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Black rot, Black measles, Leaf blight and Mites of grape are four common grape leaf

diseases that seriously affect grape yield. However, the existing research lacks a real-

time detecting method for grape leaf diseases, which cannot guarantee the healthy

growth of grape plants. In this article, a real-time detector for grape leaf diseases based

on improved deep convolutional neural networks is proposed. This article first expands

the grape leaf disease images through digital image processing technology, constructing

the grape leaf disease dataset (GLDD). Based on GLDD and the Faster R-CNN detection

algorithm, a deep-learning-based Faster DR-IACNN model with higher feature extraction

capability is presented for detecting grape leaf diseases by introducing the Inception-v1

module, Inception-ResNet-v2 module and SE-blocks. The experimental results show

that the detection model Faster DR-IACNN achieves a precision of 81.1% mAP on

GLDD, and the detection speed reaches 15.01 FPS. This research indicates that the

real-time detector Faster DR-IACNN based on deep learning provides a feasible solution

for the diagnosis of grape leaf diseases and provides guidance for the detection of other

plant diseases.

Keywords: grape leaf diseases, object detection, deep learning, convolutional neural networks, feature fusion

INTRODUCTION

China is a modern agricultural country with more than 2000 years of history in grape planting. At
present, China has the largest grape export in the world. At the same time, grape juice, raisins, wine,
and other grape products also have great commercial value. However, severe diseases take a great
toll on yield and quality during the growing process of grapes, especially in rainy areas and periods.
Thus, timely and effective detection of grape leaf diseases is a vital means to ensure the healthy
growth of grapes.

Traditionally, the diagnosis of plant leaf diseases relies on trained experts performing visual
inspection (Dutot et al., 2013), which usually leads to high cost and a large risk of error. With
the rapid development of artificial intelligence, machine learning methods have been applied to
plant disease detection to make it more intelligent. Researchers began to apply machine learning
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algorithms to plant disease diagnosis, such as support vector
machines (SVM) and K-means clustering (Es-saady et al., 2016;
Mwebaze and Owomugisha, 2016; Padol and Yadav, 2016; Qin
et al., 2016; Islam et al., 2017; Dickinson et al., 2018; Tian et al.,
2019). However, because of the complex image preprocessing
and feature extraction, these methods still have low detection
efficiency. In recent years, the convolutional neural network
(CNN) has been developed as an end-to-end deep learning
approach, they take full advantage of image big data and
discover the discriminative features directly from original images,
avoiding complicated image preprocessing and reducing the
memory footprint. Inspired by the breakthroughs of CNNs in
pattern recognition, using CNNs to identify early plant leaf
diseases has become a new focus of smart agriculture. In (Fuentes
et al., 2017; Liu et al., 2017; Lu Y. et al., 2017; Ramcharan et al.,
2017; Boulent et al., 2019; Bresilla et al., 2019; Polder et al., 2019;
Saleem et al., 2019; Zhu et al., 2019), CNNs were mainly used
to diagnose crop diseases. Nevertheless, many difficulties remain
in realizing the real-time detection of grape leaf diseases due to
the following characteristics of grape leaf diseased spots. Multiple
small and dense diseased spots may occur on the same leaf,
which are usually of various shapes. Moreover, environmental
factors and shielding of other leaves also affect the detection of
grape leaf diseases.

To overcome these problems, this article proposes a deep-
learning-based detector based on improved CNNs to monitor
grape leaf diseases in real-time. The main contributions of this
article are summarized as follows:

• A grape leaf disease dataset (GLDD) is established.
The GLDD provides a necessary guarantee for the
generalization ability of the model. First, to improve the
practicability of themodel, images of diseased grape leaves
with simple backgrounds in the laboratory and complex
backgrounds in the grapery are collected. Furthermore,
to prevent the CNN overfitting problem, the dataset is
expanded via digital image processing technology to form
the GLDD for providing sufficient training disease images.

• A real-time detection model for grape leaf diseases,
Faster DR-IACNN, is proposed. By introducing the
Inception modules and SE-block, the backbone network
ResNet is modified to obtain a novel pre-network, named
INSE-ResNet. Through upsampling and downsampling,
the double-RPN structure is designed and achieves
stronger feature extraction ability of small diseased spots.
The proposed Faster DR-IACNN model improves the
extraction ability of multiscale diseased spots and the
detection speed of ResNet, reducing the depth and
increasing the width of the neural network.

• The deep CNN is first applied to real-time detection of
grape leaf diseases. The proposed end-to-end real-time
detector based on deep learning can automatically extract
the features of grape leaf diseases and detect the four
common diseases of grape leaves efficiently. At the same
time, this method can also detect a variety of diseases in
the leaves at one time.

The experimental results show that the mean Average
Precision of Faster DR-IACNN is 81.1%, which is 2.3% higher
than that of Faster R-CNN, and the detection speed reaches 15.01
FPS. The experiments indicate the deep-learning-based detector
exhibits higher detection precision and can satisfy the actual
demand for real-time detection in graperies.

The rest of the article is organized as follows: section
“Related Work” introduces and summarizes the related work.
The GLDD is introduced in section “Generating Grape Leaf
Disease Dataset.” In section “Detection Model of Grape
Leaf Diseases” describes the detection model of grape leaf
disease in detail. In section “Experimental Evaluation,” an
evaluation of the experimental performance and analyses of the
experimental results are presented. Finally, section “Conclusion”
summarizes this article.

RELATED WORK
With the development of artificial intelligence, deep learning
has made breakthroughs in computer vision. It has been
widely utilized to identify plant diseases and is a satisfying
alternative for the classification of plant diseases. In Wang
et al. (2012), proposed a grape disease recognition method
based on principal component analysis and backpropagation
networks. The dataset of grape diseases includes grape downy
mildew and grape powdery mildew, and the prediction accuracy
was up to 94.29%. In Sannakki et al. (2013), came up with
a method to diagnose two types of grape diseases. Using
thresholding and anisotropic diffusion to preprocess images
and K-means clustering to segment disease spots, the method
achieved high training accuracies when using hue features.
In Mohanty et al. (2016), trained two deep learning models
(AlexNet and GoogLeNet) to identify 14 crop species and 26
diseases. By examining two types of training mechanisms, three
dataset types and five types of training-testing set distributions,
they achieved an accuracy of 99.35%. In Lu J. et al. (2017),
proposed an in-field wheat disease diagnosis system that has since
been implemented in a mobile app to help agricultural disease
diagnosis. By implementing two different frameworks VGG-
FCN-VF16 and VGG-FCN-S, they obtained mean recognition
accuracies of 97.95 and 95.12%, respectively, on WDD2017,
demonstrating further improvement over the accuracies of
93.27 and 73.00% obtained using traditional CNN frameworks.
In Yu et al. (2019), reported several deep CNN models for
weed detection in bermudagrass turfgrasses and demonstrated
that VGGNet achieved a high score at the detection of three
common diseases in turfgrasses, while DetectNet could better
detect disease in annual bluegrass. Based on these results, they
proposed a DCNN-based recognition system for weed control.
In Ferentinos (2018), applied five basic CNN architectures to
an open database of 87,848 images including 25 plant species
of 58 distinct classes, with the best performance reaching
a recognition accuracy of 99.53%. Though deep CNNs have
made great achievements in plant disease classification, real-
time detection of diseases during the growth of the plant
is more essential in order to control the diseases effectively
at an early time.
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FIGURE 1 | Flow chart of grape leaf disease detection.

Many researchers have begun to study how to detect plant
leaf disease precisely through deep learning methods. In Rançon
et al. (2018), provided a recognition and detection method based
on grape leaf Esca symptoms during summer. In experiments,
they compared SIFT encoding with pretrained deep learning
feature extractors and implemented the MobileNet network on
the ImageNet database to get a classification accuracy of 91%.
Then, they combined the classification network with a one-
stage detection network (RetinaNet) to obtain the best Esca
AP of 70%. In Jiang et al. (2019), presented a new network
architecture named INAR-SSD based on VGGNet and Inception
construction. They applied the architecture to the apple leaf
disease in the detection and reached 78.8%mAP. In Fuentes et al.
(2018), designed a Refinement Filter Bank framework for tomato
plant diseases and pests to solve the problem of false positives
and class unbalance based on deep convolution neural networks.
The system consists of three units—a primary diagnosis unit, a
secondary diagnosis unit, and an integration unit—and the mAP
was 13% greater than the best result based on Faster R-CNN. It
is more efficient to detect plant leaf disease and easier to obtain
higher accuracy when using a novel deep learning approach
based on CNNs. According to these studies, CNNs have made
a great contribution to the identification and detection of plant
diseases. Unfortunately, there are no suitable CNN models for
the real-time detection of grape leaf diseases, which would have
high practical value in grape planting. Thus, a real-time detector
based on Faster R-CNN for grape leaf diseases is proposed
in this article.

GENERATING GRAPE LEAF DISEASE
DATASET

Details of grape leaf disease detection are shown in Figure 1.
First, the original grape leaf disease images are acquired from
the laboratory and a real grapery. Then, the original grape leaf
disease images are expanded by data argumentation operations
and further refined by expert annotation. Finally, the dataset
is divided into three parts: the training set is used to train the
Faster DR-IACNN model, the validation set is used to adjust the
parameters and evaluate the model, and the testing set is used for
verifying the generalization of the model.

Grape Leaf Disease Images Collection
Since there are few available datasets of grape leaf diseases
for disease detection, many human and material resources
have made significant contributions to collecting and building
GLDD. Grape plants suffer from diseases in different seasons,
temperatures, and humidity. For instance, Black rot causes
severe damage to the grape industry in continuous hot and
humid weather, but it rarely occurs in dry summer. Grape
Leaf blight is extremely serious in September when the
tree is weak, the temperature is low, and rain is frequent.
Considering the above situations, the disease images in the
GLDD were collected under various climate conditions to
make the GLDD widely used. Apart from capturing images
manually, the other disease images in the dataset were
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FIGURE 2 | Four common types of grape leaf diseases. (A) Black rot. (B) Black measles. (C) Leaf blight. (D) Mites of grape.

collected from Wei Jiani Chateau, Yinchuan, the Ningxia Hui
Autonomous Region, China.

A total of 4,449 original images of grape leaf diseases were
obtained, they contain four disease categories: Black rot (a
fungal disease caused by an ascomycetous fungus), Black measles
(also named Esca, caused by a complex of fungi such as
Phaeoacremonium), Leaf blight (a common grape leaf disease
caused by a fungus), and Mites of grape (caused by parasitic
infestation of rust ticks). There are two reasons for choosing these
four types of grape leaf diseases: first, some of the diseased spots
cannot be distinguished visually, but it is easy for CNNs to extract
features. Moreover, the occurrence of these diseases causes great
losses to the grape industry.

Figure 2 shows typical images of four types of grape leaf
diseases in GLDD. It can be intuitively observed that the four
diseased spots on the grape leaves have similarity and diversity:
the disease effects caused by the same disease with similar natural
conditions are basically the same, while the characteristics of
diseased spots caused by different diseases are usually various.
Leaf infected by Black rot appears reddish-brown and have nearly
round small spots that expand into the large gray spots with
brown edges in the later period. The diseased spots of Black

measles resemble tiger stripes, which are reddish-brown bands
of necrosis. The characteristic lesions of Leaf blight are irregular,
with dark red to brown spots appearing at first, followed by
black spots. Mites of grape are caused by parasitic rust ticks and
feature bubble-like uplift on the leaf surface. These observations
are helpful for the real-time diagnosis and detection of various
grape leaf diseases using deep CNNs.

The collected dataset has three following features: first,
multiple diseased spots of different diseases may simultaneously
appear on the same leaf. Second, many images contain
complicated backgrounds of interfering spot detection, which
guarantees the high generalization of Faster DR-IACNN.
Finally, all images in the dataset are manually annotated by
reliable experts.

Image Augmentation
Due to the insufficient disease images, neural networks
excessively obtain the information of the training set, leading
to the overfitting problem in the training process of CNNs.
Hence, data augmentation technology is used to simulate real-life
interference, which plays an important role in the model training
stage. As more images are generated via data augmentation, the

FIGURE 3 | Data augmentation of grape leaf disease images. (A) Original image; (B) low brightness; (C) high brightness; (D) low contrast; (E) high contrast; (F)

vertical flip; (G) horizontal flip; (H) low sharpness; (I) high sharpness; (J) 90◦ rotate; (K) 180◦ rotate; (L) 270◦ rotate; (M) Gaussian noise; (N) PCA jittering.
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FIGURE 4 | Annotation of the GLDD. (A) Annotated image. (B) XML file

fragment of Black rot disease.

model can learn as many different patterns as possible during the
training, avoiding the overfitting problem and achieving better
detection performance in practice.

In this section, several digital image processing technologies
are applied to data augmentation operations. Considering the
effects of weather factors on the image intensity, interference
of brightness, contrast, and sharpness are implemented. The
variety in the relative shooting position of camera and diseased
leaf is simulated via rotation (including 90, 180, and 270◦)
and symmetry (including vertical and horizontal symmetry).
Gaussian noise is used to imitate the influence of equipment
factors. Moreover, PCA jittering is used to expand the original
dataset as well to simulate the real acquisition environment
and increase the diversity and quantity of the grape leaf
diseases training images. Thus, the GLDD is formed via
expanding the original dataset by 14 times. Figure 3 presents
a grape leaf disease image example generated through image
augmentation technology.

Image Annotation
Image annotation is a crucial step in building the dataset;
it is used to mark out the location and category of diseased
spots in infected leaves. In this section, a tool has been
developed to annotate images through rectangular bounding
boxes. Using the annotation tool and the knowledge
of experienced agriculture experts, areas of diseased
spots in the image can be accurately labeled. When the
annotation is complete, an XML file is generated for each
image, which includes the types of diseased spots and
their locations.

Take an image of Black rot as an example. The annotated
image in Figure 4A shows the infected areas surrounded by red,
blue, and yellow boxes. Figure 4B is a fragment of the generated
XML file, in which the disease name of Black rot is described and
the location of diseased spots is determined by upper left and
lower right coordinates of the red box.

Due to the limitation of manual annotation and the
annotation tool, inevitable random errors will occur in image
annotation process. In order to reduce the influence of the errors
on subsequent experiments, the image labels have been checked
repeatedly. Moreover, the probability of such errors is too small
to affect a large number of datasets, which can be ignored.

DETECTION MODEL OF GRAPE LEAF
DISEASES

Figure 5 shows the overall framework of the Faster DR-IACNN
model for detecting four typical grape leaf diseases. The DR-
IA means double-RPN with Inception module and Attention
structure, which contains all the characteristics of our model. The
proposed Faster DR-IACNN consists of three parts: (1) a pre-
network for extracting disease image features. The pre-network,
namely, INSE-ResNet, includes residual structure, inception

FIGURE 5 | The overall structure of the Faster DR-IACNN model.
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FIGURE 6 | Structure of INSE-ResNet.

modules and SE-block. The backbone ResNet is designed for
extracting images’ feature information, while the inception
modules and SE-block aim to widen the receptive field and obtain
multiscale features. (2) A Region Proposal Network (RPN) for
locating objects. After the processing of pre-network, feature
maps are sent to the RPN. In this part, the diseased spots are
located and predicted by bounding boxes. (3) Fully connected
layers for classification and regression. In this part, categories
and scores are calculated through fully connected layers. All the
information is fused in the concatenation layer. Finally, the class
scores and prediction boxes are output.

Multiscale Feature Extraction of
Diseased Spots
Backbone Networks for Extracting Features

Due to the specialty of Black rot and Leaf blight with small
and dense diseased spots, a variety of backbone networks, such
as AlexNet, VGGNet, and ResNet, were experimented with and
analyzed, and ResNet has been found to be the most suitable
backbone network. According to the characteristics of grape
leaf diseased spots, ResNet34 has a high recognition accuracy
for the GLDD. Therefore, ResNet34 was selected as the pre-
network of the detection model. ResNet with residual learning
enables the network structure to be further deepened without the
disappearance of the gradient (He et al., 2016), which solves the
degradation problem of deep CNNs and fits for the small diseased
spots. In addition, it is easy to optimize and achieve high accuracy
in classification.

Table 1 lists the detailed parameters of the adjusted ResNet34,
named INSE-ResNet, and Figure 6 shows the structure of INSE-
ResNet. The first several layers of CNNs usually learn low-level
features such as color and edges (Zeiler and Fergus, 2013), and the
deeper layers extract complete and discriminative features. Thus,
Res1 to Res3 of ResNet34 are completely retained. Meanwhile,
the article applies Squeeze-and-Excitation Blocks in the tail of
ResNet blocks. The Res_4f layer is removed, and the Res_4e
layer is replaced with Inception-ResNet-v2 module to enhance
the multiscale feature extraction ability of the pre-network. To
fix the input size of the following-up network, the feature map
is adjusted to the size of 14 × 14 through the RoI pooling layer.

TABLE 1 | The related parameters of INSE-ResNet model.

Output size Name Related parameters

(kernel size, output size,

stride)

112 × 112 Res1 Convolution, 7 × 7, 64,

stride 2

56 × 56 Pool1 3 × 3 max-pooling, stride 2

Res2_x

[

Conv 3 × 3 64

Conv 3 × 3 64

]

× 3

SEblock_1 FC, [16, 256]

28 × 28 Res3_x

[

Conv 3 × 3 128

Conv 3 × 3 128

]

× 4

SEblock_2 FC, [32, 512]

14 × 14 Res4_x

[

Conv 3 × 3 256

Conv 3 × 3 256

]

× 5

SEblock_3 FC, [64, 1024]

Inception-ResNet-v2 As in Figure 8A

7 × 7 Pool2 3 × 3 max-pooling, stride 2

Inception_5a As in Figure 8B

Inception_5b As in Figure 8B

1 × 1 Pool3 7 × 7 average-pooling,

stride 1

Softmax 5

In the subsequent network, the Res5 layer is replaced with two
Inception-v1 modules. The final output is the concatenation of
the category and location losses.

High Semantic Feature Extraction Modules for

Diseased Spots

Considering GLDD includes numerous complex background
images, the network needs to focus on diseased spots, instead
of the background. Thus, the article introduces Squeeze-and-
Excitation Blocks (Hu et al., 2018). The SE-blocks learn the
feature weights via the loss, such that the available feature map
with diseased spots has a large weight, and the invalid or tiny
feature map has a lightweight. Figure 7 shows the SE block
structure, which stacks 3 × 3 average pooling layers and 1 × 1
convolution layers.
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FIGURE 7 | Squeeze and Excitation module.

The characteristics of grape leaf diseased spots are various.
Black rot spots and Leaf blight spots are small and dense,
while Black measles spots are similar to stripes. Thus, a single
scale convolution kernel is inefficient to perceive multiscale
diseased spots. To extract features of multiscale diseased spots

of GLDD, Inception modules are introduced. Figure 8A shows
the Inception-v1 (Szegedy et al., 2014) structure, which stacks
1 × 1 convolution layers, 3 × 3 convolution layers, 5 × 5
convolution layers, and 3 × 3 max-pooling layers, enhancing
both the width of the network and adaptability of scales.
Figure 8B shows the Inception-ResNet-v2 (Szegedy et al., 2016)
structure, which applies the idea of residual learning to the
inception network and makes it a speed boost. In the Inception
modules, 1 × 1 convolution layers are inserted before or
after the parallel convolution layers to reduce the thickness of
feature maps and the number of weights. Inception modules
can increase the depth and width of the network while reducing
the number of parameters. Considering the advantages of the
two inception models, the above two inception modules are
brought into the backbone to improve the multiscale feature
extraction capability.

Locating and Predicting Diseased Spots
Locating Multiscale Diseased Spots

Region Proposal Networks are the crucial part of the detection
model Faster DR-IACNN. Take Inception_5b as an example:
through the pre-network, a shared featuremap sizing 7× 7× 256
is obtained. Then, the feature map is reshaped to 7 × 7 × 512
using 3 × 3 convolution kernels. To obtain categories and
regression results, the 1 × 1 convolution process is implemented
in the classification layer and regression layer, obtaining feature
maps of size 7 × 7 × 30 and 7 × 7 × 60, respectively. Finally,
with the arranged anchors, the candidate boxes are gained.

Inspired by Feature Pyramid Networks (Lin et al., 2017),
a double-RPN structure is proposed for locating the irregular
and multiscale diseased spots, as shown in Figure 9. Through
a deconvolution process, the high semantic information
of Inception_5b is integrated with the high resolution of
Inception_ResNet-v2. Thus, the proposed detection model
can predict diseased spots separately in each feature layer.
Furthermore, the bottom-up feature extraction and top-down
upsampling method enhance the ability of the model to detect
small diseased spots.

FIGURE 8 | Inception structure. (A) Inception-v1. (B) Inception-ResNet v2.
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FIGURE 9 | The structure of Double Region Proposal Networks.

FIGURE 10 | Region proposal boxes with anchors.

Guaranteeing the Translation Invariance

Due to the multiple-convolution process, the scale of feature
maps is changed. It is essential to guarantee translation
invariance between the feature maps and original images.
To accurately locate the diseased spots on the original
images, anchor boxes (Ren et al., 2018) are employed
in the grape leaf diseased spot detection. As shown in
Figure 10, multiple region proposals are predicted when
the sliding window slides at each location. The anchor
boxes’ sizes are related to scale and ratio. The default in
Faster DR-IACNN is set as 5 scales and 3 ratios. That
is, it generates 15 anchor boxes in the original images
due to mapping. The region proposal process guarantees
the essential properties of multiscale detection ability and
translation invariance.

EXPERIMENTAL EVALUATION

This section describes the experimental setup. First, the details
of the experimental platform and the dataset are introduced, and
then the experimental results are analyzed and discussed.

TABLE 2 | Hardware and software environment.

Configuration item Value

CPU Intel(R) Xeon(R) CPU E5-2650 v4

GPU NVIDIA Tesla P100 PCI-E GPU 16 GB

Memory 128 GB

Hard disk 2 TB

Operating system Ubuntu 16.04.2 LTS (64-bit)

TABLE 3 | Grape leaf disease dataset.

Disease Training/validation/testing image Total quantity

Black rot 9,912 / 3,304 / 3,304 16,520

Black measles 11,617 / 3,872 / 3,873 19,362

Leaf blight 9,038 / 3,013 / 3,013 15,064

Mites of grape 6,804 / 2,268 / 2,268 11,340

Total 37,371 / 12,457 / 12,458 62,286

Experimental Setup
The experiments were performed on a 16.04.2-Ubuntu server
with an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20 GHz × 48. It
is accelerated by an NVIDIA Tesla P100 PCI-E GPU, which has
3,584 CUDA cores and 16 GB of memory. The core frequency
is up to 1328 MHz, and the single-precision floating-point
performance is 9.3 TFLOPS. The proposed Faster DR-IACNN
model was implemented on Caffe, a deep learning framework.
Table 2 presents the configuration parameters.

Dataset
In the experiment, 60% of the dataset was used for training, and
the other 40% was used for validation and testing. The ratio size
of the training dataset and validation dataset and testing dataset
is 3:1:1. Through digit image processing technology, the number
of original grape leaf disease images was expanded to 62,286. The
partition of GLDD is reported in Table 3.

Experimental Results and Analyses
Accuracy Comparison With Various Detection Models

To compare the performance of various detection algorithms, a
typical one-stage algorithm SSD and two-stage classical detection
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TABLE 4 | Detection results of various CNN models.

Method SSD R-FCN Faster R-CNN Faster

DR-IACNN

Feature extractor VGG 16 ResNet 50 ZF VGG 16 ResNet 50 ResNet 34 ResNet 18 INSE-ResNet

(our work)

INSE-ResNet

(our work)
Classes

Input 512 500 500 500 500 500 500 500 500

Iterations 120 k 200 k 200 k 200 k 200 k 200 k 200 k 280 k 280 k

Black rot 74.7 79.0 63.5 64.5 64.4 69.3 65.8 73.7 76.7

Black measles 81.6 82.5 75.4 79.9 79.0 81.4 75.0 85.3 88.0

Leaf blight 72.0 68.2 59.2 60.0 60.8 64.4 64.4 71.1 73.7

Mites of grape 77.9 69.4 69.3 70.4 70.2 70.8 73.6 84.0 86.2

mAP (%) 76.6 74.8 66.9 68.7 68.6 71.5 69.7 78.5 81.1

The meaning of the “bold” is the best experimental results.

TABLE 5 | Precision and speed of various models.

Method R-FCN Faster R-CNN Faster DR-IACNN

Backbone ResNet 50 ZF VGG 16 GoogLeNet ResNet 50 ResNet 34 ResNet 18 INSE-ResNet (our work)

mAP (%) 74.8 66.9 67.5 64.3 68.6 71.5 69.7 81.1

Speed (FPS) 15.75 16.08 15.85 18.65 7.11 10.33 13.94 15.01

The meaning of the “bold” is the best experimental results.

algorithms Faster R-CNN and R-FCN have been selected to
detect grape leaf diseases on GLDD under the condition of
using different backbone networks. The experimental results are
reported in Table 4.

The mean Average Precision (mAP) is the standard index
in the evaluation of the object detection algorithm, which
is used in this section. In the two-stage algorithm, with the
same input size of 500 × 500, the proposed model Faster
DR-IACNN achieves a high accuracy of 81.1% mAP, and the
detection performance in all categories is better than those of
other detection models based on Faster R-CNN. The overall
accuracy is 9.6% higher than that of the model with the
backbone network ResNet34. Meanwhile, the Faster DR-IACNN
model has higher detection accuracy than all of the other
detection models.

To determine whether the deeper neural network can improve
the detection performance of the model, ResNet50, ResNet34,
and ResNet18 have been verified with 200 k iterations. The
results show that ResNet50 has the worst effect, and ResNet18
did not obtain satisfactory improvement, either. The reasons
for unsatisfying results are that the feature of diseased spots
disappear with increasing CNN depth, while superficial layers
cannot extract features accurately. Therefore, ResNet34 is the
most suitable network for our dataset, with an improvement of
2.9 and 1.8% relative to ResNet50 and ResNet18, respectively.

In this experiment, Black rot and Leaf blight are relatively
difficult to detect because they are similar in shape and have small
diseased spots. Our proposed model, Faster DR-IACNN, shows
significant improvement in the above two types of diseased spots,
with 3 and 2.6% improvement compared with Faster R-CNN.
Additionally, all the models have the highest detection accuracy
for Black measles; the reason is that Black measles lesions are

large, shaped like strips, and greatly differ from other categories,
which can be easily distinguished by all the detection models.

Detection Accuracy and Speed

The detection speed is another important index to evaluate the
object detection algorithm, which plays a vital role in real-time
detection. Usually, FPS (frames per second) is utilized to evaluate
detection speed. The larger the FPS is, the faster the detection
speed will be. In this part, the detection speed of two-stage
algorithms Faster R-CNN and R-FCN with the proposed models
are evaluated. The experimental results are reported in Table 5.

FIGURE 11 | Accuracy curve of pre-networks models.
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In Faster R-CNN, the model with GoogLeNet as the backbone
network has the fastest detection speed, up to 18.65 FPS. The
reason is that the Inception module expends the network and
reduces the parameters while deepening the network, which
improves the efficiency of feature extraction. Considering the
detection efficiency, the Inception module and ResNet structure
have been combined to propose the Faster DR-IACNN model,
which further improved the accuracy on GLDD to reach 81.1%
mAP with a detection speed of 15.01 FPS, reaching the highest
accuracy compared with the traditional Faster R-CNN method
with a high speed that meets the actual demands in grapery.
Compared with the average detection speed reached 13.66 FPS
of Faster R-CNN model, which was described as a real-time
detection model, the proposed Faster DR-IACNN has higher
detection speed of 15.01 FPS and meets the requirements of
real-time detection.

The Selection and Comparison of Pre-networks

The detection algorithm Faster R-CNN consists of three parts, the
feature extraction network, RPN, classification and regression,
among which feature extraction network (as known as a
pre-network) plays an important role in the implementation
of detection. In this section, several general CNNs such
as GoogLeNet, VGG16, and ResNet series are trained and
validated. The recognition performance of INSE-ResNet is
compared with these traditional networks on GLDD. In the
training process, the stochastic gradient descent (SGD) algorithm
and weight attenuation strategy are adopted to minimize
the loss function. In the SGD algorithm, the training image
is selected randomly to update the model parameters, the
batch size is set to 32, the base learning rate is 0.01, and
the learning rate is attenuated three times in 10 epochs of
training, which is 0.1 times of the previous learning rate
such that the obtained results avoid inability to converge.
To make the algorithm converge to the optimal speed, the
momentum is set to 0.9.

As shown in Figure 11, the X-axis represents the iterations
of training, and the Y-axis represents the corresponding training
accuracy. The test accuracy of each identification network in the
experiments is reported in Table 6. As shown in Figure 11, the
recognition results of ResNet networks and Inception networks
are satisfying, which inspired us to make good use of their

TABLE 6 | The recognition accuracy of pre-network models.

Pre-network model Input size Recognition accuracy (%)

VGG16 224 × 224 98.48

GoogLeNet 224 × 224 98.91

ResNet18 224 × 224 98.92

ResNet34 224 × 224 98.40

ResNet50 224 × 224 97.01

ResNet101 224 × 224 88.61

Inception-ResNet-v2 224 × 224 99.28

INSE-ResNet (our work) 224 × 224 99.47

The meaning of the “bold” is the best experimental results.

TABLE 7 | Detection precision with and without data augmentation.

Method Without data augmentation With data augmentation

Black rot 69.1 76.7

Black measles 81.4 88.0

Leaf blight 66.7 73.7

Mites of grape 80.1 86.2

mAP (%) 74.3 81.1

FIGURE 12 | Influence of double-RPN.

strengths to build INSE-ResNet. Therefore, considering the
subsequent model establishment, the INSE-ResNet structure is
proposed based on ResNet34 combined with the Inception-
v1 module, Inception-ResNet-v2 module and SE-block, which
achieves a better performance in term of recognition accuracy.

Effect of Data Augmentation on the Detection

Accuracy

To avoid overfitting, various methods are used in this article.
First, the grape diseased leaves were collected in multiple
environments and areas. Most diseased grape leaf images with
complex background were captured in the Wei Jiani Chateau,
while the other images with simpler backgrounds were collected
in the laboratory, which guarantees the generalization of the
proposed model and reduces the occurrence of overfitting.

TABLE 8 | Detection precision with and without double-RPN.

Methods INSE-ResNet in Faster R-CNN Faster DR-IACNN

Diseases

Black rot 73.7 76.7

Black measles 85.3 88.0

Leaf blight 71.1 73.7

Mites of grape 84.0 86.2

mAP (%) 78.5 81.1
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TABLE 9 | Evaluation of different anchor scales.

Anchor base size Number of anchors (scales) Aspect ratios mAP (%)

3 scales, 3 ratios {1282
, 2562

, 5122} {2 : 1, 1 : 1, 1 : 2} 75.2

5 scales, 3 ratios {322
, 642

, 1282
, 2562

, 5122} {2 : 1, 1 : 1, 1 : 2} 81.1

6 scales, 3 ratios {162
, 322

, 642
, 1282

, 2562
, 5122} {2 : 1, 1 : 1, 1 : 2} 77.8

8 scales, 3 ratios {322
, 482

, 642
, 962

, 1282
, 1922

, 2562
, 5122} {2 : 1, 1 : 1, 1 : 2} 78.4

The meaning of the “bold” is the best experimental results.

Moreover, due to the difficult work involved in collecting
diseased grape leaves, the dataset is still insufficient. Thus, data
augmentation is a satisfactory approach to solve the insufficient
training image problem.

As reported in Table 7, the accuracy without data
augmentation is lower, which reaches 74.3% mAP, and the
loss is high during the training process. In contrast, the proposed
model with data augmentation realizes 81.1% mAP, which
corresponds to a detection precision improvement of 6.8%
relative to the dataset without data augmentation.

Effect of Double-RPN on the Detection Accuracy

Compared with the original RPN structure, the proposed double-
RPN in Faster DR-IACNN has greatly improved the detection
effect on GLDD. Double-RPN performs well at small diseased
spots detection by making full use of high layers’ semantic
information and low layers’ location information.

This article evaluated the performance of Faster DR-IACNN
on GLDD through two sets of experiments, which tested
the model with original RPN and double-RPN. As shown in
Figure 12, for the Faster R-CNN, the loss is relatively large and
fluctuates in a large range during the training, while for the
Faster DR-IACNN model, the loss function changes steadily and
presents a significant downward trend. As reported in Table 8,
the detection accuracy of Faster DR-IACNN for four grape leaf
diseases has also improved simultaneously, and the mAP of the
GLDD reaches 81.1%, increasing 2.6% compared with single RPN
in Faster R-CNN.

Effect of the Anchor Scales on the Detection

Accuracy

Translation invariance is a challenge of deep CNNs.
Traditionally, there are two mainstream solutions to this
problem: first, sampling the feature map layer in scale or aspect
ratio, and second, using a filter (also considered as a sliding
window) to sample in scale or aspect ratio. Faster R-CNN
samples the center of convolution kernel in terms of scale and
aspect ratio, which uses 3 scales and 3 aspect radios to produce
9 anchor boxes. On the feature map, RPN proposes a sliding
window, whose size is 3 × 3, and takes the center of 3 × 3 sliding
windows as the center of the anchor boxes.

In this article, due to the characteristic of small and dense
diseased spots, the aspect ratios are set as 0.5, 1, and 2; the base
size is set as 16; and the number of anchor boxes is adjusted
among 3, 5, 6, and 8 for comparison. The experimental results
are reported in Table 9. The results show that when the number
of anchor boxes is 5 and scales are 2, 4, 8, 16, and 32—that is,

the sizes of the anchor boxes are 32 × 32, 64 × 64, 128 × 128,
256 × 256, and 512 × 512—and 90 k anchor boxes are generated
in each image, the highest precision of 81.1% mAP is obtained
in the Faster DR-IACNN, which is 5.9% mAP higher than the
original 3 anchor boxes. Especially, the detection result of small
diseased spots Leaf blight is increased by 9.4% mAP.

Detection Results of the Grape Leaves

The detection results of four common diseases of grape leaves are
shown in Figure 13. Figures 13A–D show the detection results of
single disease of Black rot, Black measles, Leaf blight and Mites
of grape, respectively, while Figure 13E shows infected leave
with Black rot and Black measles simultaneously, which has been
detected precisely by the detector at one time. The results show
that the detection model can detect not only multiple diseased
spots of the same disease in one leaf but also multiple spots of
different diseases on one leaf at one time, demonstrating the
strong generalization and robustness of the model. As seen in
Figure 13, most scores of detection boxes are greater than 0.99,
andmost diseased spots on leaves are detected, demonstrating the
high detection precision and accurate location of the Faster DR-
IACNNmodel.

CONCLUSION

This article proposed a deep-learning-based detector, Faster DR-
IACNN, for detecting grape leaf diseases. The proposed method
can automatically extract the features of diseased spots and
detect four common grape leaf diseases with high accuracy and
a satisfactory detection speed. To improve the generalization of
the model and ensure a sufficient GLDD, 4,449 original images
with both simple and complex backgrounds were collected in
the laboratory and real vineyards, and a total of 62,286 diseased
leaf images were generated for training via data augmentation
technology. The proposed Faster DR-IACNN detector improved
the detection performance of multiscale diseased spots and
small diseased spots by introducing the Inception-v1 module,
Inception-ResNet-v2 module and SE-blocks.

The new deep-learning-based detection method was
implemented in the Caffe framework on the GPU platform.
The detection performance of Faster DR-IACNN reached 81.1%
mAP, and the speed was 15.01 FPS. The results demonstrate
that the proposed Faster DR-IACNN method can detect four
common grape leaf diseases efficiently and accurately, and
it provides a feasible solution for the real-time detection of
grape leaf diseases.
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FIGURE 13 | Grape leaf diseased spots detection results. (A) Multiple Black rot spots in one leaf. (B) Multiple Black measles spots in one leaf. (C) Multiple Leaf

blight spots in one leaf. (D) Multiple Mites of grape spots in one leaf. (E) Diversified diseased spots in one leaf.
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