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ABSTRACT Heat source layout design is an effective technique to enhance the thermal performance in

the whole system, which has become a vital part in many engineering fields, e.g. satellite layout design

and integrated circuit design. Traditionally, the optimal design is obtained by searching the design space

with the optimization technique which repeatedly runs the thermal simulation to compare the performance

of each scheme. Due to the extremely large computational burden with this method, the optimization is

greatly limited. To overcome the challenge, heat source layout inverse design (HSLID) is proposed in this

article to directly generate the layout scheme with the given thermal performance requirement. A novel

method for heat source layout inverse design, denoted as SAR-HSLID, is proposed based on the recently

deep learning technique, Show Attend and Read (SAR) model. Firstly, regarding the mapping from the

required temperature field to layout scheme as an image-to-location task, this article introduces SAR model,

which is good at sequence predicting, to generate the layout scheme. The trained SAR is capable of learning

the underlying physics of the design problem, thus can efficiently predict the design under given requirement

without any physical simulation. Secondly, to ensure that the designed heat source layout exactly satisfies the

input temperature field requirement, based on the layout predicted by SAR, we further utilize a simple but

efficient optimization process to conduct few post-processing. Finally, a heat source layout inverse design

task in a typical two-dimensional heat conduction problem is investigated to demonstrate the feasibility and

effectiveness of the proposed method.

INDEX TERMS Heat source layout design, inverse design, show, attend and read model, deep learning.

I. INTRODUCTION

Heat source layout design (HSLD) is encountered in many

fields of engineering and science, particularly in the electron-

ics [1]. The objective of HSLD is to design the reasonable

source layout scheme to offer the expected thermal environ-

ment for the whole system. With the increasingly smaller

size of components and higher power intensity, HSLD has

become a critical problem for the development of many fields

such as microelectronic technology or satellite design [2].

However, most existing approaches for solving HSLD are

based on optimization techniques, in which a large amount

numerical simulation of temperature distribution is integrated

into the optimization loop [3]–[5]. Besides, with the problem
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becoming complex or the mesh of simulation being highly

refined, the calculation cost would further increase, and it

is more difficult to optimize. To alleviate the challenge, one

possible solution is by use of heat source layout inverse

design (HSLID). The objective of HSLID is to directly design

the reasonable layout scheme with the expected themal per-

formance given.

In a typical inverse design problem [6], parameters or lay-

out are sought to achieve the expected system outcomes. For

the heat source layout inverse design problem, the objective

is to directly design a reasonable layout scheme when the

expected thermal performance is given. Then the cost of phys-

ical simulation would be reduced greatly. Though there exist

no reports about inversemethod for heat source layout design,

there are some research in other fields. Examples of inverse

problems can be found in material design [7], [8], structure
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optimization [9], determination of radiative properties of the

medium [10], model parameter estimation [11], and image

synthesis [12]. Most existing methods for solving inverse

problems are based on optimization techniques, which could

be classified into two categories: evolutionary algorithms

[13], [14] and adjointmethod [15]. The first category searches

the design space step by step, which takes a lot of computa-

tional cost with the increasing parameters. The second cate-

gory is more efficient than evolutionary algorithms, however,

which requires a deep knowledge in physics and can be quite

nontrivial.

However, apart from the aforementioned traditional meth-

ods for solving inverse problem, some deep learning methods

increasingly attract researchers’ attentions due to its great

success in image classification [16], natural language pro-

cessing (NLP) [17], object detection [18], PDE solver [19],

[20] and image restoration [21] et al. One major advan-

tage of deep learning based method is that it could learn

the hidden relationship between high-dimensional data and

nonlinear model, which is difficultly dug by the traditional

methods. Therefore, some deep learning models have been

applied in many traditional design areas such as mechanical

design [22]–[27], optics [28], [29], fluid simulation [30],

[31], biomedical science [32], [33] and materials [34]. For

example, in the area of mechanical design, Sosnovik and

Oseledets [22] constructed a convolutional encoder-decoder

network to predict the optimal design from the intermediate

design schemes obtained during evolution, which greatly

accelerates the process of topological optimization (TO).

Yu et al. [23] firstly proposed a method to learn a mapping

from boundary conditions/loading conditions to a low resolu-

tion optimal structure in TO by using variational autoencoder

(VAE). A two-level generative adversarial network (GAN)

was constructed by Chen et al. [24] to generate shapes who

can possess hierarchical dependency with keeping the inter-

part dependencies satisfied. Zhang and Ye [25] utilized the

VAE model to learn the the constraints and generate design

candidates that automatically satisfy all the constraints in TO.

Chen et al. [26] used the Feature Pyramid Network (FPN)

model to learn the mapping from the heat source layout

to temperature field as a surrogate to reduce the cost of

optimization. The deep convolutional neural network was

first utilized by Hamouche and Loukaides [27] to identify

the manufacturing process that formed a part solely from

the final geometry. In optics, Peurifoy et al. [28] uti-

lized artificial neural networks to approximate light scat-

tering by multilayer nanoparticles, which could be used to

solve nanophotonic inverse design problems. In fluid simu-

lation, Tompson et al. [30] proposed a data-driven approach

that they trained a well-tailored convolutional neural net-

work (CNN) to replace the solution of the sparse linear

system in the standard fluid solvers. In biomedical science,

Liu et al. [32] and Han et al. [33] also made some work of

predicting the mechanical properties based on deep learning.

Agrawal et al. [34] proposed a systematic end-to-end frame-

work to explore materials informatics based on predictive

model such as neural network. From these, it could be con-

cluded that they substitute the entire or intermediate design

process by use of the strong learning capability of deep

learning in data.

In view of the above successful applications of deep learn-

ing technique in other design areas or inverse problems, it is

also possible to solve heat source layout inverse design by

use of deep learning. However, VAE or GAN in previous

work are not suitable for heat source layout inverse design.

One major reason is that both of them are generative model,

which could not guarantee the final output meet the layout

shape or other constraints in HSLD. In addition, both of

them also need additional post-processing. However, Show

Attend and Read (SAR) [35] could help to overcome this

challenge well if treating the heat source layout design as

an image-to-location task. SAR is an important and efficient

technique in deep learning. It uses a simple but effective

neural network model augmented with 2D attention that aims

to utilize the most salient features in image. It is applied

popularly in natural language processing to solve irregular

text recognition problem. The motivation of selecting SAR

other than VAE or GAN is that the heat source layout share

the similar features with the layout of text. The ouputs of them

are all discrete layout sequence, which means that we do not

need any post-processing to make the shape constraints or

overlapping constraints be meeted.Meanwhile, we found that

it is also appropriate for the task of inverse heat source layout

design since it can automatically detect where the heat source

appears by taking full advantage of the attention mechanism

in SAR model.

In this article, we propose a novel inverse method for

HSLID based on deep learning. Heat source layout inverse

design includes two steps: the design of reasonable tem-

perature field and the design of method for predicting the

layout according to the thermal performance. In this article,

we mainly focus on the method about inversely predicting the

layout according to the temperature field. It means that in the

inverse design, the design of temperature field information

could not be given arbitrarily. The most ideal circumstance

is that we can design a reasonable temperature field accord-

ing to our need, which corresponds to a known possible

items distribution. To realize it, taking the mapping from

the temperature field to the heat source layout as an image-

to-location task, we construct the SAR model with neural

networks and train the model by our pre-generated dataset.

The dataset consists the initial layout satisfying the shape

constraints and the corresponding temperature field repre-

sented by pair images. Experiments show that SAR model

could directly design the heat source layout for most expected

temperature filed. Based on this, we also design a simple

but efficient optimization process to try to ensure the consis-

tency between the layout design and the expected temperature

field. Considering real-world applications, we investigate the

relationship between the size of temperature field and the

predicted accuracy using our proposed method. Experiments

show the competitive performance of our method in dealing
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with HSLID. In summary, the contributions of our paper are

three-folds:

1) Regarding the mapping from the required temperature

field to heat source layout as an image-to-location task,

we first introduce SAR model in NLP to solve heat source

layout inverse design problem. The trained SARmodel could

directly generate superior heat source layout schemes that

meet our expected thermal performance.

2) Aiming at the few circumstances that the thermal perfor-

mance of heat source layout scheme designed by SAR does

not satisfy the expectation, we design a simple but efficient

optimization process to conduct few post-processing.

3) Requirement of few measurement points in real world

impels us to investigate the relationship between the size

of temperature field and the performance of the proposed

method. Experiments show that our method stays competitive

even though with ten times smaller input size.

The remainder of this article is structured as fol-

lows. In Section II, the mathematical model of heat

source layout inverse design problem is established.

In Section III, a SAR-based framework of HSLID is pro-

posed. In Section IV, the predicted performance of the trained

SAR model is evaluated by the predefined accuracy metric

and also how the training data size influences the accuracy

is investigated. Finally, the conclusion and future research

prospects are discussed in Section V.

II. PROBLEM DESCRIPTION

In this section, heat source layout inverse design problem

is investigated. Given an expected temperature field X , the

objective is to inversely determine the heat sources position

Y . The thermal performance of Y should keep consistency

with the expected X as much as possible. Thus its solution

can be reduced to an optimization problem as follows:































find Y

minimize J (x, y) = max|Tp(x, y)− X(x, y)k |

(k = 1, 2, 3 . . . n)

s.t. Ŵi ∩ Ŵj = ∅ ∀i 6= j

Ŵi ⊂ Ŵ0 ∀i = 1, 2, . . . ,Ns

. (1)

where (x, y) stands for the positions of measure points in

the temperature field, Tp stands for the temperature field of

heat source layout designed by inverse method based on deep

learning, n represents the number of measurement points in

the whole temperature field, Ŵi represents the covering area

of the ith heat source, Ŵ0 denotes the layout domain area and

Ns is the total number of heat sources.

To solve Eq.(1), we need heat simulation to obtain the value

of Tp(x, y) after designing the heat source layout inversely.

It is because that the value of Tp(x, y) involves the solution

of the corresponding Poisson’s equation. The steady-state

temperature field (T ) in a two-dimensional plane induced by

a number of heat sources can be calculated by solving the

Poisson’s equation as follows:

∂
∂x

(

k ∂T
∂x

)

+ ∂
∂y

(

k ∂T
∂y

)

+ φ(x, y) = 0

T = T0 or k ∂T
∂n
= 0 or k ∂T

∂n
= h (T − T0) (2)

where T means the thermal conductivity of the layout domain

and φ(x, y) represents the intensity distribution function

describing heat sources. In the boundary conditions of the

governing equation, T0 is the temperature at the isothermal

boundary and h means the convective heat transfer coeffi-

cient.

Actually, Eq.(2) presents a Poisson’s equation with three

different boundary conditions: Dirichlet (isothermal), Neu-

mann (adiabatic) or Robin (convective). Poisson’s equation

does not have explicit representation. So it could not be solved

directly by gradient-based methods. Thus people usually use

heat simulation for estimation approximately.

The intensity distribution function φ(x, y) is determined by

the positions of heat sources, which can be expressed as

φ(x, y) =

{

φ0, (x, y) ∈ Ŵ

0, (x, y) /∈ Ŵ
(3)

where φ0 is the intensity of one single heat source and Ŵ

denotes the layout area covered by the heat source.

In this article, we take a general volume-to-point (VP) heat

conduction problem as an example. Multiple heat sources

are placed in a rectangular domain. Then we are to inversely

design the heat source layout to meet the expected thermal

performance.

As previously defined in [3]–[5], the VP problem with

heat sources distributed in a square domain is illustrated in

Figure 1. All the boundaries of this domain are adiabatic

except one tiny heat sink (T0) in the middle of the bottom

boundary. Obviously, the investigated HSLID in this article is

a two-dimensional Poisson’s problemwith mixture of Dirich-

let and Neumann boundary conditions.

FIGURE 1. The VP problem in a square domain.

III. THE FRAMEWORK OF SAR-HSLID

As described in section I, the solution of HSLD demands

the computation of physical simulation. The simulation cost

would increase greatly with more complicated heat source

layout. In addition, when the number of heat source increases,
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FIGURE 2. The illustration of SAR-HSLID framework.

it is difficult to solve for existing optmization method based

on evolutionary algorithms such as Genetic Algorithm (GA).

To cope with these difficulties, we propose a novel inverse

method for HSLID based on SAR. Whatever complicated

the layout scheme is, SAR could still possess competitive

performance by treating it as a image-to-location regression

problem. Then taking the layout scheme outputed by SAR

as the initial layout scheme, we introduce an optimization

process to conduct few post-processing, denoted as SAR-

HSLID, which improves the accuracy compared with the

original SAR. SAR-HSLID has three parts: data preparation,

model training and optimization process. The brief process of

three parts is illustrated in Figure 2.

Data preparation. We generate variant samples randomly

as the training data according to the designed sampling strate-

gies. Each sample pair consists of one heat source layout

scheme and its corresponding temperature field simulated

by Finite Element Method (FEM) or Computational Fluid

Dynamics (CFD).

Model training. Taking the layout and the temperature field

as source images, the mapping modeling can be regarded as

an image-to-location regression task. Regarding this aspect,

SAR is utilized to learn the inherent laws of the provided data.

Optimization process. Once the SARmodel is constructed,

the traditional optimization strategies or algorithms for

post-processing can be combined to solve HSLID. Based on

the high prediction precision of SAR model, HSLID pre-

sented in Section II is investigated.

Next, we introduce each part of SAR-HSLID in detail.

A. DATA PREPARATION

In this article, to validate the performance of our proposed

method, the defined problem is similar as [3]–[5], [26].

Detaily, as shown in Figure 4, 20 items that share the same

shape 20 × 20 and heat intensity are placed in a 200 × 200

square domain.To simplify the problem, the 200×200 square

domain is divided into 10 × 10. Each item could only be

placed and moved in the discrete 20×20 plane. The length of

the side of the square layout domain is set as L = 0.1m. The

thermal conductivity of the domain and the heat source com-

ponent is k = 1 W/(m·K). 20 identical square heat sources

are required to be placed in the domain with the side length

l = 0.01m and the intensity φ0 = 10000W/m2. The width of

the narrow heat sink is set as δ = 0.001m and its temperature

value is constant at T0 = 298K. When we prepare the data,

the layout is represented by a 200 x 200 binary matrix only

including 0 or 1, which is illustrated in Figure 5. The layout

domain is first divided into 10 x 10 grid uniformly, resulting

in 100 cells. Each heat source is only placed on one cell.

Then each cell is further divided into 20 x 20 grid, resulting

in the 200 x 200 layout domain. Thus the different layout

data could be generated by using different integer sequences

ranging from 1 to 100 without repeatly. The corresponding

temperature field of each layout scheme is numerically calcu-

lated by the finite-differencemethod (FDM) proposed in [36].

The mesh is not uniformly generated where the narrow heat

sink region is refined to guarantee the numerical simulation

precision.Then we generate general data and special data by

taking the different layout schemes as initial seeds, which are

displayed in Figure 3. General data is generated by taking the

random layout schemes as seeds. Special data is generated

by taking the special layout schemes as seeds. Different

layout schemes could be obtained by adopting the designed

sampling strategy [26]. After obtaining the temperature field,

we pre-process the input temperature field by normalizing the

value of each point to be beneficial for the training of neural

network as follows:

Tinput (x, y) =
T (x, y)− 298

10
(4)
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FIGURE 3. Taking different layout schemes as seeds in the evolving sampling strategy.

FIGURE 4. The illustration of 20 heat source items layout in a square
domain.

FIGURE 5. The illustration of layout representation. The layout domain is
first divided into 10 x 10 uniformly, resulting in 100 cells. Each heat source
is only placed on one cell. Then each cell is further divided into 20 x 20
grid, resulting in the 200 x 200 layout domain. The value of cells occupied
by heat sources is 1. The value of the other vacant cells is 0.

where T (x, y) represents the temperature value of point

(x, y) in the domain, Tinput (x, y) stands for the corresponding

pre-processed temperature value as the input of neural net-

work.

B. LAYOUT REPRESENTATION

Given a temperature field X , the SAR model needs to predict

its corresponding heat source layout design Ŷ . The input to

the SAR model is a real-valued image X with size 200×200,

and the output of SAR is a sequence of positions ended up

with a special token [EOS] indicating the end of a sequence:

Ỹ = {y1, y2, · · · , yn, [EOS]}, where n is the sequence length

and each position yi is in the range of {1, 2, · · · , 100} indicat-

ing the position of a heat source. In this work, we set n = 20.

Once having Ỹ , we transform it into another 0-1 sequence Y

with length 100, which is defined as follows:

∀i = 1, · · · , 100, Y i =

{

1, if i ∈ Ỹ

0, otherwise
(5)

where Y i = 1 means position i of the predicted heat source

layout design is placedwith a heat source, and otherwiseY i =

0.

C. SAR MODEL TRAINING

In this part, we describe the architecture of the SAR model

[35]. SAR mainly consists of two parts: a feature extractor

and an attentive layout predictor. The extractor encodes the

input image to various feature maps, and the predictor gen-

erates the heat source layout design by a novel 2D attention

mechanism. The overall model structure is shown in Figure 6.

1) EXTRACTOR

The feature extractor is a 31-layer residual network (ResNet)

[37]. Each residual block is either a 1× 1 projection shortcut

if the input and output dimensions are different, or an identity

shortcut otherwise. All convolutional kernel size is 3× 3 and

all max-pooling size is 2×2. After passing through the extrac-

tor, the input image of the temperature field X is converted to

various 2D feature maps, denoted asV ∈ R
H×W×D, whereH

is the height,W is the width andD is the number of channels.

2) PREDICTOR

The predictor is an attention-based sequence-to-sequence

model. Both the encode and the decoder are long short term

memory (LSTM) models. A novel 2D attention mechanism

is used for capturing features of arbitrary shape and layout.

a: Encoder

Following [35], the encoder is a 2-layer LSTM model

with 512 hidden state size per layer. At each step t , the

encoder receives one column ofVwhich results in a 2D tensor

of shape H × D, then followed by max-pooling along the

vertical axis, thus giving a vector of length D. This vector is

used to update the hidden state ht . After W steps, the final

hidden state hW is fed into the decoder for generating the
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FIGURE 6. The architecture of show, attend and read model for inverse design. With a temperature field
information given as the input, the output is a discrete sequence that represents the heat source layout.

layout design. The architecture of the encoder is shown in

Figure 7.

FIGURE 7. An illustration of the encoder.

b: Decoder

The decoder is also an LSTM model with 2 layers

and 512 hidden state size of each layer. The decoder first

receives the input hW from the encoder, and then decodes a

number at each step until generating a special [EOS] token.

At step t , the decoded number yt is in the range of [1, 100],

which exactly indicates the positions in the layout. Therefore,

the decoding process can be regarded as a classification task,

where the total number of classes is 101, 100 numbers and a

special [EOS] token.

More concretely, the inputs for each step are composed

of two parts, the current hidden state h′t and the output of

the attention module gt which will be introduced below. The

result is obtained by a linear transformation and a softmax

layer:

yt = softmax(Wo[h
′
t ; gt ]) (6)

If yt ∈ {1, 2, · · · , 100}, then the process goes on, and if

yt = [EOS], the decoding process finishes.

c: 2D Attention

The 2D attention mechanism aggregates local features so that

neighborhood information are taken into account for finding

the heat sources. The attention representation gt is defined as

follows:










eij = tanh(Wvvij +
∑

p,q∈Nij
W̃p,qvpq +Whh

′
t )

αij = softmax(wT
e · eij)

gt =
∑

i,j αijvij, i = 1, · · · ,H ; j = 1, · · · ,W

(7)

where vij is the feature representation at position (i, j) in V,

and Ni,j is the eight neighborhoods around this position. All

W are learnable parameters.

3) LOSS FUNCTION DESIGN

We use the cross entropy error between the predicted layout

position Y and real label Ŷ as the loss of the training process,

which is simple but effective [38]. To ensure that the error

could be calculated in cross entropy loss function. Both of Y

and Ŷ are handled by the softmax operator. The loss is defined

as the cross entropy error of the predicted value Y and the true

value Ŷ :

L(Ŷ ,Y )=−
1

100

100
∑

i=1

[log p(Y i)Ŷ i+log(1−p(Y i))(1−Ŷ i)]

(8)

By combining the cross entropy loss and our predicted

objective, we could successfully train SAR model and finally

realize the purpose of predicting the heat source layout posi-

tion.

The process of SAR is shown in Algorithm 1.

D. OPTIMIZATION PROCESS

In this section, taking the result predicted by SAR as the

initial layout scheme, we design a simple but efficient opti-

mization process to improve the accuracy. In our experiments,

we find a scene that the temperature error between ground

truth temperature field and predicted one by SAR would

change severely around the local position of the heat source

if predicted wrongly.

Then we take an example to illustrate the scene. We gener-

ate two heat source layout schemes. One is represented by{3,

7, 12, 18, 20, 22, 25, 28, 33, 34, 45, 46, 48, 55, 61, 63, 64, 65,

73, 84}, regarded as the ground truth. The other is encoded
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FIGURE 8. The temperature error when SAR could not predict all heat source layout.

Algorithm 1The Training and Prediction Process of SAR

Input:

The raw temperature field X (and the ground-truth heat

source layout Ŷ for training)

Output:

The predicted heat source layout Y

1 Extracting feature maps: V←extractor(X)

2 Encoding feature maps: hW ←encoder(V)

3 Predicting heat source sequence: Ỹ ←Attentive

Decoder(hW )

4 Transforming to heat source layout using Eq. (5):

Y ←Transform(Ỹ )

5 if training then

6 Training SAR with Eq. (8)

7 end

8 else

9 return Y .

10 end

as {2, 7, 12, 18, 19, 22, 25, 28, 33, 34, 45, 46, 48, 55, 61, 63,

64, 65, 73, 98}, regarded as the result predicted by SAR. Two

schemes are visualized in Figure 8 (a) and (b). Figure 8 (c)

displays the temperature field error of them.

As shown in Figure 8, there exists three heat source items

not predicted rightly by SAR. However, form Figure 8 (c),

we could observe that the temperature error shocks violently

around the regions of true position and wrongly predicted

ones. The temperature around the item predicted wrongly

by SAR is lowest in the whole temperature error field.

Conversely, the temperature around the item located in the

ground-truth is highest in the whole temperature error field.

It validates our observed scene. What’s more, we also obser-

vation that the position of the highest temperature error in

local region is corresponding to the position of ground truth

one. The position of the lowest temperature error in local

region is corresponding to the position of wrongly predicted

one. Therefore, our main idea to optimize the layout scheme

mainly includes two steps.

Step 1: Encode the temperature field and find the indexes of

the positions of the highest temperature error and the lowest

temperature error.










ŷmax = ⌈
xerror,max × 10

L
⌉ + ⌊

yerror,max × 100

L
⌋

ŷmin = ⌈
xerror,min × 10

L
⌉ + ⌊

yerror,min × 100

L
⌋

(9)

where (xerror,max , yerror,max) and (xerror,min, yerror,min) stand

for the coordinates of the highest temperature error and the

lowest temperature error, ⌈X⌉ rounds the elements of X to

the nearest intergers towards infinity and ⌊X⌋ rounds the

elements of X to the nearest integers towards minus infinity.

Step 2: Correct the corresponding positions in the sequence

standing for the predicted layout scheme Yg.










temp = Yg,ŷmax
Yg,ŷmin = temp

Yg,ŷmax = Yg,ŷmin

(10)

After above two steps, a new heat source layout scheme

Yg is predicted. Then we calculate the objective J . The opti-

mization process would repeat the above steps until the stop

criterion meets.

Combined with SAR with optimization process, our com-

plete method is presented as Algorithm 2.

IV. EXPERIMENT

In this section, we conduct a series of experiments to testify

the stability and feasibility of our proposed SAR-HSLID.

In part IV-A, we conduct experiments on pre-generated

test data to evaluate the accuracy of SAR model and study

the relationship between the size of training data and the

performance of model. Besides, to validate the extensiveness

of our proposed method for inverse problem, we test the

performance of SAR in unseen and extreme data. In part IV-

B, based on the result predicted by SAR, we conduct exper-

iments with optimization process. In part IV-C, considering

in real world a large enough temperature field containing all

points can be hardly get, we also conduct experiments using

different sizes of temperature fields.

A. THE ACCURACY OF SAR MODEL

The SAR model is implemented in Intel(R) Core(TM)

i7-8700 CPU @3.2GHz and 1 NVIDIA Tsela P100 GPU

140044 VOLUME 8, 2020
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Algorithm 2 The Proposed Inverse Method Based on

SAR With Optimization (SAR-HSLID)

Input:

The initial input temperature filed X0, iteration number

t = 0

Output:

The final multiple heat sources layout positions

Yg = {yig = 0or1, i = 1, 2, . . . , 100}

1 Use the SAR model to predict the heat source layout Y0
according to Algorithm 1

2 Yg = Y0
3 Conduct the thermal simulation by FEM method using

Yg and obtain the temperature field Xp

4 while t < 20 do

5 if J=0 then

6 Return Yg
7 end

8 Calculate the temperature filed error of X0 and Xp,

Xerror= Xp-X0

9 Calculate the positions of highest temperature field

error (xerror,max ,yerror,max) and lowest temperature

field error (xerror,min,yerror,min)

10 Obtain the position of highest temperature field error

ŷmax , lowest temperature field error ŷmin according

to Eq. (9)

11 Correct the value of the ŷmax and ŷmin position and

update Yg according to Eq. (10)

12 Heat simulation, update Xp and calculate J

according to Eq. (1)

13 t = t + 1

14 end

15 Return Yg

with 16Gmemory. We select Adam as the optimizer method.

In the process of training, the batch size, the training epoch

and the learning rate are set to 32, 50, 10−3respectively. The

data generated is listed in Table 1. In detail, 50000 general

training samples and 5000 special training samples are gener-

ated respectively. In addition, we also generate 10000 general

samples and 2000 special samples as the test data to validate

the accuracy of SAR model. The high prediction accuracy

reflects in that the layout inversely predicted by SAR should

keep consistency with the expected one.

TABLE 1. The statistic of training and test data.

To quantitatively evaluate the performance of SAR model,

we design two criteria including Mean Accuracy (MA) and

Mean Correct Ratio (MCR). For the predicted temperature

field Ỹ and the corresponding ground-truth one Y , the Accu-

racy is defined as:

Accuracy(Ỹ ,Y ) =
nitems

20
(11)

where nitems stands for the number of heat source predicted

rightly by SAR model in one single temperature field. And

the Mean Accuracy is defined as:

Mean Accuracy =
1

N

N
∑

i=1

Accuracy(Ỹ ,Y ) (12)

where nitems stands for the number of heat source predicted

rightly by SAR model in single temperature. And the Mean

Correct Ratio is defined as:

Mean Correct Ratio =
nsamples

N
(13)

where N is the total number of samples,and nsamples is the

number of samples predicted rightly by SAR, in which SAR

model predicts all heat source items layout rightly.

We train the SAR model using general data, which is

denoted by SAR50K. We also train the SAR model using

general data and special data together, which is denoted

by SAR50K+SP. Then we evaluate the performance of SAR

model in general test data and special test data respectively.

The statistical result is listed in Table 2. The validation per-

formance of SAR50K+SP on general test data is illustrated in

Figure 9.

FIGURE 9. The validation performance of SAR50K on the general test data.

TABLE 2. The performance of SAR50K and SAR50K+SP on the test set.

From Table 2, we could draw the conclusion that both of

SAR50K and SAR50K+SP not only show superior performance

in general test samples but also special test samples. The

mean accuracy are all above 99%, which means that SAR

could predict almost all heat source layout directly. In particu-

lar, the MA and MCR of SAR50K+SP could reach 99.90% and

98.81% on the general test. It means that SAR model could

predict rightly all heat source layout in almost 4940 samples

of 5000 samples totally. This testifies that adding the diversity

of training data could help to improve the performance of

model.
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FIGURE 10. An illustration of the predicted heat source layout by using SAR50K on one general temperature
field sample (2). (a) the input temperature, (b) the predicted layout, (c) the ground-truth layout. (Temperature
unit: K, the same below).

FIGURE 11. An illustration of the predicted heat source layout by using SAR50K on one special temperature
field sample (3). (a) the input temperature, (b) the predicted layout, (c) the ground-truth layout.

TABLE 3. Six samples selected as the test set, two drawn randomly from
the general test set ((1) and (2)), two drawn randomly from the special
test set ((3) and (4)) and two extreme test samples set ((5) and (6)).

1) EVALUATING THE GENERAL TEST SAMPLE

To validate the generality of SAR model, we select two gen-

eral samples to predict the corresponding heat source layout

using SAR50K model. The statistical result is listed in the

first two row in Table 12. As shown in Figure 10, the input

temperature field, predicted heat source layout and ground

truth are also displayed.

According to the result, we can see that SAR50K could

predict accurately two general samples. For 20 heat source

items layout positions, SAR50K could predict out 19 and 20

respectively to two samples. The results of sample (2) are

visualized in Figure 10, which validates the general perfor-

mance of SAR model.

2) EVALUATING THE SPECIAL TEST SAMPLE

To study the influence of adding extra special data to the

performance of SAR model, we use SAR50K and SAR50K+SP

to predict two special samples selected by us respectively.

The statistical result is listed in the thirdth to sixth row in

Table 12. Compared with general samples, more heat source

items are located in the around the wall of domain in special

example (3) and special example (4). Therefore, some of the

special test samples possess special temperature field, the

layout of which is hard to predict. The results of two selected

samples predicted by SAR50K+SP are displayed in Figure 11

and Figure 12.

According to the statistical results, we could see that

SAR50K and SAR50K+SP still could predict the special sam-

ples accurately. Particularly, SAR50K+SP predict rightly the

positions of all heat source items on both of two samples.

In addition, the statistical results show that adding some

special samples help to improve the performance of SAR

model to some extent. On example (3), when SAR50K could

only predict 18 heat source items, the accuracy of SAR50K+SP

reaches 100%.

3) EVALUATING THE EXTREME TEST SAMPLE

To further test the performance of trained SARmodel, we also

take two extreme samples such as Figure 13(c) as the test

samples. These two samples are not existed in any training

set. In these two samples, 20 heat source items are all located

in one corner of the domain. Therefore, the temperature
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FIGURE 12. An illustration of the predicted heat source layout by using SAR50K+SP on one special temperature
field sample (4). (a) the input temperature, (b) the predicted layout, (c) the ground-truth layout.

FIGURE 13. An illustration of the predicted heat source layout by using SAR50K+SP on one extreme
temperature field sample (5) not existed in any training data. (a) the input temperature, (b) the predicted
layout, (c) the ground-truth layout.

fields are greatly different from previous ones in general test.

We use SAR50K and SAR50K+SP to predict their layout giving

the input temperature fields respectively. The statistical result

is listed in the final four rows of Table 12. One of them is

displayed in Figure 13.

According to the statistical results and Figure 13, we could

see that SAR50K+SP model still predict 75% heat source

location and other heat source items predicted are very close

to the ground truth, which means it intutively predicts out

the heat source layout according to the trendency of the

changing of temperature fileds. Apart from it, the accuracies

of two samples predicted by SAR50K model including special

training data could reach 70% and 65% respectively. The

above results show that the layout predicted by SAR model

has been close to the ground truth even though being faced

with the extreme layout schemes not existed in the training

set.

Then, we investigate the relationship of the size of training

data and the performance of SAR model. Motivated by the

hope that using less data to train a well performing SAR

model, we design an experiment. In detail, we select the

training data randomly from 50,000 general training samples

with fixed size. The size is fixed as 2k, 4k, 6k, 8k, 10k, 20k,

30k and 40k respectively, and corresponding trained models

are denoted as SAR2K, SAR4K, SAR6K, SAR8K, SAR10K,

SAR20K, SAR30K, SAR40K respectively together with pre-

vious SAR50K and SAR50K+SP. The statistical results are

illustrated in Table 4. The error rates of predicted by different

models are also displayed in Figure 14.

TABLE 4. Performances on the general test set and the special test set for
different models.

As shown in Table 4 and Figure 14, we could see that

with more data, the predicted error rate decreased obviously.

When the size of data is only 2k, the predicted accuracy

could reach 87.9% and 85.9% on general test and special test

respectively. However, the values of MCR are only 2.18%

and 3.17%, which means that only few percentage of test data

could be predicted rightly out all heat source positions. From

Figure 14, when the size of data set reach above 10k, the error

rate decreased below 1%. It validates that the data size has

great influence on the performance of SAR model, though

not better as larger as possible. In addition, the operation of

adding extra special training data helps to improve the diver-

sity of data. SAR50K+SP achieves the best performance com-

pared with other sizes of models. Apart from it, we observe

that all SARmodels has better performance on special test set
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FIGURE 14. Performances on the general test set and the special test set
for different models.

compared with special test set. It validates the generality of

deep-learning based method.

B. THE PERFORMANCE OF THE SAR-HSLID FRAMEWORK

From above experiment results, we could see that SAR could

predict almost all layout scheme rightly according to the input

temperature field information. Aiming at the problem that for

few samples SAR could not predict all heat source layout and

that the accuracy of predicting extreme layout only reach to

50%, we continue to conduct experiments using SAR-HSLID

to solve these challenges.

To evaluate the improvement of SAR-HSLID framework

compared with pure SAR model, we add a metric called the

number of mean thermal simulation (MTS), which is defined

as follows:

Mean Thermal Simulation =
nthermal

N
(14)

where nthermal is denoted the number of thermal simulation

needed in one sample usingwhen SAR-HSLIDfinishes. In all

the following experiments, the max iteration number is set as

20.

We conduct the process of optimizing the heat source lay-

out based on the prediction of SAR50K and SAR50K+SP, which

are denoted by SAR-HSLID50K and SAR-HSLID50K+SP

respectively. Two models are all tested on the general test and

special test. The statistical result is illustrated in Table 5.

TABLE 5. The performance of SAR-HSLID50K and SAR-HSLID50K+SP on
the test set.

According to Table 5, we see that both of SAR-HSLID50K

and SAR-HSLID50K+SP could predict rightly all heat source

TABLE 6. Six samples selected as the test set, two drawn randomly from
the general test set ((1) and (2)), two drawn randomly from the special
test set ((3) and (4)) and two extreme test samples set ((5) and (6)).

layout in general test and special test. Apart from it, both

of the values of MTS are below 0.3, which means that

SAR-HSLID method could predict all heat source layout

rightly each time at the very low cost of heat simulation.

In addition, to compare with the predicted results of pure

SAR model in part IV-A, we still select 6 samples same as

Table 12. These six samples are predicted by SAR-HSLID50K

and SAR-HSLID50K+SP respectively. The results are illus-

trated in Table 6. Among 8 experiments, there exists three

experiments not needing to conduct heat simulation.We study

the relationship of the max temperature error and the iteration

number on the other 5 experiments, which is displayed in

Figure 16. The optimization processes of these experiments

are also shown in Figure 15.

According to Table 5, we see that both of SAR-HSLID50K

and SAR-HSLID50K+SP could predict rightly all heat source

layout in general test and special test. Apart from it,

both of the values of MTS are below 0.3, which means

that SAR-HSLID method could predict all heat source

layout rightly each time at the very low cost of heat

simulation.

As shown in Figure 16, for three general test samples

namely 1-SAR(50K), 3-SAR(50K) and 4-SAR(50K), the

max temperature error of them is only around 0.4K, 0.2K

and 0.1K, which verifies the superior performance of SAR

predictor. From the aspect of the cost of heat simulation, they

just need 2 heat simulation at most. Apart from these, other

four experiments on special samples not existed in training set

are also displayed. The numbers of heat simulation of these

four special samples are all below 10. In addition, we observe

that the curve of the max temperature error is not decreasing

alwaysly. It means that in the process of moving heat items,

it might bring out severe temperature shock.

As shown in Figure 15, in our experiments, the lowest

region of the temperature error field is where the wrong

prediction by our SAR model. Conversely, the highest one

is where the true position of one heat source. By showing

their coordinates in the temperature error field, we could

verify the basis observed by us that the regions of temper-

ature error changing most severely are the location around

the predicted wrongly heat source item and ground truth

one.
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FIGURE 15. An illustration of the temperature error history with the iteration on the test sample (5) using the framework of
SAR-HSLID50K.

FIGURE 16. The max temperature error history with the iteration on the
selected test samples using SAR50K and SAR50K+SP in the framework of
SAR-HSLID.

C. THE PERFORMANCE OF SAR-HSLID USING DIFFERENT

SIZES OF TEMPERATURE FIELD

In this part, to show the practicality of our proposed

SAR-HSLID method, we conduct experiments on different

size of temperature field.We utilize the operationMaxPool2d

with kernel size 3, stride 1 and padding 1 to reduce the size

of temperature field into half of the original. Then with the

help of the operation of Upsample with bilinear mode, the

temperature field could restore back double the size handled

by theMxpool2d. By this way, we investigate the relationship

of the performance of SAR-HSLID method and the size of

temperature field, namely 200×200, 100×100, 50×50 and

25×25. We evaluate the performance of SAR-HSLID50K+SP

model on general test and special test handled by above

operations. The statistical result is listed in Table 7.

TABLE 7. The performance of SAR-HSLID on the general test set and the
special test set with different input temperature field size.

As shown in Table 7, though the size of input temperature

field is changed to smaller, the final mean accuracies of

four model all reach 100%, which verifies the validation of

our proposed SAR-HSLID framework for heat source layout

inverse design. From the aspect of the number of needed heat

simulation, the smaller input temperature field is reduced, the

more heat simulation is needed. However, even though the

temperature field size is reduced to 25×25 smaller than origin

one, the number of needed heat simulation on general test and

special test are just only 4.75 and 5.50 averagely.The numbers

of required heat simulation for SAR-HSLID (100× 100) and

SAR-HSLID (50 × 50) are also only 2.21 and 0.81 respec-

tively on the general test. In addition, we also select 2 samples

randomly from the test set to verify the feasibility of four

model. The results are illustrated in Table 8. Among 8 exper-

iments, there needs to conduct at most four heat simulation.

And they all could obtain the heat source layout schemes

consisted with our expectation at last. It means that we could

inversely design the heat source layout in practical complex
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TABLE 8. Two samples selected as the test set, drawn randomly from the
general test set ((1) and (2)).

environments not only decreasing the number of heat sim-

ulation but also using temperature measurements as less as

possible by using SAR-HSLID.

D. COMPARISION OF THE PROPOSED SAR-HSLID WITH

THE TRADITIONAL OPTIMIZATION DESIGN METHOD

In above sections, we use the test data to verify the perfor-

mance of SAR model. The calculations are based on cases

where the temperature field corresponds to a known pos-

sible items distribution. In real application, the most ideal

case is that designers could design this kind of temperature

field according to their expectation such as reducing the

max temperature or improving the uniformity of the layout

domain.Thenwe could use SAR-HSLID directly to obtain the

layout scheme. Considering the practical application, there

exist some questions to be further discussed:

• How well does our method perform when using the

near optimal temperature field obtained by optimization

techniques as the input?

• How well does our method perform when using the

relatively rough temperature field as the input?

• How well does our method perform compared with tra-

ditional methods when considering the computational

cost?

In this section, two heat source layout optimization cases

are utilized to answer the above questions. Case 1 demon-

strates an unconstrained heat source layout optimization

problem. The objective of this case is to identify the near

optimal layout to reduce the maximum temperature of the

layout domain. Case 2 demonstrates a constrained heat source

layout optimization problem. In this case, the minimal tem-

perature constraint on the special point needs to be satisfied

simultaneously when minimizing the maximum temperature

of the domain. For example, the temperature value in this

special point cannot be less than a predefined level Tm,

namely Tpoint ≥ Tm [26]. In case 2, the point is selected

to (0.1, 0.0561)m in the layout domain. Tm is set to 335K.

All the following experiments are conducted in the same

environment: Intel(R) Core(TM) i7-8700 CPU @3.2GHz

and 1 NVIDIA Tsela P100 GPU with 16G memory.

We utilize the neighborhood search based layout optimiza-

tion (NSLO) algorithm [26] to solve the above two cases.To

handle the constraint in case 2, the penalty function method is

adopted and then integrated with the objective function. The

TABLE 9. The statistic of time cost of two traditional methods in two heat
source layout optimization cases. Single evaluation time denotes the time
of heat simulation for one layout sample. Total time denotes the needed
total time of optmization algorithm for solving the heat source layout
optimization problem until the agorithm terminates.

TABLE 10. The statistic of time cost of our proposed method.

results of solutions are listed in Table 9. As we can see from

Table 9, though the single evaluation time of heat simulation

is only 0.3034s on average, the cost time of solving one case

by optimization techniques is around 24minutes. It is because

that general optimization algorithm still needs thousands of

number of objective function calculation to obtain the com-

petitive heat source layout scheme. The heat source layout

schemes optimized by them are visualized in Figure 17 and

Figure 18.

Thenwe use the temperature fields optimized by the NSLO

algorithm as the input of SAR50K+SP. The predicted layout

schemes are presented in Figure 17 and Figure 18. From

aspect of the accuracy of our method, though the obtained

temperature field by optimization is hardly seen in the train-

ing data, SAR model could predict 15 out of 20 heat sources

in case 1. Particularly, SAR model could predict all 20 heat

source rightly in case 2. From the aspect of time cost, the

total time of our method including preparing 55,000 data

and training the neural network is around 13h. The total

time could be reduced to 2.33h if we only generate 10,000

samples as training data, the size of which has also posessed

high prediction accuracy in Figure 14. It should also be

noted that due to the independence among these samples, the

computation cost of data preparation can be greatly relieved

by parallel computing based on more CPU cores. Though

the total time is much longer than traditional optimization

methods if the data preparation and training time are added,

the process of data preparation and training the neural net-

work is one-shot. Moreover, the inference time of neural

network is only 0.0464s. The cost would not increase too

much with the layout design problem becoming complex

because of treating it as an image-to-location task. Besides,

faced with the same layout design problem, once the objec-

tive of optimization design is changed such as reducing the

maximum temperature with some constraints in the special

position of layout domain or improving the uniformity of tem-

perature distribution simultaneously, the traditional optimiza-

tion design method needs to repeat the optimization process,

which brings out more cost. However, the additional cost of

our method does not include the time od data preparation and
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FIGURE 17. An illustration of the predicted heat source layout by using SAR50K+SP on the obtained
temperature field by optimization technique in case 1. (a) the input temperature of the near optimal layout,
(b) the predicted layout, (c) the near optimal layout as the ground-truth layout.

FIGURE 18. An illustration of the predicted heat source layout by using SAR50K+SP on the obtained
temperature field by optimization technique in case 2. (a) the input temperature of the near optimal layout,
(b) the predicted layout, (c) the near optimal layout as the ground-truth layout.

training the neural network. It means that the advantages of

reducing the computational cost of our method could be more

remarkable compared with traditional optimization methods

in this case.

To test the feasibility of our proposed method in real appli-

cation, we deal with the temperature field by sampling less

points or changing the values of each point to achieve a new

temperature field as the input of SAR. In the first experiment,

our operation is the same as section IV-C. Then we let SAR

predict the new temperature field, the accuracy in two cases is

listed in Table 11. Generally, SAR model could still predict

competitive heat source layout when the input temperature

field is changed to some extent. When only sampling 1/64

times number of points of the original one, the number of heat

source being predictedwrongly is only reduced from 16 to 13,

20 to 17 respectively in two cases. Apart from it, in the second

experiment, we change the value of each point of temperature

field to generate a new one to further test the practicality

of SAR. We take case 2 as an example. We introduce an

offset of 20K in the original temperature picture. It could

be seen that when the temperature fluctuates around 20K

on the basis of the original one, the accuracy almost does

not decrease. Even if the values are above 50K compared

with the original temperature field, the number of predicted

rightly heat sources is only reduced from 20 to 17. From

the two experiments, we colud see that taking the relatively

rough temperature field as the input, we could still obtain

competitive heat source layout result. These could help to

TABLE 11. The performance of SAR with different input temperature field
size on the two cases.

TABLE 12. The performance of SAR with different input temperature field
values on the two cases.

guide the easier construction of temperature field to realize

the purpose of inverse design in real application.

V. CONCLUSION

In this article, the heat source layout inverse design problem

is studied. Unlike the traditional numerical methods or evo-

lutionary algorithms, we propose a novel framework based

on deep learning named SAR-HSLID. The proposed method

can effectively predict the heat source layout with greatly

reduced simulation cost, which enables its wide applicability.
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In our experiments, the mean prediction accuracy of SAR

model could reach 99.9% on one test sample. In addition,

based on the result predicted by SAR model, a simple but

efficient method by use of the temperature error filed is

proposed to make the final layout satisfy our required ther-

mal performance, the accuracy of which could reach 100%.

Besides, the relationship of the performance of SAR-HSLID

and the size of input temperature field is also investigated.

Experiments show that using less measurement points as the

input, our proposed SAR-HSLID still derive competitive heat

source layout with little heat simulation cost. These validate

the feasibility and effectiveness of the proposed methodology

in HSLID. Future research could conduct experiments on

the more complicated circumstances such as the layout of

multiple heat sources with different shapes or heat intensities

and the construction of temperature field with high quality in

real application.
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