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Abstract
Object detection and recognition are the most important and challenging problems in computer vision.
The remarkable advancements in deep learning techniques have signi�cantly accelerated the momentum
of object detection/recognition in recent years. Meanwhile, scene text detection/recognition is also a
critical task in computer vision and has gotten more attention from many researchers due to its wide
range of applications. This work focuses on detecting and recognizing multiple retail products stacked on
the shelves and off the shelves in the grocery stores by identifying the label texts. In this paper, we
proposed a new framework is composed of three modules: (a) Retail product detection, (b) Product-text
detection (c) Product-text recognition. In the �rst module, on-the-shelf and off-shelf retail products are
detected using the YOLOv5 object detection algorithm. In the second module, we improve the
performance of the state-of-the-art text detection algorithm named, “TextSnake”, by replacing the
backbone network (ResNet50 + FPN) and a post-processing technique, WHBBR (Width Height based
Bounding Box Reconstruction), is proposed to detect regular and irregular text. In the �nal module, we
used a text recognition network named “SCATTER” to recognize the retail product's text information. The
YOLOv5 algorithm accurately detects both on-the-shelf and off-the-shelf grocery products from the video
frames and the static images. The experimental results show that the proposed text reconstruction
approach WHBBR improves the performance of the state-of-the-art techniques on both regular and
irregular text. The enhanced text detection and incorporated text recognition methods greatly support our
proposed framework to recognize the on-the-shelf retail products by extracting product information such
as product name, brand name, price, expiring date, etc. The recognized text contexts around the retail
products can be used as the identi�er to distinguish the product.

1. Introduction
Detection and recognition of objects in video streams are basic and challenging tasks in computer vision.
Object recognition and detection have been the subject of much research in the last two decades [1, 2].
Object detection is the process of determining the existence of different individual objects in an image.
The challenge of object detection and recognition has been addressed in controlled environments. Still, it
remains unsolved in uncontrolled environments, particularly when items are placed in arbitrary poses in a
cluttered and occluded environment [3]. The recent growth of mobile devices with high-resolution
cameras has enabled applications to support daily tasks in various contexts. In this work, we focus on
detecting and recognizing grocery products on shelves around the user in a grocery store. Product
recognition is more similar to a complex instance recognition problem than a classi�cation problem. It
includes many identical objects yet varies in minor aspects, for example, different �avours of the same
brand of lays chips [4]. Common challenges of automatic grocery product recognition are shown in Fig. 1.
Automatic product detection and recognition in a video frame have many applications, ranging from
recognizing speci�c products to providing review and price information to assisting navigation inside the
grocery store.
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Furthermore, automatic grocery product detection and recognition can assist the visually impaired during
shopping [5]. Because product appearance varies signi�cantly due to the substantial changes in pose,
perspective, size variations, occlusion, and lighting conditions, product detection/recognition in grocery
shops are complicated. Additional peculiar issues are the product’s packaging can change over time, and
different products look remarkably identical. Only small packaging information allows them to
differentiate, such as slight differences in the text describing the product or the background of the
package's colour. Detecting/recognizing speci�c products is complex, unlike classifying products in
macro-categories such as shampoo, chips, detergent, and so on. Another notable issue in this scenario is
the availability of new products. The number of new products is increasing every day, and whenever a
new product is introduced, the product recognition system also needs to be scalable with no or minimal
retraining.

Acquisition and manual annotation of the training images is a time-consuming task. It is not feasible
because the products frequently change over time; collecting and annotating new in-store images and
retraining the system is not viable. The system must endure cross-domain scenarios where testing
images are obtained from different stores and with varying imaging conditions. Since the training and
testing images are from varying imaging conditions, it’s vital to establish an ideal system that only needs
to be trained once and used in various stores and scenarios. López et al. [6] developed an automatic
product recognition system using RFID (Radio Frequency Identi�cation), sensors, or barcodes. The
majority of sensor-based systems require manufacturing fabrication, increasing the product’s cost, and
require massive investment. The sensor-based methods cannot resolve the planogram compliance
problems. Comparing to sensor-based approaches the computer vision posses cost-effectiveness and
e�ciency in terms of real time implementation.

This work proposes a novel framework to detect and recognize multiple on-the-shelf and off-shelf grocery
products from shelf images and video frames. We divided our proposed framework into three steps, as
shown in Fig. 2: 1. For grocery product detection, we incorporated the YOLO (You Look Only Once)
algorithm [7] to perform the grocery product detection task; we trained and tested the YOLO algorithm
using benchmark grocery products datasets to detect multiple objects from the shelves images and video
frames. 2. Object text detection, in this step, the output image from the product detection step is given as
input to perform product text detection to obtain the corresponding product information such as product
name, brand name, price, expiry date and so on. 3. Object text recognition, detected texts are recognized
using a scene text recognition algorithm named SCATTER [30]. The recognized texts contain complete
information about the corresponding product.

In summary, the signi�cant contributions of our work are as follows:

Incorporated the YOLOv5 algorithm to perform grocery product detection tasks, and we increased the
object class size from 80 to 120. YOLOv5 algorithm works well for general object detection, whereas
we trained the YOLOv5 algorithm for grocery product detection tasks, and the detection results are
compared with existing methods.
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We improved the performance of the state-of-the-art text detection algorithm, TextSnake, by altering
the backbone network from VGG16 to ResNet50. We proposed an algorithm to select the centering
point instead of picking a random point. We proposed an accurate post-processing step for text
reconstruction by combining Graham Scan algorithm and the rotating calipers technique. The
modi�ed backbone network, striding algorithm, and post-processing technique greatly enhanced the
performance of the state-of-the-art algorithm. The robustness of the text detection method is
evaluated using standard benchmark text detection datasets.

We converted the videos of the complex Grozi-120 public dataset into frames, and then we
performed a grocery product detection task. For the complex Grozi-120 public dataset alone, we used
both videos and static images, whereas the remaining datasets contain only on shelf product and
individual product images. So, we performed a recognition task with only static images.

The organization of the paper is as follows: Section 2 describes the literature review on object detection,
text detection and retail product detection and recognition. Section 3 explains the proposed framework
and WHBBR technique with the help of schematic diagrams. Section 4 presents a description of datasets
and implementation details. Section 5 presents experimental results and a brief discussion of the
research outcomes. Finally, Section 6 draws a conclusion and future work.

2. Related Work
This section describes different work carried out by various authors on general object detection
algorithms, text detection, and recognition algorithms. Then a short literature review of grocery product
detection and recognition methods.

2.1. General Object Detection
Object detection has been a trending area approached by the researchers in recent years. The primary aim
of object detection is to identify and locate the instances of semantic objects of a speci�c class such as
(building, human, dog, bicycle, or cats) in an image or video and, if present, spatial location information
and bounding box drawn around the extent of each object instances. Generally, object detection methods
fall into one of two categories: neural network-based or non-neural network methods. In the non-neural
approach, object detectors can extract the features of the objects from either grayscale or colour images
matched to detect the object, such as (Viola-Jones detectors, HOG (Histogram of Oriented Gradients),
PCA(Principle Component Analysis), and Haar-like wavelet transform). The HOG method partitions the
video frame or static image into several blocks and then looks for the object based on extracted features.
The PCA approach extracts the object features using eigenvectors. Haar-like wavelet transform is the �rst
real-time face detector that detects the objects in an image by deriving edge features, line features, and
center-surrounded features from an image. SIFT (Scale Invariant Feature Transforms) was used for
object detection early stage of research works. It provides some unique properties such as invariant to
rotation, scale, viewpoint, and illumination. SIFT is used for human detection; it performs a signi�cant
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computation process to obtain features from the images such as scale-space extrema detection, keypoint
localization, orientation assignment, and keypoint descriptor.

Over the past two decades, the emergence of deep learning has accelerated the development of a rich set
of object detection methods. Object detection approaches based on deep learning have yielded
signi�cant advancements and outstanding results. Object detection methods are classi�ed into two
types: one-stage and two-stage methods. One stage method performs the detection in one step. The
following are examples of typical one-stage algorithms: YOLO [7], SSD (Single Shot MultiBox Detector),
DetectNet, and SqueezeDet. One-stage methods only localize the object without computing region
proposals directly by performing bounding box regression and classi�cation tasks. Two-stage method
follow two steps for object detection. The original image is used to generate region proposals in the �rst
step. The region proposals are classi�ed, and their locations are �ne-tuned in the second step, which
involves classi�cation and regression tasks. R-CNN (Regional Convolutional Neural Network) series are
popularly known for detecting region proposals. R-CNN performs an external selective search over the
image to generate region proposals and feeds the computed region proposals into CNN (Convolutional
Neural Network) to perform classi�cation and bounding box regression tasks. The pace of training and
detection quite sluggish with R-CNN since it involves forward computation of different object regions that
may overlap. Instead of extracting region proposals from each image multiple times, Fast R-CNN uses a
feature extractor to extract all the features of the entire image to perform object detection. The processing
time decreases since Fast R-CNN extracts all the features at an instance.

Faster R-CNN is based on the same architecture as Fast R-CNN. RPN (Region Proposal Network)
substitutes the selective search approach in Faster R-CNN, which overcomes the issue of signi�cant time
overhead in producing ROI ( Region Of Interest), SSD provides a considerable performance over Faster R-
CNN in detecting the more prominent objects. The network creates a variety of feature maps of various
sizes. On multi-scale feature maps, classi�cation and bounding box regression tasks are performed
concurrently. YOLO is a prevalent object detection technique based on the one-stage method. YOLO
detects multiple objects simultaneously by predicting class probability values and bounding boxes. For
object detection, YOLO does not employ multi-scale feature maps. Compared to SSD, generalization
capabilities are inferior in YOLO for large-scale changes in an object. YOLO has the problem of poor
recognition accuracy and a high missed detection rate. YOLOv2 uses an anchor mechanism to predict
bounding boxes, so the feature map’s spatial information is substantially maintained. YOLO, which
employs a fully connected layer to predict bounding boxes, YOLOv2 uses convolutional layers. When a
fully connected layer is used to predict bounding boxes, the feature map may lose; the YOLOv3 algorithm
adapts multi-scale feature maps and uses FPN (Feature Pyramid Networks) to predict bounding boxes.
FPN technique helps to merge the middle layers’ output with the latter layer’s, and the smaller objects
present in the low-level feature can be spotted by passing high-level features to the bottom layers.

The detection speed and accuracy of YOLOv3 have been considerably improved than the earlier versions.
YOLOv4 algorithm adapts the architecture of YOLOv3 with modi�cations in the backbone and neck. The
major difference in the YOLOv4 is only the backbone. YOLOv4 uses CSPDarknet53, whereas YOLOv3 uses
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Darknet53 as their respective backbone network. YOLOv4 backbone architecture comprises mainly three
parts: CSPDarknet53, Bag of special, and Bag of freebies. A bag of special methods is used to increase
inference cost, but object detection accuracy were greatly improved. YOLOv5 is a one-stage object
detector composed of three crucial components: Backbone, Feature Pyramid, And Final Detection CSPNet
(Cross-Stage Partial Network) is used as the backbone to extract rich features from an input image.
CSPNet greatly improves processing time. PANet (Path Aggregation Network) is used as a feature
pyramid, and the �nal detection part generates an output vector with bounding boxes, class probabilities
objectness score and applies anchor boxes on features.

Google Translate’s NMT (Neural Machine Translation) performs language translation in the form of text
inscriptions which doesnot intended to identify or classify the object class. For example, simple process
of translation of the text from a language English to French. Whereas YOLOv5 performs object detection
tasks with the intension to identify and stratify the object class. Also, it �nds the exact location of an
object and draws a bounding box around the object. In our proposed framework, we restrict the text
detection model to perform detection only within the bounding box coordinates. Whereas NMT performs
text detection and translation for the entire image. The WHBBR technique is proposed to enhance the
accuracy of state-of-the-art text detection methods and this technique works well with irregular text
detection models.

Many researchers have widely explored the major problems of object detection in videos and scene
images. In this research work, many solutions have been suggested: [1–3]. Most of the video object
detection algorithms includes two networks. Firstly, CNN were used in the backbone network whereas the
last layer was taken up for the feature extraction by replacing the Fully connected layer. Secondly, the
detection network classi�es the objects and predicts the bound boxes. The methods for detecting video
objects using deep learning can be classi�ed into LSTM (Long Short Term Memory)-based, tracking-
based, �ow-based, attention-based, and other methods. The �ow-based method uses optical �ow. A deep
feature �ow framework propagates deep feature maps from sparse keyframes to different frames via an
optical �ow. A 3D CNN model for video sequence object detection developed a network to learn the
spatiotemporal properties of a video series using several input video frames and combine video data and
optical �ow for video classi�cation. It improved detection speed and accuracy. Missing Recovery
Recurrent Neural Network (MR-RNN) is an object detection algorithm to capture the missing objects and
many objects missed by basic object detectors earlier by capturing the temporal information from the
video frames. To retrieve complete details about the moving objects. Geometric properties of moving
objects are described by taking the pixels of moving objects and object-background pixels pairs and
�nally, establishes the relationship between the moving object’s geometric properties and the model
parameters. A dual-stream detection mechanism was utilized to boost tiny object detection by combining
appearance �ow with motion �ow. Wang et al. [8] proposed MANet to �nd the optical �ow information
between adjacent frames, to deliberate the optical �ow information in which it extract the global image
features together. This method was e�ciently used to extract features by acquiring the instance-level
calibration across frames with optical �ows technique, and then the pixel-level feature calibration was to
improve the performance of video object detection.
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Flow-oriented temporal coherence module and ABTC (Attention-Based Temporal Context Module)
methods are used to extract and integrate high-level features from keyframes, so these integrated
features were given as an input to the detection network for object detection which results higher
accurate frame alignment. D&T proposed a ConvNet architecture [9] to improve object detection and
object tracking performance by introducing a multi-task objective frame-based object tracking by adopted
techniques as follows, frame track, regression, correlation features, and frame-level detection based on
tracklets. Temporal contextual information was extracted using the STMN (Spatio-temporal memory
module). Seq-NMS [10] proposed a heuristic method composed of sequence selection, re-scoring, and
suppression for re-ranking bounding boxes [11] in a video sequence. TSSD (Temporal Single-Shot
Detector) method integrates ConvLSTM-based attention used for background and scale suppression and
SSD.

2.2. Text Detection
A novel method proposed by Shivakumara et al. [12] to detect text from video frames based on neighbour
component grouping and GVF (Gradient Vector Flow) use dominant edge pixels to extract TC (Text
Candidates). They presented two grouping schemes: the �rst scheme �nds nearest neighbours to
produce CTC (Candidate Text Components). The second scheme extracts neighbouring and restores
missing CTC to detect arbitrary text in video frames [44–47]. Hybrid text detection and text tracking work
proposed based on MSER (Maximally Stable Extremal Region). Delaunay Triangulation is used to identify
the text candidates and multi-scale integration to solve multi-font and multi-sized texts by occurring
spatial and temporal information. It also utilized convolving Laplacian with wavelet sub-bands to
enhance low-resolution text pixels and combined MSERs and SWT (Stroke Width Transform) to obtain
text candidate regions so which they improved the performance of arbitrary shaped text in video frames.

To detect text from complex video frames, Ye et al. [13] proposed a texture-based method, LBP (Local
Binary Pattern), to extract features of text candidates. PNN (Polynomial Neural Network) was developed
to classify text and non-text regions. A three-stage text detection method was proposed First it extracts
the features from a video frame then, text candidates are detected by optimizing RBFNN (Radial Basis
Function Neural Network) model. Finally, a post-processing was done on the false detected text
candidates [50]. To classify textual and non-textual components, He et al. [14] presented a framework for
text detection called Text-CNN (Text-Attentional Convolutional Neural Network). In this reseachers
introduced a new training mechanism to increase the robustness against a complex background. CE-
MSERs (Contrast Enhancement Maximally Stable Extremal Regions) detector was developed to improve
the video frame’s intensity. This method can detect complex text patterns with a high accuracy rate.
Predicting arbitrary orientated and quadrilateral shaped text line or word incorporates proper loss
function. The false detection rate reduced drastically, NMS (Non-maximum Suppression) [51, 53, 57]
produces �nal bounding boxed text regions [15]. To detect text region from low-quality images with
complex background from video frames the script identi�cation was performed by extracting low and
high-level featues using CNN-LSTM framework and Attention-based patch and their respective weights
were calculated.
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The video frames were converted into patches and fed into CNN-LSTM. Local features are extracted by
performing patch-wise product patch weights, and global features are extracted from the �nal LSTM cell.
Weights of local and global features fused dynamically to perform script identi�cation. Coarse candidate
regions detection and �ne text line detection are effective in detecting multi-scale candidate text areas.
Candidate text regions are segmented and fed into CNN, which generates a con�dence map for each
frame’s text regions. Finally, projection analysis re�nes text candidates and divides them into text lines.
The performance of the video text detection technique was enhanced using a novel re�ned block
structure constructed e�ciently using a fully convolutional network. High-resolution semantic feature
maps are generated by extracting multi-resolution features from video frames to capture highly varied
video text appearances and feature fusion, an e�cient correlation �lter [54] used to improve the overall
detection performance.

An eMSER (Edge-enhanced Maximally Stable Extremal Regions) was proposed to reduce the text
detection duration in video frames, also retain the character’s shapes and converge the detection. A
hierarchical convolutional neural network is used to extract descriptive features. A multi-scale deformable
convolution structure extracts additional features and spatiotemporal information from the video frames
[16]. It incorporates a bipartite graph model and the random walk algorithm. Firstly, text candidates and
background regions are extracted from the video frame. Shape, motion, and spatial relation between text
and background are exploited to re�ne text candidates. Obtains the correlations between text and
background regions that was greatly improvise accuracy in video text detection. Fusion-based detection
method [17] proposed extracting text regions and locating characters; tracking trajectories are linked to
re�ne detection results. A polygon-based curve text detector combined the R-CNN and TLOC (Transverse
And Longitudinal Offset Connection) [18] for the precise detection of irregularity texts. Post-processing
methods named NPS (Non-Polygon Suppress) and PNMS (Polygonal Non-Maximum Suppression)
produces e�cient and accurate text detection result.

2.3. Grocery Product Detection and Recognition
In 1999, the �rst signi�cant effort was made to recognize retail products in isolation. Naturally, the
problem of localization is not addressed. Merler [19] introduced a retail product detection problem with a
dataset consists of with rack and product images in 2007; it took almost eight years to develop a more
comprehensive method to detect and recognize multiple retail products. Marder [20] proposed a two
successive layers multi-product detection scheme. In the �rst layer, they followed three different
techniques to detect retail products in the rack (i) Vote map, (ii) HOG and (iii) BoW (Bag of Words) based
on a sliding-window approach. A saliency map was used for product recognition and to address the
second layer's planogram compliance problem. Beis et al. introduced a k-d tree representation [21] of all
product images SURF (Speeded Up Robust Features) descriptors for retail product recognition. The
products in the rack images are recognized using a previously constructed k-d tree and the Best-Bin-First
search algorithm. In addition, a pose-class histogram in high dimensional space were used to perform
�ne-grained recognition.
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George et al. proposed a three-phase detection and recognition method [22]. In the �rst phase, They
developed a non-parametric probabilistic model based on SIFT features. Fine-grained product
categorization is performed in the second phase. The �rst and second phases are coupled with the KLT
(Karhunen-Loeve Transform) in the �nal phase it tracks the boxes detected in a video. Geng et al.
developed a product detection system [23]; they created a saliency map for the shelf images to identify
the locations of the products in the frames. The saliency map is constructed by SURF key points using
the rack image’s AIM (Attention and Information Maximization). Finally, a CNN is used to recognize the
products. Ray et al. present a Conditional Random Field (CRF) [24] based method for classifying
structured objects. A CNN extracts the visual features and linearly fed to a CRF model. Viterbi and
forward-backward algorithms were used to generate the labels of the product sequence.

Franco et al. divided the product detection and recognition task into three steps [25]: (i) Candidate pre-
selection; in this step, they segmented the foreground from the background using �xed-threshold
binarization. (ii) Fine-selection, They utilized a customized DNN (Deep Neural Network) and a BoWto
select the most robust features (iii) Post-processing reduces the false positives by eliminating the
multiple overlapped detections of the same products [42, 43]. Karlinsky et al. and Zientara et al.
calculated a homography matrix [26, 27] to identify the grocery products in shelf images by matching
SURF key points of product images with corresponding rack images. Goldman et al. [28] used a Hough
voting scheme based on matched SURF key points to determine the pose of products, and then they
determined the location of products by estimating their pose.

Bukhari et al. [67] developed a vision-based ARC (Automatic Retail Checkout) system, which uses CNNN
for object detection, Canny edge detector and hysteresis thresholding to perform non-maximal
suppression and generates a binary image containing the edges, respectively. Morphological operations
are performed to �ll out holes and gaps. This method highly depends on a motor-powered conveyor-belt
mechanism. Ciocca et al. [60] introduced a multi-task learning network to extract features from the
images. Meanwhile, the Authors performed the classi�cation in both supervised and unsupervised
learning methods. Yilmazer and Birant [61] combined two concepts SOSA (Semi-Supervised Learning and
On-Shelf Availability) to identify the empty shelves. Similarly, Santra et al. [62] use GCN (Graph
Convolutional Network) for feature extraction, Siamese network architecture (SNA) was used to capture
the similarity of the neighbouring superpixels and Finally, the features extracted from GCN and SNA are
fed to SSVM for the identity gaps on the rack. Leo et al. [63] assessed the performance of different
classi�cation models. Olóndriz et al. [66] introduced FooDI-ML and Glovo a dataset and an application
respectively were used to recognize the retail product information. Machado et al. [64] developed a
product recognition system for visually impaired people. The authors infered that the ResNet-50-based
approach achieves better results than other deep learning-based models. Domingo et al. [65] use Cross-
Validation-Voting (CVV) scheme to classify the retail products.

3. Proposed Framework
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The overall architecture of our proposed framework is shown in Fig. 2; it consists of three important
modules for grocery product recognition. The �rst module is to detect grocery products based on the
product class using a single shot object detection algorithm, YOLOv5. The second module uses a text
detection algorithm to detect the appropriate text on grocery product packing (brand name, product name,
quantity, and other information). Finally, the third module recognizes the text using the text recognition
algorithm called WHBBR. The recognized text has unique information about the corresponding product
named as grocery product recognition model.

3.1. Pre-Processing
In a pre-processing step, the input videos in Grozi 120 datasets are converted into video frames to
perform object text detection and recognition. Here, the video frames are captured for every 0.5 seconds,
i.e., two frames are extracted per second. We use cv2.VideoCapture() and vidcap.read() prede�ned
function to capture the video frames.

3.2. Grocery Product Detection using YOLOv5
YOLOv5 incorporates CSPDarknet and CSP (Cross Stage Partial Network), which makes it easier to train
the object detection model and reduces the computation cost, respectively. When compared to other
YOLOv5 models seems much better at detecting smaller objects or far away objects, inference speed is
good when compared to Faster-RCNN, Fast-RCNN and SSD. Unlike R-CNN and SPP-net, No overlapping
boxes around the objects. YOLOv5 is more e�cient than other popular object detection models.

We incorporated the YOLOv5 algorithm for our grocery product detection. Figure 3 shows the overall
pipeline of the YOLOv5 object detection algorithm. YOLOv5 algorithm was chosen as our product detector
for three main reasons. Firstly, YOLOv5 uses CSPDarknet as its backbone. CSPNet is incorporated into the
darknet created as CSPDarknet. CSPNet successfully addresses the issue of repeating gradient
information, which often occurs in large-scale backbones. The gradient changes are included in the
feature map, signi�cantly improving CNN’s learning ability in cases where accuracy was reduced due to
light-weight and reduce needless energy usage by spreading the entire computation across each layer in
CNN. CSPDarknet reduces the model’s size by compressing the feature maps during the feature pyramid
generation step via cross-channel pooling, signi�cantly minimizes memory consumption costs.

CSPNet improves the inference speed and accuracy. Detection speed, model size, and accuracy are
imperative in our grocery product detection task. The inference e�ciency of product detection on low-
resource edge devices is determined based on model size. CSPNet can reduce the model size e�ciently.
Secondly, the YOLOv5 algorithm incorporates a PANet as its neck to increase the �ow of information.
PANet adopts bottom-up path augmentation and a new FPN to enhance the localization capability of the
entire feature hierarchically. Adaptive Feature Pooling allows high-level features to access �ne details and
high localization of low-level feature similarly large receptive �elds and capture richer context information
of high-level feature access by low-level feature this pooling feature help to produce accurate prediction.
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A fully connected Fusion used for mask prediction that differentiate instances and recognize the various
portions of the same object.

PANet helps to identify smaller products in our grocery product detection using the shared pooling feature
and ensures that products are not missed. Thirdly, to achieve multi-scale prediction, the head of the
YOLOv5 algorithm adapts the YOLO layer and produces feature maps of different sizes such as 19×19,
38×38, and 76×76 helping the model that can handle and detect small, medium, and oversized objects. It
also predicts anchor boxes for feature maps. Grocery products can be of different sizes, such as small,
medium, and large. The multi-scale detection mechanism in the YOLO layer ensures that the model able
to detect the grocery product even if the size changes during the detection process.

3.3. Text Detection
We propose a method for detecting text information in grocery items, such as product name, brand name,
amount, and so on, using an e�cient post-processing technique. As shown in Fig. 4, it describes the
overall architecture of the text detection model. Conventional text detection algorithms generally assume
the text instances in linear form. This linear form could not hold the representation and geometric
properties of curve text instances. To address this problem, we use the curve-shaped text detection
method. Inspired by TextSnake [29], the text instances are represented as a sequence of overlapping
disks, each centered on the text center line and associated with an orientation and radius. The various
transformations of text instances such as rotation, bending, and scaling are captured.

The text instance (ti) represents an ordered list O(t)={W0, W1,...Wi,.., Wn} consisting of multiple characters.
Where ‘Wi and ‘n’ in the ordered list represent ith disk and the total number of disks, respectively, each disk
(W) in the ordered list O(t) is correlated with a set of geometrical characteristics, i.e., W=(c,r,θ). In the
center, the radius equals half of the text instance t’s local width. The disk orientation is determined by the
tangential direction of the text center line around the center (c). W is represented by the numerals c, r, and
θ. The geometrical characteristics in O(t) are mainly used to amend irregular shape text instances and
change them into rectangular image regions. The text area (t) can be readily reconstructed by calculating
the union of the disks in O(t). The proposed FCN model predicts text regions (TR), text center line (TCL),
and its geometric attributes such as radius (r), sin θ, and cos θ. Further, masked TCL is computed from
TR; TCL is a component of TR. Each other instance segmentation can avoid TCL overlapping, and
disjoint sets are calculated and utilized. The central axis point lists are obtained using a striding method,
and a proposed post-processing technique is used for text instances reconstruction and eliminates false
detection.

3.3.1. Backbone Network
According to recent studies, ResNet50 captures well-de�ned feature representations. It is used very
frequently in many computer vision tasks. ResNet allows us to train extremely deep neural networks with
more than 150 layers. ResNet has the technique called skip connections, which addresses the problem of
vanishing gradient by providing an alternate path for the gradient to �ow through and allows the model to
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learn an identity function that ensures that the higher layer will perform at least as good as the lower
layer, and not worse. So, we adopted ResNet50 with batch normalization as our backbone network to
extract features from an image. The block diagram of our backbone network is illustrated in Fig. 5.
Similar to U-Net, we use ResNet’s skip connections in the decoding stage to aggregate low-level features.
This network has divided into �ve stages of convolution, and the fully-connected (FC) layers replace the
feature merging network, which is made up of grouping feature maps of each step. In a merging network,
several stages are piled one on top of the other, and each stage has its merging unit that extracts feature
maps from its previous stage. The following Eq. (1–4) interprets the merging branch.

e  5  = d1 (1)

d  i  = Conv3x3(Conv1x1[ei -1;UpSamplex2(di -1)]), for i ≥ 2 and i ≤ 4 (2)

d  5  = Conv3x3(Conv3x3(Conv3x3(Conv1x1[ei -1;UpSamplex2(di -1)])))), for i = 5 (3)

where ei and di represent feature maps of ith stage and the corresponding upsampling and merging units,
respectively. After the merging, the �nal detection output size is the same as the size of the input image.
The �nal output has four channels, TR/TCL, and the last three are geometric attributes of text instances
such as r, sinθ, and cosθ, respectively. The network generates the TCL, TR, and geometry maps after feed-
forwarding. Text Region (TR) is a binary mask, with 1 for foreground pixels (those inside the polygon
annotation) and 0 for background pixels, and Text Center Line (TCL) is computed using the sequencing
process.

3.3.2. TCL and TR Generation
Masked TCL is extracted by performing the intersection of TR and TCL. Disjoint-set accurately divides the
TCL pixels into discrete text instances. The enhanced striding algorithm predicts the shape and course of
the text instances. It consists of three essential tasks: centralizing, striding, and sliding. Firstly, we chose a
pixel by centralizing; we made it the starting point. Striding and centralizing are recursively performed in
both opposite directions from the starting point until it reaches the end. The searching operation
produces two ordered point lists combined to construct a �nal central axis list. The �nal axis list precisely
describes the text �ow and the text shape.
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Table 1
Algorithm to compute an initial center point in the TCL.
Procedure Centralizing

Input: x- axis Leftmost point (xl), Leftmost point (x2),

y- axis topmost point (yl), bottommost point (y2)

Output: x- axis (xcp),y- axis (ycp), text center point (tcp)

1. xcp = median(x1,x2)

2. ycp = median(y1,y2)

3. tcp = (xcp,ycp)

Centralizing: As given in Table 1, we follow three steps to calculate the center point coordinate using the
Instance segmented TCL as shown in Fig. 6. (i) calculate the x-axis center point (xcp) by �nding the
leftmost point (x1) and rightmost point (x2) of segmented TCL. (ii) Likewise, calculate the y-axis center
point (ycp) by �nding the topmost point (y1) and bottommost point (y2) of segmented TCL. (iii) Find the
center point coordinates (xcp, ycp).

Striding: once a center point is obtained, the next step is to perform a striding operation. This technique
looks for points by taking a stride in two opposite directions within the TCL area.

Disp1 = 
1
4r × cosθ,

1
4r × sinθ  (4)

Disp2 = −
1
4r × cosθ, −

1
4r × sinθ  (5)

Eqn (4) and Eq. (5) are the offset value for each stride in two opposite directions. If the points move out
of the text area, the stride offset value is decremented gradually until the points move inside the text area
or it hits the end.

Sliding: Finally, the sliding procedure iteratively moves along the central text line, drawing circles on
predicted text instances with a radius r calculated from the r map. For each point on TCL: The distance
between two points on the sides is used to determine the radius (r); by drawing a straight line across the
TCL points in the text area, the orientation (θ) is determined. Since the TCL is a straight line, it is simple to
compute it using algebraic triangles and quadrangles. But, it isn’t easy to use a generic algebraic
technique for polygons with more than four sides. An illustration of the TCL extraction and TCL
expansion is shown in Fig. 7 and Mask to TCL conversion is given in Table 2.

( )
( )
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Text instances (t) represented a set of vertices (v0,v1,v2,…..,vn). We assumed that text instances had two
edges, one at the top and one at the bottom and that the two edges connected to the head or tail are
parallel and traverse in the opposite direction. Each edge is measured as M(ei,i+1) = cos(ei−1,i,i+1,i+2), head
and tail edge measurement M is set to -1. Then, possible text control points are sampled on text sidelines.
TCL is extracted by computing midpoints of corresponding text control points. The Head and tail edges
of TCL get shrunk by ¼ of the radius of control points so that most of the TCL pixels remain within TR. If
we take ½ of the radius of control points, we lose the heads and tail of the text areas. At last, the TCL area
is expanded by 5 pixels.

3.4. Width Height based Bounding Box Reconstruction
(WHBBR) Algorithm
As shown in Fig. 8, in post-processing, the �nal result is in the form of polygon-shaped bounding boxes
that detect starting and ending characters in a text that can be solved using the Width Height based
Bounding Box Reconstruction (WHBBR) algorithm. Firstly, the polygon-shaped bounding box coordinates
are obtained using Graham Scan Algorithm. Secondly, two antipodal points were selected through
sidelines, and two directed tangent lines of support were drawn at antipodal points (ai) and (aj). Thirdly,
the diameter of the polygon (A) is calculated by a pair of antipodal points of (A). Where several
techniques are proposed in the past to boost the performance of �nding the diameter of a polygon, and
some of the methods proved to be incorrect, we proposed an e�cient way to calculate the diameter of a
polygon using an antipodal point as given in Table 3, that they allow parallel lines of support. These two
parallel lines visit all pairs of antipodal vertices by rotating clockwise. At each iteration, the angle of θi

and θj are compared to compute A’s diameter is determined in constant time.

The width is calculated as given in Table 3. A support line is constructed through an edge; for example,
ai−1 is the vertex furthest from this edge. Continue this process until all the edges are visited at least once.
In each step, the width is computed, and the most negligible width value can be considered. Finally, the
width and height of the arbitrary shaped text are enclosed with an accurate bounding box. In post-
processing, Missed characters and overlapped characters are e�ciently identi�ed. The arbitrarily shaped
bounding boxes are converted into rectangular bounding boxes.
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Procedure mask_to_tcl Algorithm 1: Width Height based Bounding Box
Reconstruction (WHBBR)

Input: pred_sin, pred_cos, pred_radii, tcl_contor,
direction, initial_x, initial_y

Output: text center line

Input: Set of points A={ a0,a1,a2,…, an} polygon
bounding box vertices.

initialize H,W, �ag = 1, x_shift = initial_x,
y_shift = initial_y

initialize result = [], max = 200, iteration = 0

while in_contour(tcl_contour,( x_shift, y_shift))
do

iteration = iteration + 1

sin_orient = pred_sin[y_shift, x_shift]

cos_orient = pred_cos[y_shift, x_shift]

x_center, y_center = 
centralizing(W,x_shift,H,y_shift)

sin_center = pred_sin[y_center, x_center]

cos_ center = pred_cos[y_center, x_center]

radii_ center = pred_radii[y_center, x_center]

#Append the x_center, y_center and
radii_center into list

result[]

result.append(sin_center, cos_ center, radii_
center)

while !contour_end do

stride = (1/4) * radii_center

x_shift_front = x_center + cos_ center * stride *
�ag

y_shift_front = y_center + sin_ center * stride *
�ag

x_shift_back = x_center - cos_ center * stride *
�ag

y_shift_back = y_center - sin_ center * stride *
�ag

if size_of_result = 1 then

�nal_x = x_shift_front

Initialize count = 0, Detected = 0.

Compute xmin , xmax ymin, and ymax

Draw two vertical parallel lines of support on A
through ymin and ymax

While visited edges[] !=NULL do

if one || both parallel lines tangents with an edge,
then

Detected = an antipodal-edge or edge-edge pair

Add edge pair in the visited edges list

Max_distance = length of width edge pair

Min_distance = length of height pair

�ag = �ag + 1

end if

if Detected edge pair ⊥ to the x-axis, then

W_Deteced = Detected

else

H_Deteced = Detected

end if

Rotate the parallel lines until one is connected to
the next

polygon edge is detected.

if new antipodal pair is detected, then

Add edge pair in the visited edges list

Temp_distance = new edge length

�ag = �ag + 1

if Temp_distance > Max_distance then

Max_distance = Temp_distance
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Procedure mask_to_tcl Algorithm 1: Width Height based Bounding Box
Reconstruction (WHBBR)

�nal_y = y_shift_front

else

compute the distance_front and
distance_back

if distance_front > distance_back then

�nal_x = x_shift_front

�nal_y = y_shift_front

else

�nal_x = x_shift_front

�nal_y = y_shift_front

endif

end while

if �nal_x ≥ W || �nal_x < 0 || �nal_y ≥ H ||
y_shift < 0 then

break

endif

end while

return result #contains the coordinates of text
center line

W_Detected = an antipodal-edge or edge-edge pair

else

Min_distance = Temp_distance

H_Detected = an antipodal-edge or edge-edge pair

end if

end if

if visited edges[] contains all the edges & parallel
lines reach

their original position, then

break

end if

end while

return W_Detected, H_Detected, Max_distance,
Min_distance

Table. 2 Algorithm to convert the mask to TCL. Table. 3 Algorithm to compute width and Height for
Bounding Box reconstruction

3.5. Text recognition
We adapt the context attentional network [30] as our text recognizer. Cropped text images are fed into a
text recognition model. A four-step mechanism was incorporated to process each image; �rstly, the
cropped text image has been transformed into the normalized image using Thin-Plate Spline (TPS)
transformation to reduce the burden for the subsequent feature extraction stage. Secondly, a 29-layer
ResNet is used as the convolutional neural network’s backbone to extract essential features from the
input image. The �nal feature map is 512 channels. Thirdly, CTC-based decoding is used to embed
characters with each column and the output of the embedded sequence to the CTC decoder to generate
output. Finally, the selective contextual re�nement block is employed to mitigate the lack of contextual
information. To overcome the problem of long-term dependency, a two-layer Bi-LSTM is used over the
feature map. The output from the Bi-LSTM network is combined with a visual feature map to generate a
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new feature map. In the selective decoder, a two-step attention mechanism is employed; in the �rst step,
1D attention operates on the output feature map generated from Bi-LSTM; further, an attention map is
generated as a fully connected layer from these features. Next, the element-wise product is calculated
between yielded attentional features and the attention map. In the second step, a separate encoder-
decoder decodes the attention map, and LSTM generates the text characters.

4. Experiment
This paper uses a synthetic dataset (SynthText) proposed by Gupta et al. [31] to train our model. We
evaluate our model on seven standard benchmarks that contain four ‘regular’ datasets (IC03, IC13) and
three ‘irregular’ datasets (IC15, Total-Text, SCUT-CTW1500).

Regular Text Datasets

the performance of our proposed framework have been evaluated using standard benchmark datasets
such as ICDAR 2011 [32] and ICDAR 2013 [33]. The majority of the text images in these datasets are
almost horizontal text images.

ICDAR2011 (IC11) [32] ICDAR 2011 dataset is inherited from previous ICDAR contests benchmarks.
Some of the prior dataset’s �aws, such as inconsistent de�nitions and inaccurate bounding boxes,
have been resolved. This dataset contains 484 images, 299 images for training, and 255 images for
testing.

ICDAR2013 (IC13) [33] contains 462 images. Most of the text images are inherited from IC03, 229
images for training, and 233 for testing. There are 849 text instances in the training set, whereas the
testing set contains 1095 text instances.

Irregular text Datasets

ICDAR 2015 Incidental Text [34], Total-Text [35] and SCUT-CTW1500 [36] are the benchmark datasets
used to evaluate the performance of our framework. In this dataset, most text images are curved, rotated,
and low-quality text images.

ICDAR 2015 (IC15) [34] this dataset is from ICDAR 2015 Robust Reading Competition. Images in this
dataset are captured using Google Glasses without proper positioning and focusing. It includes more
than 200 irregular text images. This dataset contains 1500 images, 1000 images for training, and
500 images for testing. It provides word-level annotations. Notably, it contains 17548 text instances.

Total-Text [35] contains 1555 images, 1255 images for training, and 300 for testing. Images in this
dataset are collected from various locations, including business-related locations, tourist sites, club
logos, formal information, and so on. At the word level, this dataset contains 11,459 cropped word
images with more than three different text orientations: horizontal, multi-oriented, and curved text.
Total-text provides polygon-shaped ground truths.
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SCUT-CTW1500 [36] contains 1500 images, 1000 images for training, and 500 images for testing.
Images in this dataset are collected from various sources such as Google’s open-Image, Internet, and
mobile phone cameras. Notably, it contains 10751 cropped word images for testing. At least one
curved text appears in each image. There are primarily arbitrary shape texts in text-line instances, but
horizontal or multi-oriented text lines also exist in the text images.

Grocery Datasets

we use four publicly available datasets such as GroZi-120 [37], WebMarket [38], Grocery Products [39],
and Freiburg Groceries Dataset [40] to train and test our proposed grocery product detection and
recognition framework.

GroZi-120 [37] is the �rst publicly released grocery product benchmark dataset. The product images
are acquired from grocery web stores such as Froogle, and the text in the product images differs in
size, style, and complex background images. There are 120 product categories and 676 product
images in the GroZi-120 dataset.

WebMarket [38] consists of 3,153 shelf images of size 2272x1704, which is collected from 18
different product shelves. There are 100 product categories where the products are captured on and
off the shelf. Rack images are captured in various scale, pose, and illumination so, it differs from
product images. Like GroZi-120, the ground truth of the product is manually identi�ed and annotated
for each product located in the rack images.

Grocery Products [39] The Grocery Products dataset is designed to assist with �ne-grained object
classi�cation and localization. The product images were obtained from the Internet, and the template
images were recorded in studio-like conditions. The rack photos were taken using a mobile phone in
a real-world retail setting. Various viewing angles, lighting conditions, and magni�cation settings
capture rack images. A rack image can also include anywhere from 6 to 30 products. The ground
truth is produced by manually annotating product categories and locations in rack images. There are
80 broad product categories in the dataset. Only 27 of the 80 product categories contain ground
truth, including 3235 �ne-grained product templates.

Freiburg Groceries Dataset [40] collects pictures of real products and shelves. The Freiburg Groceries
Dataset comprises 4947 pictures divided into 25 grocery classes with 97 to 370 images each. The
products are captured using four different cameras at Freiburg, including residences, grocery shops,
and o�ces. The text characters present in the product images have various illumination levels and
complicated backgrounds in this dataset.

4.1. Implementation
The implementation of our proposed framework is done using PyTorch. All the three experiments such as
retail product, text detection and text recognition were carried out on a DELL Precision Tower 7810
workstation, which has Intel(R) Xeon(R) CPU E5-2620 v3 dual processor, 96GB RAM and NVIDIA Quadro
K2200 graphics card. We use the YOLOv5 object detector to perform grocery product detection. We



Page 19/39

trained and tested our proposed detection network using benchmark grocery datasets. All these datasets
do not have an annotation format; we manually annotated them using Labellmg and then placed all the
annotated images and text �les (as shown in Fig. 9) in the same directory.

The uni�ed annotated format is given below:

<object-class > < x> <y > < width > < height>

Where, <object-class> - number of object, represent by an integer number (0) to (total number of class − 
1), <x > and < y > represents the center of bounding box rectangle.

<width> = <absolute_x>/<image_width>

<height> = <absolute_height>/<image_height>

Table 4
Parameters used to tune the proposed framework.

Parameters/
Models

Object Detection Text Detection

Train-test split
ratio

Training : Validation : Testing
80 : 10 : 10

Training : Validation : Testing 80 : 10 : 10

Learning rate 1x10− 2 1x10− 3

Optimization
algorithm

Adam Adam

Activation
function

Hidden Layer: Leaky ReLU

Final detection layer: sigmoid

ReLU

Batch size 64 64

No. of epochs 20 20

Loss function Focal loss Text classi�cation loss and Bounding Box
regression loss.

Table. 4 shows the parameters used to train the proposed famework. For both object and text detection
tasks, we divided 80% data for training, 10% data as validation and the remaining 10% for testing
(80:10:10). The learning rate is set to be 1x10− 2. The object detector is optimized with the Adam
algorithm, with a batch size of 64. Adam combines the best properties of the AdaGrad and RMSProp
algorithms. It has a faster computation time and requires fewer parameters for tuning. Adam is relatively
easy to con�gure whereas the default con�guration parameters do well on complex problems. Adam is
more stable than the other optimizers, it doesn’t suffer any major decreases in accuracy. The Adam
optimizer is the best among the other optimization algorithms. Hence we employed the Adam optimizer
for both object detection and text detection tasks. We use the exact system speci�cation to implement
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text detection and recognition algorithms. We trained the text detection model using SynthText under full
supervision used as our baseline model. We use the Adam optimizer as an optimization algorithm for the
text detection algorithm, the learning rate is set to be 1x10− 3 and the text detection model is trained with
a batch size of 64. We chose 299 training images from ICDAR 2011, 229 training images from ICDAR
2013, 1000 training images from ICDAR 2015, 1255 training images from Total-Text, 1,000 training
images from SCUT-CTW1500 and 4000 images from SynthText for text detection model training. For a
fair comparison, single-scale testing is performed, and a polygonal NMS eliminates redundant detections.

4.2. Performance Metrics
The performance of the framework can be evaluated based on the confusion matrix. The performance
metrics are accuracy, precision, speci�city, recall or sensitivity, and F1-score. For classi�cation models,
accuracy is a critical measure. It’s straightforward to comprehend and use for binary and multi-class
classi�cation problems. The percentage of true results in the total number of records examined is
accurate. Accuracy is useful for evaluating a classi�cation model built only from balanced datasets. If
the dataset for classi�cation is skewed or unbalanced, accuracy may provide incorrect results. The
percentage of objects or text detected correctly over the total number of detected texts or objects is
precision. Another essential metric is recall, which provides more information if all possible positives
must be captured. The percentage of objects or text detected correctly over the total ground truth is
known as recall. If all positive samples are predicted to be positive, the recall is one. If the best
combination of accuracy and recall is needed, these two metrics may be merged to get the F1- score. The
F1-score is the harmonic mean of accuracy and recall, ranging from 0 to 1. Eq. (6) to Eq. (9) provides the
formulae for evaluating all of these metrics.

Accuracy =
TP + TN

TP + TN + FP + FN

6

Precision =
TP

TP + FP

7

Recall =
TP

TP + FN

8

F1 − score = 2X
Precision ∗ Recall
Precision + Recall

9
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In practice, a model should be built with precision and recall of 1, resulting in an F1-score of 1, i.e., 100%
accuracy, which is di�cult to achieve in a classi�cation problem. As a result, the built classi�cation
model should have a better accuracy and recall value.

5. Results And Discussion
We propose a framework to perform three main tasks: object detection, object text detection and object
text recognition. The object detector used is the YOLOv5 algorithm. The object text detection algorithm
detects the text present on the grocery product to detect grocery products. Finally, the object text
recognition algorithm can recognize the detected text. Once the YOLOv5 object detector detects the
grocery products, the obtained result image can be input into the text detection model. The text detection
algorithm is specially designed to capture regular and irregular text. Also, it can detect the text with a
complex background, a�ne distorted texts, text with non-uniform spacing, and different text in a single
image. The text present in the grocery dataset contains complex shapes, sizes, and orientations. However,
the text detection model can detect the complex curved shape texts and multiple texts in an image
(Fig. 13). The text recognition algorithm uses the CTC-Attention mechanism to recognize the arbitrary
shaped text in the cropped word image. The CTC-Attention-based text recognition model can recognize
the curved shaped text, text with non-uniform spacing, and multiple images in an image (Fig. 14). The
proposed text detection model and an accurate text recognition model help detect and recognize the
grocery products on and off the shelf.

5.1. Grocery Product Detection Result
The performance of grocery product detection is given in Table 5 and Table 6. We used YOLOv5 to train
and test the four different benchmark datasets. Pre-trained models greatly support the extraction of
features. In the GroZi-120 dataset, the images are minimal; four images per class are not limited to object
detection tasks. We performed a data augmentation task to increase the dataset images by scaling,
rotating, adding noise, skewing, etc. In the GroZi-120 video dataset, the videos are converted into frames
and fed to the YOLOv5 model. The GroZi-120 dataset contains 120 classes; we performed training and
testing for all the 120 classes by modifying the fully connected layer. YOLOv5 dramatically improves the
detection performance by more than 10% (see Table 5), and it can detect both small and large grocery
products (Fig. 10). YOLOv5 provides the most promising for other datasets such as WebMarket, Grocery
Products and Freiburg Groceries Dataset, as shown in Tables 5 and 6 (see Fig. 10).

Geng et al. [23] use the GroZi-120 dataset to assess the performance of BRISK and SIFT techniques. The
authors used VGG16 and Attention map for feature extraction and classi�cation, respectively. SIFT
algorithm is not e�cient for many computer vision tasks. Hence used a deep learning-based object
detection algorithm, YOLOv5, which completely outperforms BRISK and SIFT techniques, with precision
(86.3% vs 46.3% and 49.05%), Recall (77.8% vs 29.50 and 29.37%) and F-Measure (77.04% vs 36.04%
and 36.74%). On the GroZi-120 dataset, the YOLOv5 model outperforms other existing models with a
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greater margin (+ 30). Franco et al. [25] and Marder et al. [20] use DNN and HOG approaches, respectively,
to detect the products of the WebMarket dataset, and achieved F-Measure (46% vs 28.33%).

Santra et al. [40] achieve the F-Measure of 80.21% is the second-highest in the Grocery Products dataset.
Ray et al. [24] and Karlinsky et al. [26] were able to achieve a satisfying result with F-Measure (76.20%
and 79.05%). Franco et al. [25] and Marder et al. [20] use the BoW approach for product recognition,
achieving the F-Measure of 69.30% and 59.91%. Girshick et al. [39] performed semantic segmentation to
segment the products from the background which was able to achieve a 78.99% of F-Measure. However,
the YOLOv5 achieves the best performance on the Grocery Products dataset.
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Table 5
Comparisons of retail product detection performance with existing methods on the GroZi-120 and

WebMarket dataset.
Method GroZi-120 WebMarket

Precision
(%)

Recall
(%)

F-
Measure
(%)

Precision
(%)

Recall
(%)

F-Measure
(%)

George et al. [22] 13.21 43.03 20.21 - - 53.33

Merler et al. (CHM) [19] 17 15 15.94 - - -

Merler et al. (SIFT) [19] 18 72 28.8 - - 52.81

Merler et al. (Adaboost) [19] 17 15 15.94 21.3 36.3 26.8

Geng et al. (VGG16) [23] 50.44 30.69 38.16 46.8 35.7 40.5

Geng et al. (VGG16 + 
ATmapBRISK) [23]

46.32 29.50 36.04 49.2 52.4 50.7

Geng et al. (VGG16 + 
ATmapSIFT) [23]

49.05 29.37 36.74 44.9 57.3 50.3

Franco et al. (BoW) [25] 45.70 46.30 46.0 - - 65.59

Franco et al. (DNN) [25] 45.20 52.70 48.66 - - 71.13

Ray et al. [24] - - 40.10 - - 67.79

Marder et al. (HOG) [20] - - 28.33 - - 43.03

Marder et al. (BoW) [20] - - 26.83 - - 55.15

Girshick et al. [39] - - 40.91 - - 72.01

Zhang et al. [37] - - 31.71 - - 49.19

Santra et al. [40] - - 44.81 - - 75.50

Karlinsky et al. [26] 62.64 - - - - 72.13

Ciocca et al. [60] 68.4 - - 71.2 66.8 68.9

Yilmazer and Birant [61] 75.3 67.7 71.3 74.3 71.4 72.8

Santra et al. [62] 80.3 73.7 76.9 70.4 68.4 69.4

Leo et al. [63] 72.1 70.2 71.1 66.3 70.3 68.2

Machado et al. [64] 61.8 54.3 57.8 45.4 58.3 51.0

Domingo et al. [65] 70.2 68.3 69.2 66.4 70.4 68.3

Olóndriz et al. [66] 67.3 66.5 66.9 71.0 63.6 67.1
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Method GroZi-120 WebMarket

Precision
(%)

Recall
(%)

F-
Measure
(%)

Precision
(%)

Recall
(%)

F-Measure
(%)

Bukhari et al. [67] 78.4 67.3 72.4 79.6 75.6 77.5

Proposed (YOLOv5) 86.3 77.8 77.04 89.4 88.2 86.26

5.2. Text detection result
The performance of our text detection model is examined in this section on ICDAR 2011, ICDAR 2013,
ICDAR 2015, Total- Text, and CTW1500. The performance of the text detection model is shown in Table 7.
We adopt the most potent backbone network, ResNet50-FPN, to push the text detection performance on
different text styles such as horizontal, vertical, and curved text. However, we cropped some of the text
from grocery datasets for our text detection task. These images are also used for training and testing
purposes. The post-processing algorithm Width Height based Bounding Box Reconstruction (WHBBR)
signi�cantly reduces the false detection rate. We compare our backbone network with the Long et al. [29]
backbone (VGG16-FPN); our model achieves the best F1-score of 81.1% on SCUT-CTW1500 and 83.3% on
Total-Text.

ICDAR 2011 and ICDAR 2013 datasets focus on the horizontal text. So, we utilize these datasets to
assess the robustness of our text detection model for horizontal text and the performance of our text
detector for horizontal text is shown in Table 7. Similarly, the performance of our model on ICDAR 2015
dataset are compared with existing methods for detecting the oriented text. The proposed text detection
model based on the WHBBR technique (f-measure: 86.03%) performs better than Long et al. [29] (f-
measure: 82.60%) with an improvement of 3.4% and meets current state-of-the-art performance on IC15.
Table. 7 also compares our performance with existing methods for detecting oriented text on Total-Text
and CTW1500. We evaluated the e�ciency of the proposed method by detecting arbitrarily shaped texts
in Total-Text, were horizontal, orientated, and curved text appears simultaneously in most images.
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Table 6
Comparisons of retail product detection performance with existing methods on the Grocery Products and

Freiburg Groceries dataset.
Method Grocery Products Freiburg Groceries

Precision
(%)

Recall
(%)

F-Measure
(%)

Precision
(%)

Recall
(%)

F-Measure
(%)

George et al. [22] 23.5 43.1 30.42 23.8 - -

Yörük et al. [41] 57.0 41.6 48.10 - - 34.7

Marder et al. (HOG)
[20]

- - 58.11 - - 60.6

Marder et al. (BoW)
[20]

- - 59.91 - - 56.9

Girshick et al. [39] - - 78.99 72.4 68.4 70.3

Merler et al. [19] - - 51.20 67.9 45.6 54.5

Zhang et al. [37] - - 58.39 45.6 56.3 50.4

Santra et al. [40] - - 80.21 85.7 - -

Ray et al. [24] - - 76.20 77.4 - -

Karlinsky et al. [26] - - 79.05 80.3 77.8 79.0

Franco et al. (BoW)
[25]

73.70 65.40 69.30 72.3 68.1 70.1

Franco et al. (DNN)
[25]

73.90 54.70 62.87 76.4 69.4 72.7

Georgiadis et al.
[43]

53.1 - - 66.36 - -

Kumar et al. (RE)
[42]

65.3 68.9 67.1 86.52 - -

Kumar et al. (SEN)
[42]

73.7 - - 86.39 81.2 83.71

Ciocca et al. [60] 81.4 78.5 79.9 78.4 74.3 76.3

Yilmazer and Birant
[61]

80.5 76.2 78.3 72.3 68.4 70.3

Santra et al. [62] 78.3 67.7 72.6 80.6 80.2 80.4

Leo et al. [63] 83.6 77.7 80.5 72.3 71.1 71.7

Machado et al. [64] 86.5 83.7 85.1 78.5 74.3 76.3

Domingo et al. [65] 76.4 81.1 78.7 89.5 83.4 86.3
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Method Grocery Products Freiburg Groceries

Precision
(%)

Recall
(%)

F-Measure
(%)

Precision
(%)

Recall
(%)

F-Measure
(%)

Olóndriz et al. [66] 74.5 78.9 76.6 77.3 73.6 75.4

Bukhari et al. [67] 84.8 85.3 85.0 76.3 68.6 72.2

Proposed (YOLOv5) 92.1 86.8 83.31 89.6 91.5 90.54

Our detection model’s performance (f-measure: 84.6%) improves dramatically when the fully annotated
training set is used. Similar to ICDAR 2013 and ICDAR 2015, our text detection model outperforms Long
et al. [29] by 4.9% and achieves current state-of-the-art performance on the Total-Text dataset. Our text
detector achieves an 81.1% F1-score and the best recall of 87.2% outperforming most previous state-of-
the-art methods. Our model achieves better than some current methods, such as Zhang et al. [17] (78.4%)
and Baek et al. [58] (83.6%), the top performer in F-score, is 2.5% better than ours, although it has a higher
computational cost. The CTW1500 dataset has a complex background and includes a variety of multi-
oriented texts. The proposed model can handle this text, demonstrating the method's robustness in terms
of text appearance and shape (Fig. 11 and Fig. 12).

5.3. Signi�cance of WHBBR
The importance of the WHBBR technique is presented in Table. 8. This proposed technique enhances the
detection rate by an average of + 2.3% compared to state-of-the-art methods.

 
Table 8

Signi�cance of WHBBR technique with state-of-the-art methods.
ICDAR 2015

  Precision (%) Recall (%) F-Measure (%)

Baseline 84.9 80.4 82.6

Baseline with WHBBR 87.2 84.9 86.03

Total-Text

Baseline 84.9 80.4 82.6

Baseline with WHBBR 86.1 80.6 83.3

SCUT-CTW1500

Baseline 84.9 80.4 82.6

Baseline with WHBBR 75.8 87.2 81.1
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On the irregular datasets, the WHBBR technique achieved better performance than baseline model.
Precision (+ 3%), Recall (+ 4.5%) and F-Measure (+ 4%) on ICDAR 2015 dataset. Precision (+ 1.6%), Recall
(+ 0.2%) and F-Measure (+ 0.7%) on Total-Text dataset. Recall (+ 6.5%) on SCUT-CTW1500 dataset.

5.4. Proposed Framework Summary
The proposed framework is proposed to detect and recognize on-shelf and off-shelf retail products by
extracting text including, product name, price, quantity, expiry date, etc., from the product label. In order to
do that, we are in need of object detection, text detection and a text recognition model. We use a popular
object detection model YOLOv5 to perform retail product detection. Individual object region coordinates
such as < x>, <y>, <width > and < height > are passed to a current state-of-the-art text detection model
TextSnake[29] to obtain product information. However, the text detection model follows a polygon-shaped
bounding box construction approach to draw over the detected text, which failed to capture the starting
and ending characters in the word. To address this problem and preserve the entire text we proposed a
WHBBR technique, which can draw a bounding box on the text accurately. WHBBR greatly improves the
performance of the current state-of-the-art methods. The detected texts are cropped and passed to the
text recognition model SCATTER [30], which recognizes the text from cropped word images. The
proposed framework has various advantages such as assisting visually impaired people, reducing the
time taken during checkout, identifying the number of on-shelf products, identifying misplaced products,
out-of-stock products and so on.

6. Conclusion And Future Work
We proposed a new framework composed of three models (Fig. 15); product detection, product text
detection, and product text recognition to detect and recognize the retail products from the supermarket
shelves. Generally, the text present on the retail products (e.g. product name, brand name, price, expiring
date and so on) has unique information about the corresponding product. To acquire that precious text
information from the retail products, we enhanced the Textsnake text detection model by adding an
accurate post-processing technique named Width Height based Bounding Box Reconstruction (WHBBR).
The text detection model's modi�ed backbone and post-processing technique greatly eliminate the false
detection and inaccurate bounding boxes. The Attention-based text recognition model can accurately
detect and recognize the arbitrary shaped text. The proposed framework has the practical application of
assisting visually impaired people during shopping. Our framework is computationally expensive during
training but can detect and recognize objects promptly and accurately during testing. Our product
recognition model completely depends on the text present on the retail products. If the text is occulted or
missing from the product, the product recognition model gets failed. Still, our product detection model
based on the YOLOv5 algorithm can detect the product. The limitations of this paper can be addressed in
our future work. The retail product can be detected and recognized based on shape and colour features.
In addition, we intend to address the out-of-stock problem, product count and misplaced items.
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Figure 1

Challenges in on-the-shelf retail product recognition



Page 34/39

Figure 2

Block diagram of proposed grocery product detection and recognition
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Figure 3

YOLOv5 Architecture
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Figure 4

The overall architecture of the text detection model.
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Figure 5

Schematic overview of the text detection backbone network.

Figure 6

Calculating center point computation to perform the striding operation

Figure 7

Schematic overview of TCL extraction and TCL expansion.
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Figure 8

Schematic overview post-processing using the Width Height based Bounding Box Reconstruction
(WHBBR) algorithm.

Figure 9

Illustration of bounding box annotation and its format
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Figure 10

Visualization results of text detection model on the Grozi 120 dataset

Figure 11

Visualization results of grocery product detection by the YOLOv5 algorithm on the public benchmark retail
product datasets.

Figure 12

Visualization results of text detection by the proposed model on the public benchmark text detection
datasets.

Figure 13

Visualization results of text detection by the proposed model on the public benchmark retail product
datasets.

Figure 14

The text recognition results on the public benchmark retail product dataset.

Figure 15

Product detection and product recognition are based on product text information
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