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A Deep Learning-Based Radiomics 
Model for Prediction of Survival in 
Glioblastoma Multiforme
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Traditional radiomics models mainly rely on explicitly-designed handcrafted features from medical 

images. This paper aimed to investigate if deep features extracted via transfer learning can generate 

radiomics signatures for prediction of overall survival (OS) in patients with Glioblastoma Multiforme 

(GBM). This study comprised a discovery data set of 75 patients and an independent validation data 
set of 37 patients. A total of 1403 handcrafted features and 98304 deep features were extracted from 
preoperative multi-modality MR images. After feature selection, a six-deep-feature signature was 

constructed by using the least absolute shrinkage and selection operator (LASSO) Cox regression 

model. A radiomics nomogram was further presented by combining the signature and clinical risk 

factors such as age and Karnofsky Performance Score. Compared with traditional risk factors, the 

proposed signature achieved better performance for prediction of OS (C-index = 0.710, 95% CI: 
0.588, 0.932) and significant stratification of patients into prognostically distinct groups (P < 0.001, 
HR = 5.128, 95% CI: 2.029, 12.960). The combined model achieved improved predictive performance 
(C-index = 0.739). Our study demonstrates that transfer learning-based deep features are able to 
generate prognostic imaging signature for OS prediction and patient stratification for GBM, indicating 
the potential of deep imaging feature-based biomarker in preoperative care of GBM patients.

Glioblastoma multiforme (GBM) is the most frequent malignant primary brain tumor in adults1. GBM accounts 
for 15% of brain tumors2. �e median survival is only 12 to 14 months even with aggressive therapy3. �e poor 
prognosis is mainly due to the spatial and temporal intra-tumor heterogeneity. �is genetic heterogeneity reduces 
the value of invasive biopsy-based genomic analysis, but provides opportunities for medical imaging that depicts 
the entire tumor in a non-invasive and repeatable way. To explore the correlation between medical images and 
underlying genetic characteristics, radiomics has been proposed. Radiomics refers to a process that extracts 
high-throughput quantitative features from radiographic images and builds predictive models relating image 
features to genomic patterns and clinical outcomes4. In the past few years, a number of radiomics models have 
been proposed for survival prediction5, distant metastasis prediction6, molecular characteristics classi�cation7, 
etc. �e high-throughput feature extraction is a critical task in radiomics. In previous studies, most extracted fea-
tures are explicitly designed, or handcra�ed8. �ese handcra�ed features include tumour shape, intensity, texture 
and wavelet textures. Although the number of handcra�ed features can reach tens of thousands, these features 
are shallow and low-order image features. Note that according to the radiomics hypothesis, intra-tumor imaging 
heterogeneity could be the expression of underlying genetic heterogeneity9. However, shallow and low-order 
features may not fully characterize image heterogeneity, therefore may limit the potential of radiomics model. 
On the other hand, handcra�ed features are limited to the current knowledge of medical imaging. In such a case, 
it is necessary to assess deeper and higher-order features that may improve the predictive performance of the 
radiomics model.
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Recently, the performance of deep learning10 has been intensively demonstrated in computer vision11. 
Convolutional Neural Network (CNN)12 is a typical arti�cial neural network in deep learning, which has achieved 
state-of-the-art performances on image and video recognition13 and segmentation14. When the data sets are large 
enough, the deep learning algorithms o�en perform better compared to traditional algorithms. However, when it 
comes to medical image analysis domain, the data sets are o�en inadequate to reach full potential of deep learn-
ing. In computer vision domain, transfer learning and �ne tuning are o�en used to solve the problem of a small 
data set15. Transfer learning can also be incorporated into current radiomics model for extraction of a large num-
ber of deep features from hidden layers of CNN. �ese deep features contain more abstract information of medi-
cal images and may provide more predictive patterns compared with the handcra�ed features. To the best of our 
knowledge, little work has been done on construction and evaluation of deep feature-based radiomics models.

In this work, we propose a deep feature-based radiomics model for prediction of OS in GBM patients. Both 
handcra�ed features and deep features were extracted from multi-modality MR images. Deep features were 
extracted from the pre-trained CNN via transfer learning. A�er a four-step feature selection method, six most 
robust, nonredundant and predictive features were selected. Finally, a radiomics signature as well as a radiomics 
nomogram were constructed on a discovery cohort and validated on an independent validation cohort. Figure 1 
shows the work�ow of radiomics analysis in this study.

Methods
Data Sets. In this study, a total of 112 patients (62 men and 50 women; mean age, 54.640 years ±44.040; 
range 10–84 years) with pathologically con�rmed GBM were included. �e patient cohorts consisted of two 
groups: a discovery cohort comprising 75 patients from the Cancer Genome Archive (TCGA) database16, and 
an independent validation cohort comprising 37 patients collected in Sun Yat-Sen University Cancer Center, 
Guangzhou, China. �e demographic and clinical characteristics of patients in the discovery data set and valida-
tion data set are shown in Table 1. �e imaging procedure, data processing and experiment design were approved 
by the Sun Yat-Sen University Cancer Center Ethics Committee. All methods were carried out in accordance with 
relevant guidelines. As TCGA are publicly available database without patient identi�er, no institutional review 
board approval is required for the discovery data set. For the validation data, informed consent was obtained 
from all subjects. �e inclusion criteria were that patients with newly diagnosed and treatment-naive GBM and 
survival information and pre-treatment MR imaging including T1-weighted, T1-weighted Gadolinium con-
trast-enhanced, T2-weighted, and T2-weighted FLAIR images (short for T1, T1C, T2, and FLAIR). �e exclusion 
criteria are patients with a history of surgery or chemoradiation therapy and patients missing survival informa-
tion. Overall survival is calculated from the initial pathologic diagnosis date to death or censure point if still alive. 
�e MRI data of the discovery cohort is obtained from the Cancer Imaging Archive (TCIA) that include imaging 
data corresponding to TCIA patients.

Image Preprocessing and Tumor Segmentation. First, the T1, T1C, T2, and FLAIR images were pre-
processed, encompassing N4 correction of bias �eld, skull stripping, image resampling to 1 mm × 1 mm × 1 mm 

Figure 1. �e work�ow of radiomics analysis in this study.
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isotropic voxels with a linear interpolater, rigid registration using T1C image as a template, and intensity normal-
ization by histogram matching. All preprocessing were performed with the open source so�ware ITK. �en, the 
three-dimensional tumor subregions were segmented manually by two neurosurgeons (Y.C. and J.Z., with 8 and 
10 years of experience in neuroimaging and neurosurgical oncology, respectively). �e segmentation was per-
formed in transverse sections slice by slice with the open source so�ware 3D Slicer version 4.5.0-1 (https://www.
slicer.org/)17. �ree tumor subregions were segmented, including the necrosis area, the enhancement area and the 
edema area. �e necrosis area was the low intensity necrotic structures within the enhancing rim in T1C and had 
hyper-intense signal in T2 and FLAIR. �e enhancement area was con�rmed as the Gadolinium enhancing rim 
excluding the necrotic center and hemorrhage with both T1C and T1 images. �e edema area was identi�ed as 
abnormality visible in T2 and FLAIR excluding ventricles and cerebrospinal �uid. �e edema area may include 
both peritumoral edema and any non-enhancing tumor. �e segmented tumor subregions were then used for 
feature extraction.

Feature Extraction. Handcra�ed Features. �e handcra�ed features were extracted from �ve subregions 
and four MR modalities. �e feature extraction subregions include necrosis, enhancement, edema, tumor core 
(the whole tumor except edema) and whole tumor (necrosis, enhancement and edema). �e handcra�ed features 
can be divided into three groups: (I) geometry, (II) intensity and (III) texture. �e geometry features describe the 
three-dimensional shape characteristics of the tumor. �e intensity features describe the �rst-order statistical dis-
tribution of the voxel intensities within the tumor. �e texture features describe the patterns, or the second- and 
high-order spatial distributions of the intensities. Here the texture features are extracted using several di�erent 
methods, including the gray-level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), gray 
level size zone matrix (GLSZM) and neighborhood gray-tone di�erence matrix (NGTDM) methods8. A total of 
1403 handcra�ed features are extracted, including 23 geometry features, 340 intensity features, and 1040 texture 
features. Details of the handcra�ed features can be found in Supplementary Table 1. All handcra�ed features are 
extracted with an in-house feature analysis program implemented in Matlab 2010a (Mathworks, Natick, Mass).

Deep Features. Deep features were extracted from pre-trained CNN via transfer learning. In this study, CNN_S 
was chosen as the pre-trained CNN model18. CNN_S contained �ve convolution layers and three fully-connected 
layers. �e hyper-parameters of CNN_S were weight decay 5 × 10−4, momentum 0.9, initial learning rate 10−2. 
When the validation error stopped diminution, initial rate was down to one tenth. �e CNN_S model was trained 
on the ILSVRC-2012 dataset (all weights of CNN_S were predetermined), and the top-5 classi�cation error on 
the validation was 13.1%. For each patient, the necrosis, tumor core and whole tumor subregions were chosen 
as input of CNN_S. First, from multiple transverse slices in the segmentation volume, we picked out the slice 
which had the largest tumor area. �en, the gray values were normalized to range [0, 255] using linear transfor-
mation. Based on the segmentation results, the three tumor subregions were cropped from the selected slices 
in all four MR modalities. Next, each cropped subregion image was resized to 224 × 224 with bicubic interpo-
lation. �e obtained images can be used as the model input. �e G and B channels of CNN_S were turned o� 
so only grayscale images were allowed to enter the model. Finally, the deep features can be computed by only 
forward propagation and were extracted from fully-connected layer 6 and fully-connected layer 7. In total, 98304 
(4 × 3 × 2 × 4096) deep features can be extracted for each patients. �is procedure was accomplished by using the 
deep learning toolkit CAFFE19. �e deep feature extraction is shown in Fig. 2.

Feature Selection. A�er features extraction, all 1403 handcra�ed features and 98304 deep features for each 
patients were normalized as z-scores. Having these high-dimensional imaging features, a feature selection is 
required to avoid over�tting while improve both the generalizabiliy and interpretability of the training-based 

Characteristic Discovery Data Set Validation Data Set

No. of patients* 75 (67%) 37 (33%)

Sex+(P = 0.553)

 Male* 43 (57%) 32 (43%)

 Female+ 19 (51%) 18 (49%)

Age+(P = 0.909)

 Ranges 19–84 10–78

 Median† 57 (52–59) 55 (49–62)

 Mean† 54.990 (51.710–58.260) 53.950 (48.240–59.650)

OS+(P = 0.978)

 Ranges 30–1642 77–1870

 Median† 441 (381–530) 377 (332–584)

 Mean† 495.160 (412.520–577.800) 494.220 (364.250–624.180)

Table 1. Demographic and Clinical Characteristics of Patients in the Discovery Data set and Validation Data 
Set. *Data in parentheses are percentages. +Data in parentheses are P value. †Data in parentheses are 95 percent 
con�dence interval.

https://www.slicer.org/
https://www.slicer.org/
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radiomics model. Here a four-step method is used for feature selection. All calculations are performed on the 
discovery data set.

First, the robustness of the image features was evaluated. As the feature calculation depends on the tumor sub-
region contours, image features that are robust against tumor segmentation uncertainties were selected. Here both 
test-retest analysis and inter-rater analysis were used to determine the feature robustness. Based on 30 patients 
randomly chosen from the discovery data set, the test-retest analysis was performed where for each patient the 
tumor subregions were segmented twice by one rater (Y.C.). �e data set used for inter-rater analysis included 
another 30 randomly chosen patients, where for each patient the tumor subregions were segmented by two raters 
independently. �e features extracted from these multiple-segmented subregions were assessed using intraclass 
correlation coe�cient (ICC)20. Feature with ICC ≥ 0.85 were considered as robust against intra- and inter-rater 
uncertainties. A�er robustness evaluation, 85392 out of the initial 99707 image features remained.

�en, the median absolute deviations (MAD) was calculated for each remained feature21. Features with MAD 
equal to zero were discarded, as these features were considered as non-informative. A�er this step, 33881 features 
were le�. Next, we further selected features with prognostic value. Here the prognostic performance is assessed 
using the concordance index (C-index), a generalization of the area under the receiver operating characteristic 
(ROC) curve (AUC)22. �e C-index for each feature was calculated. Features with C-index ≥ 0.580 are considered 
as predictive factors. A�er prognostic performance analysis, 1581 features remained. �en, we further reduced 
the data dimension by removing highly correlated features. Here the correlation coe�cient between each pair of 
features is calculated. For feature pair with correlated coe�cient ≥0.90, the more prognostic feature is retained 
and the other feature is removed. Finally, the remained 150 image features are selected and regarded as robust, 
predictive and nonredundant.

Statistical Analysis. Clinical Characteristics. �e statistical analysis was performed with R so�ware ver-
sion 3.3.2 (http://www.R-project.org)23 and X-tile so�ware version 3.6.1 (Yale University School of Medicine, New 
Haven, Conn)24. �e di�erences in age, sex, tumor volume, KPS and overall survival between the discovery and 
the validation data sets were assessed using an independent sample t test, Mann-Whitney U test or χ2 test, where 
appropriate.

Signature Construction. Based on the selected 150 features, we aimed to construct a radiomics signature using 
multivariate Cox regression model for prediction of survival in GBM patients. Because there were more image 
features than patients, strong feature selection and shrinkage were still required to prevent over�tting as well as 
increase interpretation. To address this problem, the least absolute shrinkage and selection operator (LASSO) Cox 
regression model was used on the discovery data set for signature construction25. Depending on the regulation 
weight λ, LASSO shrinks all regression coe�cients towards zero and sets the coe�cients of many irrelevant fea-
tures exactly to zero. To �nd an optimal λ, 10-fold cross validation with minimum criteria was employed, where 
the �nal value of λ yielded minimum cross validation error. �e retained features with nonzero coe�cients were 
used for regression model �tting and combined into a radiomics signature. Subsequently, we obtained a radiom-
ics score for each patient by a linear combination of retained features weighed by their model coe�cients. �e R 
package glmnet was used for LASSO Cox regression modeling.

Signature Validation. �e association of the constructed signature with survival was assessed on the discovery 
data set and validated on the validation data set by using Kaplan-Mier survival analysis. Based on a threshold 
calculated using the radiomics score, all patients were strati�ed into high-risk and low-risk groups. �e threshold 
was estimated based on the discovery data set by using an optimal cutpoint analysis with X-tile so�ware, and 
tested on the validation data set. A weighted log-rank test (G-rho rank test, rho = 1) was used to test the signif-
icant di�erence between the high-risk and low-risk groups. �e C-Index was used to assess the performance of 
the signature.

Figure 2. Illustration of deep features extraction. LRN is short for Local Response Normalization. �e details of 
the CNN_S framework can be found in Supplementary Table 2.

http://2
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To assess the univariate predictive performance of each feature with non-zero LASSO coe�cient, the univari-
ate analysis was performed based on both discovery and validation data sets. To assess the univariate association 
with OS, each non-zero feature was used for patient strati�cation into high-risk and low-risk groups.

To compare the built radiomics signature with other clinical risk factors such as age and KPS, the C-indices of 
these clinical risk factors were calculated based on both discovery and validation data sets. To assess the combi-
native prognostic value of the signature with clinical factors, we put the radiomics signature together with clinical 
parameters into the Cox regression model. �e model was �tted based on the discovery data set and validated on 
the validation data set. �e R package survcomp was used for the survival analysis.

Radiomics Nomogram. Furthermore, to intuitively and e�ciently assess the incremental prognostic value of 
the radiomics signature to the clinical risk factors (age and KPS), a radiomics nomogram was presented on the 
validation data set. �e nomogram combined the radiomics signature and the clinical risk factors based on the 
multivariate Cox analysis. To compare the agreement between the OS prediction of the nomogram and the actual 
observation, the calibration curve was calculated.

Results
Clinical Characteristics and OS. �e median and mean of OS were 441 days and 495.160 days for the dis-
covery set, 377 days and 494.220 days for the validation set. �e median and mean of age were 57 years and 54.990 
years for the discovery set, 55 years and 53.950 years for the validation set. �e discovery set had 43 males and 32 
females, while the validation set had 19 males and 18 females. �ere was no signi�cant di�erence in clinical and 
follow-up data between the discovery and validation data sets (P = 0.553 for sex test, 0.748 for KPS test, 0.909 for 
age test, 0.302 for tumor volume test and 0.978 for OS test).

Signature Construction. �ere were six features with non-zero coe�cients in the LASSO Cox regression 
model: FLAIR_ST_F7_870, FLAIR_SN_F7_2297, T1C_SNE_F6_806, T2_SNE_F7_772, T1C_SNE_F7_1508 
and FLAIR_SNE_F6_2981. Introduction of the six features can be seen in Supplementary Table 3. For example, 
T1C_SNE_F7_1508 indicated that this feature was extracted from tumor core in T1C and was taken from the 
1508th neurons of the fully-connected layer 7. �e optimal λ selection in LASSO Cox regression model is shown 
in Supplementary Figure 1. By linearly combining the six features, the radiomics signature can be constructed, 
and the radiomics score can be computed as

= × .

+ × − .

+ × .

+ × − .

+ × − .

+ × − .

Radiomics signature score FLAIR ST F

FLAIR SN F

T C SNE F

T SNE F

T C SNE F

FLAIR SNE F

_ _ _ _ 7_870 0 06867720

_ _ 7_2297 ( 0 05909112)

1 _ _ 6_806 0 05420293

2_ _ 7_772 ( 0 03454031)

1 _ _ 7_1508 ( 0 02240571)

_ _ 6_2981 ( 0 00958802)

Signature Validation. �e radiomics signature achieved a C-Index of 0.731 (95% con�dence intervals [CI]: 
0.645, 0.817) for the discovery data set, and 0.710 (95% CI: 0.588, 0.932) for the independent validation data set, 
demonstrating the predictive performance of the model. Based on the radiomics score of patients in the discov-
ery data set, the optimal cuto� calculated by the X-tile plot was 0.1343235, as shown in Supplementary Figure 2. 
�en, patients in both the discovery and validation data sets were strati�ed into low-risk (Rad-score < 0.1343235) 
and high-risk (Rad-score>0.1343235) groups, as shown in Fig. 3. �e signi�cant association of the radiomics 
signature with OS was shown in discovery data set (P < 0.001, hazard ratio [HR] = 5.042, 95% CI: 2.624, 9.689), 

Figure 3. Illustration of Kaplan-Meier survival curve. �e Kaplan-Meier survival curve show OS risk 
strati�cation for patients in Discovery data set (a) and Validation data set (b). Patients were classi�ed as low risk 
and high risk according to radimics signature. �e vertical dashed line is 95% con�dence interval.

http://3
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and con�rmed in the validation data set (P < 0.001, HR = 5.128, 95% CI: 2.029, 12.960). �e OS in the low-risk 
and high-risk groups in the discovery and validation data sets are listed in Supplementary Table 4.

�e heatmap of the six radiomics features is shown in Fig. 4. �e univariate analysis results based on the vali-
dation data set are shown in Table 2. �e univariate Kaplan-Meier survival curves for each feature can be found in 
Supplementary Figure 3. It shows that two individual features succeeded to stratify patients in the validation data 
set into high-risk and low-risk groups, with G-rho rank test P value of 0.003 for FLAIR_ST_F7_870, and <0.001 
for T1C_SNE_F6_806.

�e C-indices of the clinical parameters were 0.621 (95% CI: 0.499, 0.743) for age and 0.549 (95% CI: 0.432, 
0.666) for KPS in the validation data set. None of them successfully strati�ed the patients into high-risk and 
low-risk groups in the validation data set, with G-rho rank test P value of 0.324 for age and 0.620 for KPS. In the 
validation data set, the combined Cox model was demonstrated to be associated with the OS (C-index: 0.739 
[95% CI: 0.686, 0.792], HR: 4.608 [95% CI: 1.884, 11.270]) and to stratify the patients into high-risk and low-risk 
groups with G-rho test P value < 0.001.

Radiomics Nomogram. �e radiomics nomogram and corresponding calibration curve were shown in 
Fig. 5. It shows intuitively that the proposed radiomics nomogram performed better than age and KPS on survival 
prediction in patients with GBM.

Discussion
In this paper we present a prognostic radiomics model that feature extraction is no longer limited to handcra�ed 
features. Higher-order deep features were extracted and incorporated into our radiomics model. �e CNN_S 
model which pre-trained from natural image dataset was used as deep feature extractor. Based on multi-modality 
MR images (T1, T1C, T2 and T2 FLAIR), high-throughput handcra�ed and deep features were extracted. A�er a 
four-step feature selection, a six-feature radiomics signature was constructed using LASSO Cox model for predic-
tion of overall survival in patients with GBM. �e radiomics signature was demonstrated to be associated with the 
OS and successfully strati�ed patients into high-risk and low-risk groups. We can further improve the prediction 
performance by combining the radiomics signature with established clinical risk factors such as age and KPS. By 

Figure 4. �e heat map of selected radiomics feature. Each row of the heat map represents a radiomics feature 
and each column represents a patient. �e Z-Score di�erence of each radiomics feature between high risk and 
low risk group can be seen from the heat map. At the same time, it can be observed directly from the heat map 
that there is a consistency of radiomics feature Z-Score between the discovery data set and the validation data set.

Feature C-index (95% CI) P Value Hazard Ratio (95% CI)

FLAIR_ST_F7_870 0.680 (0.562, 0.799) 0.003 4.980 (0.562, 19.870)

FLAIR_SN_F7_2297 0.620 (0.502, 0.738) 0.230 1.572 (0.746, 3.311)

T1C_SNE_F6_806 0.648 (0.526, 0.770) <0.001 6.785 (2.126, 21.660)

T2_SNE_F7_772 0.616 (0.494, 0.738) 0.109 1.953 (0.849, 4.493)

T1C_SNE_F7_1508 0.609 (0.493, 0.725) 0.452 1.359 (0.609, 3.034)

FLAIR_SNE_F6_2981 0.554 (0.434, 0.675) 0.452 1.331 (0.630, 2.811)

Table 2. Univariate prognostic value of non-zero deep features in the validation data set.

http://4
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combining radiomics signature with clinical factors into a radiomics nomogram, the OS of GBM patients can be 
e�ectively predicted.

�e radiomics signature consisted of six imaging features: FLAIR_ST_F7_870, FLAIR_SN_F7_2297, T1C_
SNE_F6_806, T2_SNE_F7_772, T1C_SNE_F7_1508 and FLAIR_SNE_F6_2981. It can be seen that the six 
selected features were all deep features, extracted from multiple tumor subregions in T1C, T2 and FLAIR images. 
It is demonstrated that the deep features extracted via transfer learning performed better than traditional hand-
cra�ed features in prediction of OS in GBM patients. �e result is not surprising, as deep features re�ect higher 
order imaging patterns and capture more imaging heterogeneity compared with low-level shape, intensity and 
texture features. According to the radiomics hypothesis, intra-tumor imaging heterogeneity could be the expres-
sion of underlying genetic heterogeneity, which could develop resistances to treatment and thusly indicate poorer 
prognosis. However, the interpretation of the association between the deep features and the genetic characteristics 
remains challenging. It is related to complex biological process. Future work is needed to establish a radiogenom-
ics rationale to explain the correlation between deep imaging features and genetic heterogeneity.

Two individual features achieved log-rank P values of 0.003 and P value <0.001 respectively in the validation 
data set. �e other four individual features failed to stratify patients into high-risk and low-risk groups in the val-
idation data set. �e multi-feature signature was successful to predict the OS of patients in the validation data set 
and performed better than any individual feature. From the statistical perspective, nonsigni�cant association with 
survival does not mean less importance. On the other hand, multivariate model is statistically robust in survival 
analysis26. Moreover, the intra-tumor genetic heterogeneity suggests that tumor subregions could be genetically 
di�erent and may comprise multiple subclones. �is could be better re�ected by multiple high-order deep fea-
tures extracted from multi-subregions in multi-modalities rather than individual feature. Similar to the genomic 
studies of exploring biomarkers from high-throughput genomic data, it is also regarded as a common“-omics” 
approach to construct a multi-factor radiomics signature for outcome prediction.

In our study the proposed radiomics signature performed better than traditional risk factors such as age and 
KPS. None of these clinical factors successfully strati�ed patients into groups with di�erent prognostic risks. 
A�er combining the radiomics signature with clinical factors into a Cox regression model, the predictive power 
improved with C-index of 0.739 in validation data set. According to the radiomics signature and the two clinical 
risk factors, we drew a nomogram that can visually predict the probability of survival. According to the calibra-
tion curve we can see that our nomogram had good predictive performance.

Despite the promising results, this study still has several limitations. First, this is a retrospective study with 
relatively small sample size, although independent validation cohort from local institution was used. In future, 
large-scale multicenter study is required to fully assess the generalization ability of the radiomics model. Second, 
due to the limitation of the small sample size, this study employed transfer learning for extraction of deep features. 
Further work is needed to train an dedicated feature extractor by �ne-tuning on a pre-trained network or training 
from scratch. A deep feature extractor that explicitly designed for MRI GBM radiomics model should be estab-
lished. �ird, the association between deep features and underlying genetic characteristics was not investigated. 
In future more work should be done to explore the potential radiomics-genomics correlation in GBM patients.

In conclusion, we have proposed a six-deep-feature radiomics signature that have the potential to be an imag-
ing biomarker for prediction of the OS in patients with GBM. It was demonstrated that the deep learning method 
can be incorporated into the state-of-the-art radiomics model to achieve a better performance. �e proposed 
signature predicted the OS in GBM patients with better performance compared with conventional factors such as 
age and KPS. A nomogram was proposed for prediction of the probability of survival. Despite the limitations, the 
proposed radiomics model has the potential to facilitate the preoperative care of patients with GBM.

Figure 5. �e nomogram (a) and calibration (b) curves. Radiomics signature and clinical data are associated with 
survival probability of 1, 2 and 3 years. �e predictors are radiomics signature score, age of the patient (in years) 
and Karnofsky performance score (KPS). Draw a vertical line from each predictor to ‘Points’ to get the score of the 
predictor. �en summing up the scores of each predictor, the ‘Total Points’ correspond to the survival probability of 1, 
2 and 3 years by drawing a vertical line from ‘Total Points’ to each survival probability axis. Calibration curves is used 
to assess the consistency between nomogram-predicted survival probability and actual fraction survival probability.
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