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Abstract
With the emergence of COVID-19, smart healthcare, the Internet of Medical Things, and 
big data-driven medical applications have become even more important. The biomedical 
data produced is highly confidential and private. Unfortunately, conventional health 
systems cannot support such a colossal amount of biomedical data. Hence, data is typically 
stored and shared through the cloud. The shared data is then used for different purposes, 
such as research and discovery of unprecedented facts. Typically, biomedical data appear 
in textual form (e.g., test reports, prescriptions, and diagnosis). Unfortunately, such data 
is prone to several security threats and attacks, for example, privacy and confidentiality 
breach. Although significant progress has been made on securing biomedical data, most 
existing approaches yield long delays and cannot accommodate real-time responses. This 
paper proposes a novel fog-enabled privacy-preserving model called �

r
 sanitizer, which 

uses deep learning to improve the healthcare system. The proposed model is based on 
a Convolutional Neural Network with Bidirectional-LSTM and effectively performs 
Medical Entity Recognition. The experimental results show that �

r
 sanitizer outperforms 

the state-of-the-art models with 91.14% recall, 92.63% in precision, and 92% F1-score. 
The sanitization model shows 28.77% improved utility preservation as compared to the 
state-of-the-art.

Keywords  Internet of Things · Fog computing · Machine learning · Smart healthcare · 
Privacy · Sanitization

1  Introduction

Digital technologies, such as the Internet of Medical Things (IoMT), big-data analytics, 
5G, and Artificial Intelligence (AI), have revolutionized critical diseases and medical 
illness prevention, monitoring, and treatment [1]. IoMT with 5G-connected devices 
supplies medical aids with new and advanced facilities. Patients and medical staff (doctors, 
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nurses, and health organizations) can use their mobile devices to remain in contact, 
lowering the rate of physically hospitalizing a patient. As such, the IoMT-based platforms 
will help gather health-related data and provide access to health organizations to prevent, 
control, and mitigate the spread of viral infections, e.g., COVID-19. In an IoMT smart 
healthcare ecosystem, such massive data is synchronized to the cloud for storage and 
analysis [2]. The cloud-based smart healthcare ecosystem comprises of sensor layer and 
the cloud layer. The sensor layer provides the patients’ credentials and sensory data, which 
is then stored in the cloud [3]. This data may be shared with health organizations, families, 
and authorized parties for research purposes. It also enables the healthcare facilities to be 
delivered to the isolated areas on time, at reasonable prices. Smart healthcare systems use 
different devices, such as wireless sensors, cameras, and controllers, to allow patients’ 
automated recognition, awareness of the right medication, and serious initial signals 
to detect health decline (seizure, heart failure, test results, e.g., COVID-19 test and 
temperature measurements).

As anticipated in [4], current hospital-home healthcare systems will turn into only 
home-centred systems by the year 2030. For example, the current COVID-related 
emergency has already confined people/patients to their homes. As a result, present off-line 
healthcare systems are re-shaping accordingly into digital smart healthcare systems [5]. 
To meet these evolutionary changes, advanced healthcare infrastructures and technologies 
must be taken into account. However, such technological shift en route to pervasive smart 
healthcare systems brings upon new challenges, such as security, efficiency in terms of 
latency and energy consumption, inter-operability, mobility, reliability and privacy [6].

In the current IoT cloud infrastructure, the mobility of things needs further improvement. 
It covers only hospital/building premises, which causes poor scalability and efficiency [7]. 
Moreover, connected devices and massive data’s pervasiveness bring congestion in the 
network and unwanted delay in cloud-based smart healthcare infrastructure. Thus, the cloud 
computing paradigm is not suitable for such infrastructures, leading to fatal consequences. 
Therefore, fog computing can be introduced between sensor devices and the cloud layer to 
meet delay-sensitive health application needs. It provides cloud-like services at the edge 
of the network. It works as an intermediary computation layer, which provides scalability, 
low latency, low power consumption, seamless mobility, and many other advantages, e.g., 
as summarized in [8]. However, both cloud and fog introduce new security threats to the 
smart-heath domain. These attacks include (but are not limited to) confidentiality, integrity, 
anonymity, privacy, and data freshness.

1.1 � Motivation

The electronic form of medical data (AKA Electronic Medical Record (EMR) or Electronic 
Health Record (EHR)) is growing massively. It is generally classified into structured 
(i.e., statistical databases, tables) and unstructured data (i.e., text, videos, images, and 
voice). For the safety of structured medical data different security measures are used, for 
example k-anonymity, l-diversity, t-closeness, Differential Privacy (DP), and relaxed form 
of (DP) [9]. Since much clinical information is text-based, it is inevitable to discover the 
solutions to protect such data. Redaction is the initial step to mask or remove any secret 
information from the piece to preserve medical data. It completely changes the meaning 
and degrades the use of information. Thus, there is another way called “sanitization,” 
which converts the most important phrases to the least important ones, such as “Corona”, 
can be masked by “Virus.” The idea is extensively utilized to achieve safety measures for 
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unstructured data. Many recognized methods used for word-based articles are according to 
the analytical concept of data. However, many other restrictions should be considered. To 
detect the clinical equipment automatically from the collection, this concept needs simple 
procedures. Consequently, several Machine Learning (ML) techniques have been used to 
detect medical entities, such as diagnosis, testing, and treatments.

The Deep Learning (DP) models are the most dominant ones for unstructured data 
classification [10, 11]. However, more intelligent designs must be discovered to improve 
efficiency. In most of the existing ML and DP-based solutions, privacy breaches along with 
utility issues are inevitable. Therefore, it is important to design such a model, which may 
handle both issues effectively. Then, redaction-based techniques were used to overcome 
issues related to manual anonymization [12]. The redaction of unstructured data is a 
process of removal of sensitive terms from raw medical data being sensed or acquired. 
However, removing sensitive terms may also change the semantics of the underlying 
document. It may also affect the quality of the document resulting in less usability and lead 
to a privacy breach.

1.2 � Our Contributions

The Internet of Things (IoT) is a rapidly developing technology that seeks to provide 
ubiquitous access (at any time and from any location) to a wide variety of devices through 
the Internet. It serves as the foundation for various smart applications, including automation 
and monitoring in smart healthcare systems. Various technologies, such as fog computing, 
contributes significantly to the concept of vast and intelligent connectivity. It helps boost 
quality and dependability by offering innovative computing options and resource planning 
[13, 14]. Cloud services may help the IoT get inexpensive on-demand solutions for large 
data storage and heavy processing. Unfortunately, there are still unsolved problems in 
cloud-based IoT applications, such as high capacity client access, fluctuating delay, safety, 
and less mobility and location awareness [15]. Applications such as real-time health 
monitoring, in particular, is highly delay-sensitive to cloud facilities. Fog computing, 
which provides various services and numerous resources to end-users at the edge of the 
network, has been developed to solve these issues. It relies on local networks rather than a 
central cloud architecture to create specialised channels. It improves the end-user Quality 
of Service (QoS) and user experience, guaranteeing decreased service latency. In this 
paper, we proposed a fog computing-based privacy model for smart healthcare using deep 
learning called �r sanitizer, which considers a smart healthcare system realized in the fog 
network to reduce latency for delay-sensitive medical applications. The proposed scheme 
can handle heterogeneous data collected from heterogeneous networks having different 
data structures and types, such as numeric, alphanumeric, and textual. The proposed MER 
minimizes latency and energy consumption at the sensor (node) level. The suggested 
model has a wide range of applications. Clinical entity detection offers a wide variety of 
applications in the biomedical sector, including proteins, genes detection, illnesses, and 
medication chemical formulae. It aids in optimising search queries, the interpretation of 
clinical reports, and the protection of biomedical data’s privacy [16]. Biomedical data 
privacy is a relatively new field of study. It enables institutions, such as hospitals, to share 
medical data (in a secure manner) with the research groups without jeopardising patient 
confidentiality [17]. While sharing medical data with researchers may help improve 
healthcare and provide better treatments for illnesses, it cannot be released in its entirety 
to preserve individuals’ privacy. To maintain confidentiality, it is necessary to identify 
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clinical entities accurately. Confidentiality is preserved when clinical entities (disease, test, 
and therapy) are accurately identified and sanitised (generalised). The main contributions 
of the paper are as follows: 

(1)	 We present a novel fog-enabled privacy-preserving framework called Deep Privacy 
to mitigate latency and energy-consumption issues at the node-level by using deep-
learning-based Medical Entity Recognition (MER) scheme with enhanced recognition 
accuracy by combining local and global contextual representation.

(2)	 The proposed framework improves the privacy of unstructured biomedical data 
by enforcing medical entity sanitization, called �r-sanitization, a variant of 
sanitization mechanisms that not only sanitizes the data but also preserves its 
utility at maximum.

The rest of the paper is organized as follows: Sect.  2 discusses the related work. In 
Sect.  3, we detail the proposed framework.  Sect.  4 discusses  medical entity recognition 
and Sect. 5introduces enhanced sanitization model. In Sect. 6, the numerical analysis and 
results are discussed. In Sect. 7, the experimental analysis and discussion is presented. And 
lastly, the conclusion and future work is given in Sect. 8.

2 � Related Work

Recently, contextual embedding-based models have been proposed using both character-
level and token-level representation to improve MER accuracy, for instance Word2Vec 
[18], GloVec [19], ELMO [20], Bert [21], and Bio-Bert [22]. However, These models 
require rigorous computational resources and cause a high processing cost. Therefore, 
there is still a need to explore the architecture of deep learning-based models for achieving 
high recognition accuracy. Initially, Information theoretic-based models were proposed 
for document sanitization. One of these models is the local Information Content (IC) that 
is used for sanitization. However, this model is biased towards the local high-frequency 
occurrence of the terms [23].

Sanchez et  al. proposed a novel privacy-preserving model, based on sanitization, to 
overcome issues related to IC models in [24]. However, it has non-monotonically behavior 
for available medical concepts‘ taxonomy. It also shows language ambiguity [25]. Saha 
et al. [26] discussed the use of fog layers in IoT-based healthcare systems and their usage 
in dealing with EMRs. Zhao et al. [27] propounded a privacy-preserving data aggregation 
scheme for edge-based VANETs. It reduced computing and communication overhead at 
the node level and also released the communication pressure on the edge. However, there 
is still room for reducing computation overhead on the cloud center. Similarly, Dong et al. 
[28] investigated an edge-based healthcare system in IoMTs to minimize the system-
wide cost in the edge-based healthcare systems. However, MUs lead to deficient wireless 
channels and computation resources.

For VANETs, Sui et  al. [29] presented an edge-based privacy-preserving data 
downloading technique. However, cooperative downloading and a lightweight and 
cryptography-based incentive are required for resource-constrained devices. Wang et  al. 
[30] proposed a scheme using fog-based content transmission and collective filtering for 
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vehicles. Bouchelaghem and Omer [31] proposed a privacy-preserving mechanism using 
a pseudonym changing strategy for VNs, where they can communicate autonomously. 
However, the simulation area used in this research is small and not suitable for big cities. 
Guan et al. [32] proposed a public auditing scheme for fog-to-cloud data storage integrity 
and privacy. However, the scheme requires extra devices to mitigate computation and 
throughput overheads. Moreover, it may lead to unwanted homomorphic encryption.

2.1 � Summary of Related Work

To summarize, ML-based mechanisms require immense pre-processing and parameter 
tuning, which can be improved using deep learning-based models. However, it is still 
needed to explore various architectures, such as CNN, LSTM. Not much work has been 
done in this area, so far, to the best of our knowledge. Most of the proposed mechanisms 
either use local or global context for MER. Having said that, if both the local and the 
global contexts are conjoined, the detection accuracy may be improved (as in our case). 
Despite that, most of the mechanisms focus only on word embedding rather than exploring 
promising (above mentioned) architectures to improve accuracy. That is why significant 
improvement has not been observed. Also, both the recognition and the sanitization 
mechanisms are not implemented and used as a single technique. Therefore, it is inevitable 
to propose a single complete architecture that considers both. To this end, we already 
proposed N-sanitization [17] without using the concept of deep learning. We analyzed our 
previous technique also and came up with a fog computing-based privacy model using 
deep learning. Table 1 compares the proposed model with existing works.

3 � System Model and Architecture

This section proposes a novel framework called Deep Privacy that enables the automatic 
detection and sanitization of the medical entities for medical records (e.g., sensors‘ data, 
reports, and medicines prescriptions). Since these documents hold the patients’ data, it 
becomes mandatory to sanitize before printing and transferring. Therefore, sanitization-
based approaches were proposed [17]. In sanitization, the sensitive and most-concerned 

Table 1   Notation description Symbols Meanings

� Sigmoid function
⊗ Element-wise product
Tanh Tangent-hyperbolic function
� Privacy threshold
�
r

Random privacy threshold
SenT

i
Single sensitive term

SenT Sanitized terms
C_T Clinical taxonomy
C_T

n
Lenght of clinical taxonomy

C_T
gen

Most generalized clinical term
sanitize(SenT) Generalized/sanitized sensitive term
MKB Clinical terms taxonomy



2384	 S. A. Moqurrab et al.

1 3

terms are masked with generic and less certain terms. In this way, the unstructured medical 
data’s privacy may be preserved against privacy breaches and threats (Table 2). Figure 1 
shows the proposed architecture of fog-enabled Deep Privacy framework is divided into 
four layers. In addition, Fig. 2 shows the activity diagram (overall flow) of the proposed 
framework. The detailed activity of the proposed model (and layers) is discussed below:

(1) Application layer This layer targets the users of the medical data that has been 
sensed from the sensor devices. The users may be doctors, paramedical staff, the 
patient himself, and his family. Third parties, such as different organizations conducting 
research, are also a part of this layer. However, they access sanitized data from the 
cloud, unlike the rest of the users, accessing the fog layer’s data.

Table 2   Comparison of �
r
 sanitizer with related works

Reference Cloud/Fog Deep 
learning

IoT Detection Sanitization Overhead

Energy Latency Computa-
tion

Storage

[18] × ✓ × ✓ × ✓ ✓ ✓ ✓

[22] × ✓ × ✓ × ✓ ✓ ✓ ✓

[27] Fog × ✓ × ✓ × × × ×

[28] Fog × ✓ × × × × × ×

[31] Cloud × ✓ × ✓ × ✓ × ×

[22] × × × × ✓ ✓ × × ✓

[25] × × × ✓ ✓ ✓ ✓ ✓ ✓

Proposed Fog ✓ ✓ ✓ ✓ × × × ×

Fig. 1   Proposed architecture of 
fog-enabled �

r
-Sanitizer
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(2) Cloud layer The cloud layer receives privacy-preserved (sanitized) data from the 
fog layer and provides permanent storage for that. Third parties, such as researchers, 
publishers, and pharmaceutical organizations, may request the cloud layer data.

(3) Fog layer The fog layer is introduced to minimize latency for delay-critical real-
time applications (e.g., in the case of health emergencies), reduce power consumption, 
and avoid congestion in the network backhaul [33]. The fog layer acts as a control 
layer, responsible for medical data recognition and privacy preservation. It comprises 
two main modules: i) MER module to recognize unstructured data and ii) �r-sanitized 
to sanitize the data, as shown in Fig.  3. It depicts that detected sensitive terms are 
further sanitized in the fog node and forwarded to the cloud for permanent storage. 
This sanitized data is accessible by third parties (researchers) via the cloud for research 
purposes.

The data received from the infrastructure layer are summarized in reports. The medical 
practitioner generated prescriptions are saved transiently on this layer. In this way, before 
sending the entire data to the cloud, only summarised data is forwarded to save band-
width and minimize latency. The medical correspondents and patients can access that data 
directly for real-time responses from the fog. The data is sanitized before sending it to the 
cloud layer for permanent storage. After this, the sanitized data may be shared with third 

Fig. 2   Activity diagram of pro-
posed framework

Fig. 3   Flow of sequence in �
r

-Sanitizer
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parties for research purposes. This data is secured using the Deep Privacy mechanism. 
Suppose the data security is breached during the transition from the fog layer to the cloud. 
In that case, the adversaries cannot get the real unsanitized data. However, the security of 
data sent from the infrastructure layer to the fog is beyond this paper’s scope. We assumed 
that the data sensed from a device and transit to the fog layer was secured.

Firstly, the unstructured data (sensor and textual data) is forwarded to the MER 
module for recognizing medical entities. To recognize them accurately, a new concept is 
considered, which is the combination of local context using CNN and global context using 
LSTM with CRF. Secondly, the recognized entities are shipped to �r-Sanitizer module for 
sanitization along with � . � is a threshold that is used to control the privacy and utility 
trade-off. For instance, while preserving privacy in the sanitization process, a term is 
generalized. For example, the term “COVID” may be generalized as “Virus.” Thus, there is 
a trade-off between privacy and utility. The more is the generalization. The less is the utility 
[9]. Thereby, � is used to balance between them. If the value of � is high, the privacy will 
increase, and the utility will decrease, and vice versa. Therefore, we have not set a value 
of � . We left it to the data-holder to set the value according to their requirements. After 
receiving inputs from the MER module and � from the requester, �r-Sanitizer sanitizes the 
recognized entity using SNOMED-CT (knowledge-base [34]) for generalization. Lastly, 
the medical terms are replaced by sanitized terms and shared on the cloud.

(4) Infrastructure layer This layer consists of smart sensor devices that are attached to a 
patient on the move and at rest. These sensors keep observing patients‘ vitals and keep on 
sending the data to the fog layer. The data is sent to the healthcare correspondents. In case 
of any abnormal and emergency, the response is sent back to the patient or their family or 
caretakers.

4 � Medical Entity Recognition

For medical entity recognition, we deployed a variant of RNN, called Bi-LSTM, an alter-
native to RNN with CRF. It is suitable for such issues in terms of efficiency, as mentioned 
in [35]. Moreover, it can avoid gradient varnishing and hold the long-distance dependen-
cies of the related information. It emphasizes more on the information, which is related to 
the global context than the local ones. Hence, a new design is considered using CNN with 
Bi-LSTM to grab local and global context more efficiently. Figure 4 illustrates the MER 
model with four layers. The components of the model are given below:

Input layer The eventual occurrence of each word is recorded using two separate token 
presentations called; token-level and character-level representations. This representation is 
more often called word embedding and character embedding. The token saves the relative 
data in the vector space, and the grammatical information is recorded by character-level 
representation. The token-level representation uses the already utilized Consecutive Bags 
of Words (CBoW) and skip-gram models [35]. The character-level representation uses 
bidirectional LSTM. Consequently, the token- and the character-level representations 
are combined to couple every word. This combined representation is transferred to the 
contextual layer.

Contextual layer This layer produces local context for every token representation 
utilizing CNN. The token representation from the input layer is taken by CNN and generates 
contextual information. Three different window sizes (i.e., 3, 5, 7) are used to achieve an 
efficient local context. These window sizes generate different contextual information, 
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which plays an important role in efficiency by transiting from confined to a wider context 
[10]. The local context of the said windows is coupled together for efficacy. After this, the 
particular representation is transferred to the bi-LSTM layer to acquire the global context. 
Based on the integrated CNN data, the bi-LSTM generates global data in sequence. For 
instance, a phrase P = (p

1

, p
2

, p
3

,… , pn) with every text CNN represents local data as 
M = (m

1

,m
2

,m
3

,… ,mn ). This relative data is taken by bi-LSTM as an input and produces 
global presentation as GL = (gl

1

, gl
2

, gl
3

,… , gln) , where GLn = [GLN
fn
,GLN

bn
]
N is a fusion 

of output for all the backward and forward passes of LSTM.
Attention layer This layer couples CNN-generated local context representation with the 

global context representation generated by Bi-LSTM. After the coupling of the context, it 
forwards it to the output layer.

Output layer The output layer takes the sequence GL = (gl
1

, gl
2

, gl
3

,… , gln) from 
attention layer as an input and uses CRF to predict the best possible label sequence for each 
token S = (s

1

, s
2

, s
3

,… , sn) . For example, an input training data-set GL and all the variables 
of the CRF model ( � ) can be computed by increasing the log-likelihood by using Eq. 1:

where s denotes order label for string of tokens denoted by P, cp , is a conditional occurrence 
of s, given, that, P and � . If we assume that P

�
(gl, s) is the result of the label sequence s 

for every token in the phrase, then, the standardization of P
�
(gl, s) is an approximation of 

conditional probability cp . To get the highest spot of labels, which have the closest mate, 

(1)C(�) =
∑

(p,s)∈GL

log(cp(s|gl, �))

Fig. 4   The proposed deep neural 
networks-based MER model
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the CRF design combines emission matrix M along with a transition matrix N for the 
calculation of the result of the label sequence P

�
(gl, s) as follows (Eq. 2):

In Msq,q , q represents the probability of token (word) glq with the label sq . The Qsq−1,sq 
represents probability of the word glq−1 with the label sq−1 along with glq with a label sq . 
Dynamic programming can be a promising solution to amplify the log-likelihood of input 
training information set GL. To get the ideal label sequence for a specific input phrase, the 
Viterbi algorithm can be used [35].

5 � Sanitization

The proposed �r-sanitizer is an enhanced sanitization model that addresses the problems 
of conventional IC-based sanitization [24]. The result shows that the proposed model is 
capable of sanitizing sensitive information more accurately. It reduces the issues associated 
with ambiguous language, the non-logical nature of the global IC computation, extra 
sanitation (which results in the least data utilization), and minimizes the computation 
cost. We used the SNOMED-CT to sanitize the previously detected sensitive terms (SenT) 
by replacing them with their generalized Sanitized(SenT) terms. Every sensitive term 
(SenTi) should be safeguarded, so privacy is not disclosed to the attacker. The threshold 
is not required in the proposed model (e.g., the threshold, beta, is utilized in [17]). 
Conventionally, the threshold is set according to the least IC available among the terms, 
which may over-fit the sanitizing model and result in degraded utility [25]. We introduced � 
as a limen for sanitation, influenced by K-anonymity, L-diversity, T-closeness, Differential 
Privacy (DP), and Relax form of DP [9]. These are popular and well-practised models used 
for privacy-preserving of structured data-sets. The � is adjustable by the data-holders for 
the protection of the information as per their requirement and according to the sensitivity 
of each medical datasets. Equation 3 is used to set the threshold to user-defined �.

where rand(1, � ), � ≤ gen and C_T = C_T
1

,C_T
2

,… ,C_Tgen . In Eq.  3, we proposed 
the basic formulation for � as a threshold. If the value of � is less than the length of its 
generalized hierarchy ( C_T  ), all those sensitive terms SenTi ∈ SenT  are generalized/ 
Sanitized randomly up to the user-defined � level.

where 𝛿 > gen. In Eq. 4, we show that if the value of 𝛿 > gen (length of its generalized 
hierarchy or clinical taxonomy), then all those sensitive terms SenTi ∈ SenT  are replaced 
with their most generalized terms, which is C_Tgen . From the set of generalized/sanitized 
terms sanitize(SenTi) for each sensitive term SenTi , the generalized term that fulfills the 
conditions of Eq. 5 is selected as optimal generalized term.

(2)P
�
(gl, s) =

n∑

q=1

(Msq,q+Qsq−1,sq
)

(3)Sanitized
∀SenTi∈SenT

= C_Tr(SenTi)

(4)Sanitized
∀SenTi∈SenT

= Sn(SenTi)
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Equation (5) is a combination of Eqs. 3 and 4. Based on the afore-mentioned equations, the 
privacy bounds of proposed sanitization is defined by the following lemmas, which limit 
the disclosure risk of an adversary:

Proposition 1  If the privacy threshold � is less than n, then the generalization/sanitization 
level of SenTi is randomly selected between 1 to � , where the probability of threshold selec-
tion is P = 1∕�.

Proof  The generalization of SenTi is 1 to � . In contrast if it is � + 1 to n, the probability of 
� is always greater than 1. This contradicts the rule where the sum of all probability should 
equal to 1. Hence, the generalization threshold cannot be � + 1 to n. 	�  ◻

Proposition 2  If � is greater than C_Tn , then SenTi is a value of most generalized term in 
hierarchy C_Tgen against a sensitive term, where the probability of threshold selection is 
P = 1∕C_Tn.

Proof  The C_Tn is the total number of generalized terms for ith sensitive term. A threshold 
� value greater than C_Tn refers to the selection of a generalized term that does not exist. 
Therefore, the generalized term should be selected between 1 and C_Tn with P = 1∕C_Tn 
threshold probability. 	�  ◻

The entire functionality of the proposed �r-Sanitizer is demonstrated in Algorithm  1. 
We have previously published a detailed formal verification and complexity analysis of the 
proposed sanitization algorithm in [36]. The �r-Sanitizer is fed by the sensitive medical 

(5)

Sanitized(SenTi) = ((SenTi ∈ C_Ti−gen)

∧ (C_Tr(SenTi), r(l, 𝛿), 𝛿 = 1 − gen,

if 𝛿 ≤ gen) ∨ (C_Tgen(SenTi), 𝛿 = n, if 𝛿 > gen))
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entities (SenT). For the extraction of generalised medical entities, the medical knowledge-
based data (MKB) is provided as input together with a user-defined threshold ( �r ). It 
produces a list of generalised words for each input parameter. Algorithm Line 1 specifies 
the inputs,i.e., knowledge-based terms (in this instance, SNOMED-CT), a list of sensitive 
words, and the privacy threshold � . Then it is determined whether each sensitive term SenTi 
is defined in MKB in Lines 2 and 3. It obtains its full hierarchy of generalisations at line 
5. It also obtains the length of the generalised hierarchy for each SenTi on line 6. On Line 
7, it is checked whether the threshold � is less than or equal to the hierarchy’s length C_T  
or not. It retrieves generalized words between 1 and � at random, in lines 8 and 9. It is 
generalized to as “finding” otherwise, on line 11. But if the line 4 condition is false, the 
most generalised word, in line 14, is used. Line 16 stores each generalised term one after 
the other, and line 18 returns the whole list to the caller model. The suggested method is 
more cost-effective, having an O(n) time complexity than [17], which has a O(n2) time 
complexity. For each sensitive word based on the available domain hierarchy, the proposed 
model increases security by randomly generating the value of � . As a result, it is almost 
difficult for an opponent to deduce the sensitive term from the generalised ones.

Proposition 3  The probability of finding � is P(�) = 1∕C_T  for a single term, and 
P(�(SenTi)) = 1∕C_Tn for all terms. Therefore,

.

Proof  The probability of disclosure risk is always less than or equal to one. Therefore, for 
each P(C_Tn) < 1 , the combined probability of all terms PSenT is between 0 to 1 and starts 
approaching zero as the number of terms increases. 	�  ◻

Example  For instance, P(�
1

) = 0.1 and P(�
2

) = 0.2 , then, the PSenT = 0.02 . Similarly, 
P(�

1

) = 0.1 , P(�
2

) = 0.2 , P(�
3

) = 0.3 , and P(�
4

) = 0.05 , then, the PSenT = 0.0003 . It show, 
when we increase the number of sensitive terms, the probability of revealing original terms 
decrease toward to zero. This exemplifies that if there are more sensitive terms, in a docu-
ment, the probability of original term disclosure will decrease and making it hard for an 
adversary to successfully breach the confidentiality of the sensitive data.

6 � Performance Evaluation

This section details the Simulation Settings of the experimentation.

6.1 � Configuration Settings

In simulations, we utilize the n2c2-2010 data-set [37] aimed at extracting medical 
concepts, e.g., health reports, medication lists, and test results. The evaluation is conducted 
by adopting the following performance metrics:

PSenT =

C_Tn∏

i=i

P(�(SenTi))
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6.1.1 � Evaluation Matrices

To estimated clinical corpus, precision, recall, and F1-score are used as evaluation 
matrices. The explanation of each evaluation criteria is given below:

•	 Precision: The Precision (AKA specificity) is the total true positive proportion to the 
whole of the true positive (tp) and false positive (fp) instances. To increase precision, 
the true positive rate is maximized, and the false positive should be minimized. The 
false-positive rate is devastating in the medical field. The proposed model aims to 
achieve the highest precision ratio. The formula to calculate precision is given below: 
precision = tp∕tp + fp

•	 Recall: The recall (aka sensitivity) is the proportion of true positive instances to the 
whole of true positive and false-negative rates. To increase the recall, the true positive 
rate is maximized, and the false-negative rate is minimized. The formula for the recall 
is given below: recall = tp∕tp + fn

•	 F1-score: F1-score takes effect (harmonic mean) of both the precision and the recall. 
The more the F1-score, the more the precision and recall. The value of the F1-score is 
usually biased towards the lower notwithstanding of recall or precision. The formula to 
evaluate F-1 is as follows: F − 1 = 2 ∗ precision ∗ recall∕Precision + recall

To build the recognition model for unstructured medical data, the Python built-in library 
called keras [39] is utilized. These three measures before preparation are followed to get 
accurate results: 

(1)	 Reducing noise: The stop words, Punctuation, and white spaces are cleared.
(2)	 Sentences Padding: The sentence padding (i.e., 250) is used to make input phrase size 

alike.
(3)	 Normalization: The corpora is turned to lower cases to get the word normalization.

A pre-trained Word2Vec model expresses the token level illustration. The default token 
embedding size is used as set out in the pre-trained Bio-Word2Vec model. The character 
embedding size is randomly defined between the −1 to 1 range and trained with Bi-LSTM. 
Four hundred dimensions for word embedding and 200 dimensions for character embedding 
are used. The dimension size for token embedding is 250, and for the character embedding, 
150 are not changeable. Both embeddings are joined, resultant as 600-dimensional size, 
and transferred to the following contextual layer. The three CNN models with three 
window sizes (i.e., 3, 5, and 7) are trained in the contextual layer. The regional contextual 
illustration of every CNN design attained 200 (transformed from 600 to 200) dimensions 
as input by combined embedding. This illustration of every local contextual CNN design is 
combined again with 600 dimensions and transferred to Bi-directional LSTM to generate 
worldwide content. Then, the regional and worldwide content is transferred to CRF to 
estimate the labels. In the final step, the BIO (Beginning of entity, Intermediate of an 
entity, and end of an entity) tagging scheme [35] and the CRF are combined for sequence 
labeling.
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6.2 � Experimental Results

We now discuss the obtained numerical results:

Table 3   Comparision of propsed MER model with current state-of-the-art models

Methods Recall Precision F-1 score

Glov+ LSTM+CRF [38] 83.6 84.0 83.8
Word2Vec+ LSTM+CRF [35] – – 85.8
ElMo+ LSTM+CRF [20] 86.2 87.4 86.8
Bio-BERT+ LSTM+Inference layer [22] 85.4 87.5 86.4
BERT+ LSTM+Inference layer [21] – – 89.5
Proposed (CNN-BiLSTM+CRF) 91.14 92.63 92.0

Fig. 5   Comparison of recall and 
precision among proposed MER 
and existing model

Fig. 6   Comparison of F1-score 
among proposed MER and exist-
ing model
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6.2.1 � MER Detection Accuracy

Table  3 presents the comparison among proposed MER and the up-to-date state-of-the-
arts. We compared our model with [20, 21, 22, 35, 38]. Figure 5 illustrates that the recall 
and precision results. The figure shows that the recall value for the proposed model is 
91.14% with 92.63% precision. Whereas, recall value for [20, 38], and for [22] is 83.6 per-
cent, 86.2 percent, and 85.5 percent, respectively. Similarly, the precision percentage is 84 
percent, 87.4 percent, and 87.5% for the said models, respectively. The F1-score is depicted 
in Fig. 6, which illustrates that for the proposed model is 92 percent. whereas, it is 83.8, 
85.8, 86.4, 86.8, and 89.5

6.2.2 � ı
r
‑Sanitizer Utility Preservation

Figure 7 presents the comparison of utility preservation among the proposed model, [24, 
25], and with the baseline provided by Beaumont Hospital, Dublin, Ireland. The utility 
preservation in the proposed model is 56.19 percent, for �-based models, it is 27.42, and 
for the baseline, it is 67.24 percent. The result shows that compared to the �-based models, 
the proposed model preserved more utility. However, the proposed utility preservation is 
11.05% less than the baseline given by the hospital. Whereas, there is a 39.82% differ-
ence in baseline and �-based models. In the provided baseline, the threshold value is least, 

Fig. 7   Comparison of utility 
preservation using baseline sani-
tization, �-based sanitizer, and �

r

-sanitizer

Fig. 8   Comparison of different 
variants of �

r
-sanitizer with �

-based sanitizer



2394	 S. A. Moqurrab et al.

1 3

whereas, in the proposed model, we set the threshold value as 3. Figure 8 represents dif-
ferent variants of �r-sanitizer with respect to different � values. It also shows the utility 
preservation comparison of these variants with �-based sanitizer. The utility preservation 
percentage for �-based sanitizer is 27.42 percent. Whereas, It changes with the changing 
value of � in the proposed mechanism. It is 56.19, 68.84, and 80.92% for the �r-sanitizer, 
with � equal to 3, 2, and 1. It is obvious that the value of � influences the utility preserva-
tion of a model. That is why we made it open for the data-holder to set.

6.2.3 � Latency

We compared latency between fog and cloud-based smart healthcare systems. Figure  9 
illustrates that the response time of a fog-based application is less than that of a cloud-
based application. The response time (in our case) may be defined as when a sensor device 
generates data and sends it to the upper layer (i.e., either to the fog or to the cloud), and 
response against that received data is triggered. As shown in the figure, we generate an 
equal number of messages sent to the fog and the cloud. The response time in fog-based 
applications is less than the cloud-based. For the first 5000 requests (messages), the time is 
5 and 7 milliseconds for fog and cloud, respectively. We kept on increasing messages and 
noted time after every 5000 messages, as shown in the figure. For 100,000 messages, the 
response time of a fog-based application is 32 milliseconds, whereas, for the same num-
ber of messages, the cloud-based application took 36 milliseconds. On average, there is a 
3-millisecond difference between them for all the responses.

7 � Discussions

To better protect patients from the spread of infectious diseases, we developed a new 
deep learning-based sanitization method to identify and sanitise out clinical entities. 
The suggested model considers both global and local context, whereas previous research 
solely considered global context. We used three baseline systems as a benchmark to 
assess the proposed model (using i2b2-2010 data): (a) CRF model, (b) BLSTM model 
(i.e., token-level representation), and (c) BLSTM model (i.e., character- and token-level 

Fig. 9   Latency comparison 
between fog and cloud-based 
application
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representation). We make comparisons to current models for a thorough review. While the 
CRF performs well in terms of Exact criteria with 84% of F1-score (as shown in Table 3), 
it still has a long list of steps, such as pre-processing and tuning of parameters to reach a 
satisfactory accuracy. The implementation of deep learning (i.e., CNN and RNN) models 
is the answer to the troubles of CRF. In the context of CRF, deep learning models can 
improve accuracy. For example, the LSTM-CRF model delivers an F1-score of 86% and 
92% on Exact and Inexact evaluation criteria, respectively. The traditional approaches 
using contextual embedding provide an F1-score of 87.90%, whereas the basic embedding 
models have an F1-score of 84.86%. While standard embedding (i.e., GloVec and 
word2vec) seems to have a 2.3% advantage over the traditional approach in this instance, 
ELMo and BERT have a smaller advantage (i.e., about 1.5%). While spending extra 
computational resources and effort, advanced and sophisticated embedding boosts model 
performance by just 2.3%.

The LSTM and its many variants placed the most emphasis on the global context. They 
sometimes neglected to include the local context. The information in the medical records 
is all connected and has to be gathered. While the BERT embedding may help certain 
LSTM-based models, the overall quality of the findings is not significant. The new context 
considers both the local and global context and aims to identify the clinical entities. The 
BiLSTM model captures global context, whereas the CNN model captures local context. 
Higher accuracy may be achieved with BERT with advanced embedding by investing in 
additional computer resources, yielding a 1.2% improvement in accuracy. In comparison, 
our model is better, achieving 4.5% greater outcomes than current state-of-the-art 
algorithms. Compared to the CRF-based model, the method presented in this paper yields 
an 8% improvement in accuracy. The information in this study enables the incorporation 
of the local context, which is used to identify the biological entities. Additionally, in the 
sanitization phase, Information Content (IC)-based approaches often result in incorrect 
outcomes, as noted in [17]. The suggested sanitization strategy surmounts the limitations 
of IC-based procedures, as noted in [17, 23, 25]. Moreover, the IC of “Virus” cannot 
differentiate between a computer and biological viruses. It gives confusing results since 
it overestimates the IC value. Further, in these experiments, a fixed privacy threshold 
( � ) was utilised. Nevertheless, the trade-off between privacy and data usefulness is an 
individual one. The individual’s privacy threshold should be adjustable to accommodate 
their individual needs.

8 � Conclusions and Future Work

The introduction of fog computing in smart healthcare infrastructures provides a promising 
solution at the edge of the network when it comes to latency. It may help advance the 
present medical research and diagnose various diseases or find the solution to future 
medical field challenges. It is important to apply privacy-preserving methods to secure 
the patients‘ confidential clinical information before providing it for research purposes. 
However, present studies show privacy violations and less data utilization due to improper 
handling of utilization and privacy issues. The mechanism used fog-enabled deep learning 
models and a novel sanitation mechanism for preserving the privacy and utility of medical 
entities concerning data-holder needs. The Deep Privacy framework improved detection 
accuracy by 92% in comparison to other deep learning models. Improvement of 56.19% 
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had been seen in the utility rate of sanitized medical documents with a value of � equal to 3 
with reduced latency.

Although the presented approach provides flexible privacy protection via user-defined 
privacy thresholds, it falls short of providing full semantic privacy protection, such as 
differential privacy. Thus, one potential future study path is to enhance the suggested 
solution’s semantic privacy assurance and mathematical verification. Additionally, the 
suggested approach sanitizes the sensitive words only. Another potential study area is the 
identification and sanitization of semantically related words.
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