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Abstract
Additive manufacturing of metal components with laser-powder bed fusion is a very complex process, since powder has to be 
melted and cooled in each layer to produce a part. Many parameters influence the printing process; however, defects result-
ing from suboptimal parameter settings are usually detected after the process. To detect these defects during the printing, 
different process monitoring techniques such as melt pool monitoring or off-axis infrared monitoring have been proposed. In 
this work, we used a combination of thermographic off-axis imaging as data source and deep learning-based neural network 
architectures, to detect printing defects. For the network training, a k-fold cross validation and a hold-out cross validation 
were used. With these techniques, defects such as delamination and splatter can be recognized with an accuracy of 96.80%. 
In addition, the model was evaluated with computing class activation heatmaps. The architecture is very small and has low 
computing costs, which means that it is suitable to operate in real time even on less powerful hardware.
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1  Introduction

In recent years, additive manufacturing (AM) as an industry 
has experienced enormous growth. The layer-by-layer pro-
duction process makes it easy to manufacture products with 
complex geometries and different materials. The material 
segment of the industry reported a record growth in 2018, 
with metal materials in particular increasing by 41.9%. A 
continuation of a 5-year growth phase of more than 40% per 
year was recorded in the latest edition of the annual Wohler’s 
Report [1]. This growth demonstrates the need to find solu-
tions that are better suited for mass manufacturing rather 
than rapid prototyping. AM has significant potential in the 
medical field, particularly for custom designs, aerospace, 
and automotive for lightweight construction and functionally 
critical parts manufactured locally at distant locations [2, 3]. 
However, uncertainties regarding component quality cur-
rently delay the full introduction of AM technology in these 

areas. The implementation of in-situ and real-time process 
monitoring is necessary to meet the high-quality require-
ments of these applications, particularly with metal powder.

Laser-powder bed fusion (L-PBF) is an AM process that 
uses metal powder material, which is dispensed in a layer-
by-layer fashion, to create geometries from digital files. The 
digital parts are sliced into layers with a typical constant 
thickness between 20 and 100 µm. During the printing pro-
cess, a laser selectively melts successive layers of metal 
powder on the substrate plate. After each melting cycle, a 
new layer of metal powder is applied upon the previous layer 
and a new melting cycle begins until the complete compo-
nent is produced. The manufactured parts have hundreds 
to thousands of layers with a production time ranging from 
hours to days dependent on the part dimensions [4–6].

Despite the great development of the L-PBF process 
in recent years, the major breakthrough in the industry 
has yet to materialize due to process capabilities. The 
process itself has many input parameters which influence 
the quality of the product. Van Elsen has identified over 
50 parameters which can influence the quality of printed 
components [7]. Many experimental studies have been 
conducted to evaluate the effects of energy density, scan-
ning speed, hatch distance, and scanning strategy. The 
defects like lack of fusion, balling, porosity, cracks, and 
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inclusions negatively affect mechanical properties [8–10]. 
Defects are usually examined after the process; porosity 
is measured using computer tomography, the Archime-
des method, or metallographic imaging [11]. To measure 
Young’s modulus of elasticity, hardness, ultimate tensile 
strength, etc., destructive component tests are used for 
many materials [12]. However, delamination, overhang-
ing structures, unsuitable supports, and residual stresses 
are critical defects during the process [13, 14] and, thus, 
need to be tracked.

With the implementation of in-situ process monitoring, 
tracing of defects during the process becomes possible. 
Generally, the process monitoring can be subdivided in 
three groups [15]. The first group uses melt pool monitor-
ing to characterize the melt pool and the surroundings [14, 
16]. The dimensions and temperature characteristics of the 
molten pool supply information on process reliability and 
the presence of local defects. The second group looks at 
the analysis of the entire layer to detect errors in differ-
ent areas of each layer. The temperature distribution and 
surface after scanning is observed. The third group consid-
ers the geometric growth of the build, from slice to slice. 
The analysis from the second group is used repeatedly for 
every layer over the whole build of components. Up to 
now, the printing process cannot be monitored and evalu-
ated in real time, because the printing times vary greatly. 
That is why, automatic in-situ monitoring and real-time 
defect detection are needed.

Machine learning (ML) is one of the possibilities for use 
in evaluating large amounts of data in real time [17–26]. 
Over the last decades with more powerful hardware, more 
and better ML architectures were developed and refined. ML 
methods are capable of identifying complex non-linear rela-
tionships in large amounts of data. ML approaches are sub-
divided in three learning categories: supervised, semi-super-
vised and unsupervised [27]. Supervised approaches consist 
of two steps for training: In the first step, the data must be 
labeled as, e.g., “acceptable” and “not acceptable”. In the 
second step, the ML network is trained with the labeled data 
[28, 29]. This means before learning, the user must know 
and identify the defects and label them. An unsupervised 
approach is used without labeling of the data [27, 28]. An 
algorithm tries to identify defects itself. Semi-supervised use 
supervised and unsupervised approaches at the same time 
[30]. This means that the ML algorithm utilizes both labeled 
and unlabeled data.

In this work, thermographic images were taken during the 
metal printing process. The thermographic data were used 
to train a created convolutional neural network architecture 
with depthwise-separable convolutions. For performance 
evaluation, k-fold cross and hold-out cross validation was 
used. Heatmaps are utilized to show the exact positions of 
defects.

2 � Related work

ML has been successfully used in different defect detection 
scenarios during the AM process. Gobert et al. [31] used 
in-situ layerwise imaging with a digital single-lens reflex 
camera to take images for supervised ML defect detection 
during the L-PBF process. CT scans were used to evaluate 
the results. The resulting accuracy of defect detection dur-
ing the process was up to 85%. Scime and Beuth [32] used 
grayscale imaging in visual range to classify powder bed 
anomaly classes. These classes were used to develop an ML 
algorithm for in-situ process monitoring. The algorithm is 
working, but before it can be used as in-situ monitoring envi-
ronment, its classification accuracy needs to be improved. 
Okaro et al. [33] used photodiode measurements to develop 
a semi-supervised ML algorithm. The accuracy of the algo-
rithm was at 77% and reduced experimental data are needed 
for training compared to supervised ML. Shevchik et al. [34] 
and Ye et al. [35] used acoustic signals for defect detection 
with ML. The acoustic signals need more data preparation 
before they can be used in algorithm. The accuracy using 
raw data is at 70% and goes up to 93% after performing a 
fast Fourier transformation. Khanzadeh et al. [36] used melt 
pool monitoring images as a source of comparison for dif-
ferent supervised ML techniques. The best tested algorithm 
was k-nearest neighbor with an accuracy of about 98% for 
the detection of melt pool anomalies and potentially micro-
structure anomalies in real time.

Many works use ML architectures in combination with 
acoustics or visual monitoring for automatic defects detec-
tion during the printing process. In this paper, the ML archi-
tecture is based on in-situ off-axis thermographic imaging. A 
convolutional neural network has been trained and evaluated 
for automatic defects detection.

3 � Methods

To utilize ML for error recognition, the thermographic 
imaging data from the laser-powder bed fusion process are 
used. In Sect. 3.1, the in-situ measurement setup with the 
thermographic camera setup and manufacturing conditions 
of specimens are described. Theoretical background on the 
convolutional neural networks is given in Sects. 3.2, 3.3, 
while Sect. 3.4 provides background knowledge about the 
advanced deep-learning techniques used in our architecture. 
Data preprocessing and model evaluation are characterized 
in Sect. 3.5.
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3.1 � Measurement setup

The L-PBF process has been monitored using a thermo-
graphic camera to get the images of detectable errors. An 
SLM 280HL (SLM Solutions AG, Lübeck, Germany) was 
used for the metal printing process. The printing system 
has a 400 W Ytterbium fiber laser mounted and a building 
space of 280 mm × 280 mm × 350 mm with the heating up to 
200 °C. If a heating system up to 650 °C is used during the 
process, the building space reduces to Ø 90 mm × 100 mm. 
The operating gas is Argon through the printing process. 
The material of the specimens is 1.2344 (H13) and has been 
printed with a layer thickness of 30 µm. The printing system 
manufacturer provided the remaining parameters.

T h e  t h e r m o g r a p h i c  c a m e r a  P Y ROV I E W 
640G/50 Hz/25° × 19°/compact + (DIAS Infrared GmbH, 
Dresden, Germany) is used for taking images in the middle 
infrared range. The camera has 640 × 480 sensor elements 
(optical resolution) with a spectral range from 4.8 to 5.2 µm 
and takes up to 50 images per second. The camera position is 
above the process chamber at an angle of 60° to the substrate 
plate. Körperich and Merkel [37] have measured emissivity 
at assigned temperatures for H13 material, which is needed 
for thermographic imaging during the process. This meas-
urement setup is a standard procedure for material analysis 
and process optimization.

3.2 � Convolutional neural networks

In recent years, convolutional neural networks have become 
the prime algorithm for solving many complex computer 
vision problems [38–40]. In the field of image recognition, 
the convolutional neural networks are among the latest deep-
learning methods. Convolutional neural networks are based 
on the multi-layered structure of real brain structures of the 
visual cortex and have shown remarkable results in many 
highly complex application scenarios [40–43].

Classic ML approaches for image recognition consist of 
two separate steps. In the first step, the so-called feature 
engineering, one tries to extract relevant data representations 
from the raw image data, using various algorithms, such as 
HOG [44], SURF [45], or HOUP [46]. In the second step, 
the so-called classification, a machine-learning algorithm 
tries to learn a pattern, which maps a-priori generated data 
representations and a target variable. The algorithm can only 
learn these patterns if they have been extracted by feature 
engineering before. In particular, manual extraction of the 
relevant data representations often leads to suboptimal clas-
sification results [43].

The fundamental difference between convolutional neural 
networks and classical ML approaches for computer vision 
is the combination of these two steps. The classification 
automatically influences the feature engineering process, so 
that features that are more meaningful for the classification 
results are extracted. Unimportant data are automatically 
excluded. Therefore, convolutional neural networks can 
convert raw data, such as pixel data from images, into more 
meaningful data representations, the so-called feature maps, 
which in turn supports the final classification [43, 47]. These 
feature maps represent characteristic areas of images, e.g. a 
nose in face recognition.

3.3 � General convolutional neural network 
architectures

Common convolutional neural network architectures consist 
of multiple convolutional layers. Each image is processed 
as a three-dimensional array. By applying multiple small 
filter kernels onto the image array, the convolutional layers 
transform the original input into feature maps [47, 48]. As 
shown in Fig. 1, the filter matrices are applied to all areas of 
the original images, which preserve spatial information [43]. 
These feature maps are then passed through a non-linearity 
function like ReLU [49], a batch-normalization layer [50], 
convolutional layer, and a pooling layer [48]. By combining 
several convolutional, activation, batch normalization, and 

Convolutional 
layer

Pooling 
layer

Input Fully connected
layer

…

Pooling 
layer

Output

Delamination
Metal splatters
OK

Fig. 1   Example of a typical convolutional neural network architecture, in which the network consists of multiple blocks of convolutional layers 
followed by pooling layers and one or more fully connected layers at the end for classification
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pooling layers, convolutional neural networks are able to 
automatically extract useful feature representation with fully 
connected layers from the raw image and optimize them to 
represent certain target classes [41, 43, 51].

The huge advancements made in the development of 
convolutional neural networks are mainly driven by the 
ImageNet Large Scale Visual Recognition Competition 
(ILSVRC) [52]. The ImageNet competition is one of the 
most complex and interesting computer vision competi-
tions. Many of today’s state-of-the-art techniques are based 
on famous ImageNet winning architecture, evolving from 
classical stacks of layers, such as AlexNet [53], VGG [54], 
to more sophisticated architectures, such as Inception [51], 
ResNet [42], Xception [41], MobileNetV2 [55] or DenseNet 
[56].

3.4 � Depthwise‑separable convolutions

Classical convolutional neural network architectures for deep 
learning typically consist of multiple layers of convolutional, 
max pooling, and normalization layers, followed by a classi-
fier consisting of fully connected layers and dropout. Until 
the development of the Inception modules, convolutional 
neural networks grew in size to learn more complex feature 
maps and achieve a better classification performance [53, 
54]. The disadvantage of this increase in network size is the 
strong increase in network parameters and the computational 
resources required [55].

In normal convolutional layers, the kernel must learn spa-
tial feature representations and cross-channel representations 
simultaneously. The Inception module divides this combined 
operation into separate steps, which handle cross-channel 
information and spatial information independently. First, the 
cross-channel information is summarized by a 1 × 1 convo-
lution, which maps the dimensions of the input data to a 
smaller feature space (feature map). For example, the three 
color channels red–green–blue are combined to a mixed 
color channel. The spatial information is then extracted with 
a standard 3 × 3 or 5 × 5 convolution [51]. In this paper, the 
3 × 3 approach is implemented, because this makes the net-
work smaller and reduces computational costs. A simpli-
fied version of an Inception module is shown in Fig. 2. The 
input is divided in three parts; each part goes through 1 × 1 
convolution and then 3 × 3 convolution. At the end, all parts 
join together in concatenation for further extraction of use-
ful features. Inception modules have enabled a significant 
improvement in classification performance while simultane-
ously reducing the number of model parameters [41, 51, 55].

The depthwise-separable convolutions are based on the 
Inception modules. However, the order between 1 × 1 con-
volution and 3 × 3 convolution is inverted. Consequently, the 

spatial information is first extracted before a new feature 
map is created [41].

3.5 � Our network architecture

Our network architecture consists of three blocks of convo-
lutional and batch-normalization layers. Inspired by architec-
tures in [40, 41, 55], depthwise-separable convolutions were 
used in blocks 2 and 3, effectively reducing the amount of 
trainable parameters. The convolutional blocks are followed 
by a global average pooling layer and a fully connected soft-
max layer for the final classification.

The first layer in our network is a regular convolutional 
layer, followed by a batch normalization layer (see Fig. 3). 
All consecutive convolutional layers are depthwise-sepa-
rable convolutional layers. The output shape of each layer 
block is given below. The usage of depthwise-separable con-
volutions reduces the channel dimension, where the number 
of channels is equal to the number of filters in the layers. 
A large fully connected classifier is not used, but, instead, 
dropout is used to control the overfitting and directly feed 
into a softmax layer.

3.6 � Evaluation and data preprocessing

The data set used to train and evaluate our convolutional 
neural network consisted of 4,314 RGB color images. To 
extract the images, the proprietary IRDX files are converted 
into standard AVI video files without video compression 
and 1280 × 768 px (pixels) resolution. From the original 
video, 18 short video sequences are extracted showing either 
delamination, splatters, or images without defects. Each 
frame of these video files is extracted and saved as a lossless 
PNG image file. The images are cropped to 270 × 270 px to 
remove unnecessary information like the camera manufac-
turer’s logo, temperature scales, and borders.

3x3 
convolution

1x1 
convolution

3x3 
convolution

1x1 
convolution

3x3 
convolution

1x1 
convolution

input

concatenation

spatial

depthwise

Fig. 2   Simplified version of the Inception module from [41]
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For the performance evaluation of the predictor, a 
combination of k-fold cross validation and hold-out cross 
validation is used. First, the entire data set was split into 
training and validation subsets. The validation data set 
is never shown to the model during training, and is only 
used to calculate performance values after the training is 
finished. To prevent information leakage, the data set was 
split into training and validation data sets before extract-
ing frame-wise images. Therefore, the model is prevented 
from overfitting on certain sequences of images.

The training data set was used to train the model using 
a k-fold cross validation, where the training data set is 
repeatedly split into training and test subsets. At each 
split, the model is trained with the training data and the 
best model is selected using the test split. After the model 
training is finished, the calculation of the performance 
metrics using the previously mentioned validation data set 
is carried out. This approach allows clear identification of 
potential overfitting during the validation [57].

As for ML preprocessing, the images where resized 
to 224 × 244 px for faster processing and scaled to [0,1], 
also known as data normalization, to overcome different 
learning problems. To improve the classification accuracy 
and decrease model overfitting [53], data augmentation 
techniques were applied to the training set images. The 
images were rotated by 90 and 270°, flipped horizontally 
and vertically, and applied with random image noise and 
blur.

4 � Results

Keras 2.1.5 package [58] with Tensorflow 1.8 backend 
[59] was used to train the convolutional neural network. 
Training was conducted on an Nvidia GeForce GTX 1080 
Ti for 10-folds and 20 epochs on each fold. After each 

fold, the model was evaluated using the validation subset, 
averaging the results of all 10-folds arithmetically.

4.1 � Performance evaluation

For model evaluation balanced accuracy, class averaged 
sensitivity (true positive ratio), precision (positive predic-
tive value), and Cohen’s Kappa score were used. As shown 
in Table 1, our model achieves good performance values.

The results show that our convolutional neural network 
can identify delamination defects and splatters with a very 
good accuracy of 96.80%. Cohen’s Kappa score is 96.42%, 
while the true negative rate is at 91.04%. These results 

Fig. 3   Our final model archi-
tecture

Depthwise separable convolution Convolutional layerBatch normalization

54x54x16

Input

112x112x32

110x110x64

Global avg pooling Softmax

1x16 Dropout

Table 1   Evaluation metrics of our convolutional neural network, all 
performance metrics are based on the validation data set only, and the 
results of all 10-folds are averaged arithmetically

Performance indicator Mean (%) STD (%)

Accuracy 97.87 0.93
Balanced accuracy 96.80 2.81
True positive rate 96.80 2.81
True negative rate 98.95 0.55
Positive predictive value 96.52 1.72
Prevalence 33.33 –
Kappa 96.42 1.55

Table 2   Confusion matrix of fold 4 at accuracy of 98.90%

Bold values indicate the diagonal of the confusion matrix and the 
correctly classified examples, underpinning the good results.

Predicted Actual

Delamination Splatters OK

Delamination 840 0 0
Splatters 0 899 22
OK 0 0 226
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underpin the good performance of our model. As shown 
in Table 2, the model correctly identifies all delamina-
tions as well as all cases of splashes. Only 22 images were 
incorrectly classified as splatter cases, while in the actual 
image, no splatters can be seen.

4.2 � Heatmaps

In addition, our model was evaluated with computing class 
activation heatmaps. These heatmaps indicate the impor-
tance of spatial locations for a particular class. Therefore, 
class activation heatmaps can be used to visually explain 
the class predicted by the network. In particular, we used 
the gradient-weighted class activation mapping (Grad-CAM) 
algorithm [60].

The Grad-CAM heatmap in Fig. 4 indicated that our 
network considers the very hot part in the top part as rel-
evant for assigning the class “delamination”. Furthermore, 
the heatmap also shows the importance of the colder image 
regions in the bottom and right part. This indicated that 
our model considers the temperature difference between 
the delaminated part and a non-delaminated part as highly 
important for the final decision.

5 � Discussion

As demonstrated in Table 1, our convolutional neural net-
work performs very well and achieves excellent classifica-
tion results. These results were underpinned by the confu-
sion matrix in Table 2. The confusion matrix shows that 
all of the highly relevant delamination defects are correctly 
classified, while only 22 out of 1,987 images are falsely clas-
sified as splatters, where the correct label would be “OK”. 
However, the model correctly identified all cases of the 
more severe type of defect, the delaminations. The evalu-
ation of the Grad-CAM shows that the network considers 

the unusually heated parts of the thermographic images as 
highly relevant for the final decision. This further underpins 
the good results, as shown in Table 1.

Previous studies have shown that machine learning 
can be deployed for defect detection in the L-PBF pro-
cess, using various techniques like acoustic sensors [34], 
thermal [36], grayscale [32], or high-resolution imaging 
[31]. While the current benchmarks range from 77 to 98% 
accuracy in detecting errors, they rely on either extensive 
data preprocessing or upon additional imaging techniques.

With a mean balanced accuracy of 96.80% and a top 
balanced accuracy of 98.80%, our model outperforms all 
the current benchmarks for in-situ defect detection dur-
ing the L-PBF process. Most of the current image-based 
algorithms use classical feature extraction in combination 
with a shallow machine-learning algorithm. The results in 
Tables 1 and 2 show the benefit of using the convolutional 
neural networks. In comparison to [32], we process the 
entire image instead of processing the image pixel-wise. 
Therefore, we can evaluate whether the entire image shows 
a defect, instead of classifying if a certain pixel shows 
a potential defect. As compared to melt pool monitoring 
or pixel-wise classification, we can detect larger defect 
types like metal splatters, which can only be detected when 
monitoring the entire image. Our model also does not need 
extensive data preprocessing and is not dependent upon 
additional imaging sources like X-ray, but is able to iden-
tify defects from thermographic images directly.

Furthermore, our model is very small and light on com-
putational costs. As shown in Fig. 3, our model is rela-
tively small in comparison to well-known architectures 
such as VGG [54] or ResNet [42]. These large models 
are capable of solving very complex object recognition 
tasks such as the ImageNet competition, but do have a 
strong tendency to overfit on less complex problems. Small 
models are usually more specialized for the given task 

Fig. 4   Heatmap for one example 
of a delamination defect: a the 
original thermographic image; 
b the class activation heatmap 
of our network where important 
spatial areas are highlighted, 
with the red circles indicating 
the area of high importance in 
the Grad-CAM heatmap
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and provide high accuracy values, while being light on 
computational resources [40].

6 � Conclusions

In this work, it could be shown that a convolutional neural 
deep network can be used to detect and identify defects 
during printing processes with an average balanced accu-
racy of 96.80%. Our model is very small and light on com-
putational costs that achieves fast compilation and train-
ing without a need for powerful hardware. For training 
and testing, thermographic images were used, which were 
taken during in-situ off-axis monitoring in the printing 
process of H13 steel specimens. One geometrical shape, a 
critical defect delamination and an uncritical defect splat-
ter were chosen for the training of the network. In addition 
to deciding on the type and position of error, the network 
can also output a heatmap.

Our model is well suited for in-situ defect detection of 
L-PBF processes and can be easily adopted to other defect 
types, material systems, and geometric shapes. Since our 
model is only based on a single source of information, it is 
easy to adopt to other defect types and materials, without 
the need to carry out additional evaluations using expen-
sive and time-consuming methods like X-ray or CT.

6.1 � Limitations

This convolutional neuronal network can only detect 
defects such as splatter and delamination. However, other 
defect types such as cracks, pores, balling, and unfused 
powder have not been evaluated in the current experi-
mental setup. Further tests are necessary to fully evalu-
ate the generalizability of our model towards other types 
of defects. Additionally, only one geometrical shape and 
H13 material were used for the training and evaluation of 
our current model. Since different materials have different 
temperature fields, which directly influence the thermo-
graphic imaging, further tests using other materials are 
necessary.

6.2 � Future work

In future work, we will re-evaluate the performance of our 
network using a broader variety of materials and geometric 
shapes, thereby showing the models performance in more 
potential applications, while other errors should also be 
recognizable.

Furthermore, we will re-evaluate our work by conduct-
ing additional experiments on a broader variety of defect 

types such as cracks, pores, overheating, or balling defects. 
Additionally, we plan to evaluate the runtime performance 
of our model using an embedded hardware platform and 
low-powered computing devices like a Raspberry Pi to 
assess the runtime performance of our model on limited 
computational resources.
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