(αLR,Lval)

11: if Lval < Lmin then

12: fθ ′′ = fθ

TABLE 1. Settings for the generation of prior anchors.

C. EVALUATION METRICS

For each class, average precision (AP) serves as a comprehen-

sive indicator of the area under the precision and recall curve,
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FIGURE 5. Visualization of spatial attention yielded by RCAM without (upper) and with (lower) SGH.

where the precision (P) and recall (R) are defined as [47],

P =
TP

TP+FP
=

TP

All Detection
,

R =
TP

TP+FN
=

TP

All Ground Truth
, (12)

where TP, FP and FN denote the true positive, false positive

and false negative counts, respectively. The calculation of pre-

cision and recall is based on predictions ranked in descending

order by their predicted confidence scores, which start from

0.02. As in the PASCAL VOC [48] new evaluation metrics,

all point interpolation is used to smooth the zigzag precision

and recall curve to obtain AP as,

AP =

n∑

k=i

(Rk+1 − Rk ) max
R̃:R̃>Rk+1

P(R̃). (13)

We use APF and APM to denote APs for faces and face masks.

mAPwas used to evaluate the performance of the models [47]

and can be calculated by taking the mean of AP against each

class as,

mAP =
1

nc

nc∑

j=1

APj, (14)

where nc is the number of classes, and APj is the AP for

jth class. We use the intersection over union (IOU) as 0.5 to

judge the prediction, which is denoted as mAP@0.5 in the

literature.

D. ABLATION STUDY

To demonstrate the effectiveness of the proposed compo-

nents, we performed ablation studies on RCAM, SGHR, and

the position of the SGHR branch. The experiments based on

the AIZOO dataset are summarized in Table 2 with details

below.

1) RCAM

We compared the detector without and with RCAM attached

to the outputs of the FPN feature maps. By using RCAM,

there was a 0.7% increase in the AP for faces, a 1.8% increase

in the AP for face masks, and a 1.2% increase in mAP.

TABLE 2. Ablation study of the proposed model (%).

This demonstrated that the proposed RCAM may be able to

enlarge and focus on useful context information for face mask

detection.

2) SGHR AND ITS POSITION

We added SGHR to the model to show the effectiveness of

the SGHR auxiliary task and ran three experiments to find the

best position for the SGHR branch. An auxiliary branch was

placed on the output of RCAMat input feature f1 from FPN or

on the output of RCAM at input feature f2 or on the output of

RCAM at input feature f3. These positions were denoted as 1,

2 and 3 for brevity. The highest AP and mAP were achieved

by placing the SGH auxiliary task branch at feature f2. This

may be due to the f2 feature maps having appropriate anchor

scales for the majority of objects. Compared with the model

without the SGHR branch, a maximum increase of 2.8% in

mAP was observed, and the APs for each class also have an

observable improvement.

E. VISUALIZATION OF ATTENTION MAP

In the above ablation studies, SGHR enhanced the final face

mask detection performance. In this section, we visualized

the spatial attention of RCAM to qualitatively demonstrate

how SGHR helps learn more discriminating features to dis-

tinguish between the object and the background. In Fig. 5,

the first row is generated from the model without SGHR,

while the second row used SGHR. The spatial attention

maps generated by the model with SGHR could differentiate

between the object and the background. This shows that the

proposed SGHR auxiliary task can boost the performance of

RCAM, and thus the overall detection performance.

96970 VOLUME 9, 2021



X. Fan et al.: Deep Learning Based Light-Weight Face Mask Detector

FIGURE 6. Qualitative results on AIZOO and Moxa3K datasets demonstrating the capability of our model on face mask
detection challenges.
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F. COMPARISON WITH OTHER MODELS ON AIZOO

The performance of our model on the AIZOO face mask

dataset was compared with existing models used in face

mask detection. The baseline model is a modified SSD

with a light-weight backbone [22]. Faster R-CNN is the

best regarded two-stage detector using an RPN [33].

YOLOv3 [49] and YOLOv3-tiny [49] are the most popular

fast detectors used in the face mask literature [23], [34], [35].

YOLOv3 uses Darknet-53 as its backbone and three detec-

tion heads to process three-scale features enhanced by FPN.

YOLOv3-tiny is a lighter and faster version of YOLOv3 with

a light backbone and only two detection heads. RetinaFace is

a high performance face detector using FPN to fuse high-level

semantic information [50]. RetinaFaceMask is a dedicated

face mask detector, and its light-weight version powered by

MobileNet is denoted as RetinaFaceMask-M [21].

The mAP and APs of faces and face masks are given

in Table 3. The proposed SL-FMDet achieved the highest

mAP and APs among all the models. Compared with the

baseline SSD model, SL-FMDet increased mAP by 3.0%

and the APs of faces and face masks were improved by

4.0% and 2.1%, respectively. YOLOv3 and RetinaFace had

the closest performance to our model, but they used heavy

backbones, Darknet-53 and ResNet-50, which are compu-

tationally expensive. YOLOv3-tiny is a lighter version of

YOLOv3, but its mAP was less than the proposed model

by 1.7%. RetinaFaceMask-M is also a light-weight model,

but it performed poorly at finding face masks with a low

APM of 90.4%.

TABLE 3. Comparison with other models on the AIZOO dataset (%).

We demonstrate some qualitative results in Fig. 6. The

model can successfully distinguish some confusing occlu-

sions, such as occlusion by hands, hair or other objects

(Fig. 6(a) and all diverse mask types were detected (Fig. 6(b).

Side views of faces with masks could be detected (Fig. 6(c)

and results on small and blurred faces are shown in Fig. 6(d).

G. COMPARISON WITH OTHER MODELS ON Moxa3K

Experiments were also conducted on the Moxa3K face mask

dataset, and the mAP and APs are summarized in Table 4.

We compared our model with the best results reported

by [23]. SL-FMDet achieved the state-of-the-art performance

on Moxa3K, outperforming the previous best, YOLOv3. The

light-weight model with RCAM and SGHR achieved better

performance than heavymodels like YOLOv3. YOLOv3-tiny

TABLE 4. Comparison with other models on the Moxa3K dataset (%).

TABLE 5. FLOPs and the number of parameters of different models.

is a popular light-weight model, so it provides another insight

into our model’s performance on the Moxa3K dataset. SL-

FMDet’s performance exceeded YOLOv3-tiny by 10.47%

in terms of mAP. However, as the Moxa3K dataset was

created for closed circuit television applications, it contains

more blurred or small faces, which are hard to detect and

result in overall low performance. In addition to the results

reported by [23], we conducted experiments on RetinaFace

and RetinaFaceMask-M, and these models give 1-2% lower

performance than SL-FMDet in terms of mAP. In Fig. 6(d),

SF-FMDet can findmost of these blurred or small faces in the

wild. Although there are some failure cases, due to occlusions

by people or objects, the result seems satisfactory.

H. COMPARISON WITH OTHER MODELS IN TERMS OF

FLOPs AND THE NUMBER OF PARAMETERS

SL-FMDet requires the smallest number of floating point

operations (FLOPs) and number of parameters (Params) of

the methods examined (Table 5). SL-FMDet takes 1.01G

FLOPs, and has 0.43M parameters, which is less than 10%

of the requirement of YOLOv3-tiny.

V. CONCLUSION

In this paper, we proposed a novel SL-FMDet, which is effi-

cient and has low hardware requirements. To overcome the

lower feature extraction capability caused by its light-weight

backbone, we proposed RCAM and SGHR. RCAM can

extract rich context information and focus on crucial face

mask related areas. By using SGHR as an auxiliary task,

the model is able to learn more discriminating features for

faces with and without masks. The model with SGHR yielded

a better attention map, which qualitatively supports the effec-

tiveness of this auxiliary task. The proposed model achieved

state-of-the-art results on two public face mask datasets,

AIZOO and Moxa3K. Compared with another light-weight
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model, YOLOv3-tiny, the mAP of our detector is 1.7% higher

on AIZOO and 10.47% higher on Moxa3K. Experimentally,

we have shown that light-weight models can achieve simi-

lar or even better performance than heavy models by using

RCAM and SGHR. The qualitative results also show the

model is capable of tackling the challenges present in face

mask detection. Therefore, the proposed face mask detector

has a high potential to contribute to public health care to con-

trol the spread of COVID-19. One drawback of the method

is the extra computation required for generating heatmaps

and, due to limitations of the datasets, the method cannot

distinguish between correct and incorrect mask wearing.

In future work, we would like to build face mask detec-

tion datasets with no, correct and incorrect mask wearing

states, or use a zero shot learning approach to make the

model able to detect incorrect mask wearing states. New

deep learning detectors may be used to further improve the

performance. Recently, advanced work on anchor-free deep

learning detectors, such as CenterNet [51] or CornerNet [52]

has appeared. We believe anchor-free detectors operate more

like how human beings detect objects than anchor-based

methods such as our method. CenterNet first detects the cen-

ter of the objects, and then regresses the coordinates of cor-

ners relative to the centers. DEtection TRansformer (DETR)

a newly-proposed transformer-based deep learning detec-

tor [53] borrows advantages from language transformers

to use patch-based sequential information, and shows the

method does not require post processing. In addition, we will

develop a real-world face mask detection system on high

performance edge devices, and integrate it with the internet

of things systems.
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