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A Deep Learning Framework for Optimization
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Abstract

Beamforming is an effective means to improve the quality of the received signals in multiuser multiple-input-

single-output (MISO) systems. This paper studies fast optimal downlink beamforming strategies by leveraging 

powerful deep learning techniques. Traditionally, finding the optimal beamforming solution relies on iterative 

algorithms which leads to high computational delay and is thus not suitable for real-time implementation. In 

this paper, we propose a deep learning framework for the optimization of downlink beamforming. In particular, 

the solution is obtained based on convolutional neural networks and exploitation of expert knowledge, such as the 

uplink-downlink duality and the known structure of optimal solutions. Using this framework, we construct three 

beamforming neural networks (BNNs) for three typical optimization problems, i.e., the signal-to-interference-plus-

noise ratio (SINR) balancing problem, the power minimization problem and the sum rate maximization problem. 

The BNNs for the former two problems adopt the supervised learning approach, while the BNN for the sum 

rate maximization problem employs a hybrid method of supervised and unsupervised learning to improve the 

performance. Simulation results show that with much reduced computational complexity, the BNNs can achieve 

near-optimal solutions to the SINR balancing and power minimization problems, and can achieve a performance 

close to that of the weighted minimum mean squared error algorithm for the sum rate maximization problem. In 

summary, this work paves the way for fast realization of optimal beamforming in multiuser MISO systems.
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Deep learning, beamforming, MISO, beamforming neural network.
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I. INTRODUCTION

Downlink beamforming techniques have attracted much attention in the past decades for

its ability to realize the performance gain of the multiple antennas. Beamforming has been

formulated in various ways, i.e., as a signal-to-interference-plus-noise ratio (SINR) balancing

problem (also known as interference balancing problem) under a total power constraint [2–4],

as a power minimization problem under quality of service (QoS) constraints [5–8], or as a

sum rate maximization problem under a total power constraint [2, 9–11]. Existing approaches

to finding the optimal beamforming solutions heavily rely on tailor-made iterative algorithms

and convex optimization, which is in turn solved by general iterative algorithms such as the

interior point method. For instance, the SINR balancing problem can be solved by the iterative

algorithm of [12]. The power minimization problem can be reformulated as a second-order cone

programming (SOCP) [7, 8] or semidefinite programming (SDP) problem [13, 14], which can be

solved directly by an optimization software package such as CVX [15]. Its optimal solution can

also be obtained using iterative algorithms such as Algorithm A of [16] and the dual algorithm

of [5, 12]. However, the optimal solution to the sum rate maximization problem is usually hard

to obtain because the problem is nonconvex. Locally optimal solutions are obtained via iterative

algorithms, such as the weighted minimum mean squared error (WMMSE) algorithm [9, 10],

and asymptotically optimal solutions are obtained using the water filling algorithm combined

with zero-forcing (ZF) beamforming [11].

The main drawbacks of existing iterative algorithms are the high computational complexity

and the resulting latency. As a result, the beamforming technique is unable to meet the demands

of real-time applications in the fifth-generation (5G) system and beyond, such as autonomous

vehicles and mission critical communications. Even in non-real-time applications, where the

small-scale fading varies in the order of milliseconds, the latency introduced by the iterative

process renders the beamforming solution outdated. To address this challenge, researchers have

proposed some simple heuristic beamforming solutions which admit closed-form solutions, such

as the maximum-ratio transmission beamforming, the ZF beamforming, and the regularized

ZF (RZF) beamforming. These heuristic beamforming solutions are directly computed based

on the channel state information (CSI) without iteration, and thus involve low computational

delay. However, the reduction of delay is achieved at the cost of performance loss. The tradeoff
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between delay and performance seems to restrict the potential of the beamforming techniques 

and its applications in practice.

Thanks to the recent advances in deep learning (DL) techniques, it becomes possible to find 

the optimal beamforming in real time by taking into account both the performance and the 

computational delay simultaneously. This is because the DL technique trains neural networks 

offline and then deploys the trained neural networks for online optimization. The computational 

complexity is transferred from the online optimization to the offline training, and only simple 

linear and nonlinear operations are needed when the trained neural network is used to find the 

optimal beamforming solution, thus greatly reducing the computational complexity and delay.

Benefiting from the development of specialized hardware, such as graphic processing units 

and field programmable gate arrays, DL can be implemented using these hardware resources 

conveniently. Accordingly, DL techniques have been widely used in many applications includ-

ing wireless communications. A lot of research has attempted to use DL to deal with some 

issues in the physical layer, including channel decoding [17, 18], detection [19–21], channel 

estimation [22–24], and resource management [25–32]. Among these efforts, the autoencoder 

based on unsupervised DL, investigated in [33, 34], is an ambitious attempt to learn an end-to-end 

communications system [35]. DL can also facilitate resource management [25, 26], e.g. power 

allocation [27–31]. Finally, [36, 37] provide an overview on the recent advances in DL-based 

physical layer communications and [38] suggests potential applications of DL to the physical 

layer.

However, with the exception of [39–42], there are no works focusing on the beamforming 

design in multi-antenna communications based on DL. A common method used in the already 

published papers is codebook-based beam selection. For example, [39] designed a decentralized 

robust precoding scheme based on DNN in a network MIMO configuration. The projection over 

a finite dimensional subspace in [39] reduced the difficulty, but also limited the performance.

[40] used a DL model to predict the beamforming matrix directly from the signals received at the 

distributed BSs based on omni or quasi-omni beam patterns in millimeter wave systems, whose 

sum rate performance was restricted by the quantized codebook constraint. [39, 40] predicted 

the beamforming matrix in the finite solution space at the cost of performance loss. Different 

from [39, 40], [41, 42] directly estimated the beamforming matrix without exploiting the problem 

structure in which the number of variables to predict increases significantly as the numbers of
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transmit antennas and users increase. This will lead to high training complexity of the neural 

networks when the numbers of transmit antennas and users are large. Furthermore, we notice 

that none of them addressed the SINR balancing problem under a total power constraint and 

power minimization problem under SINR constraints.

Motivated by the aforementioned facts and the universal approximation theorem [43, 44], we 

propose a general DL framework to achieve not only near-optimal beamforming matrix, but 

also reduce complexity and latency as compared to the iterative methods. Based on the proposed 

framework, we develop beamforming neural networks (BNNs) to solve the three aforementioned 

optimization problems. Learning the optimal beamforming solution is highly nontrivial, and 

there are still challenges that need to be addressed in designing the BNNs. Firstly, the popular 

neural network software packages such as Keras and Tensorflow currently (March 2019) do not 

support complex numbers as input or output [35]. Both channel and beamforming vectors are 

inherently complex. Naive transformation of complex beamforming vectors to real vectors by 

concatenating the real and imaginary parts and predicting the real beamforming vectors directly 

not only lead to high complexity of prediction, but also may lose the specific structures of the 

problems of interest. Secondly, the power minimization problem has strict QoS constraints and 

guaranteeing a feasible solution using neural networks is a challenge. In addition, different from 

the SINR balancing problem and power minimization problem, there is no practically useful 

algorithm that can achieve the optimal solution to the sum rate maximization problem (and 

other nonconvex beamforming problems), and thus the supervised learning method based on 

locally optimal solution cannot achieve good performance. In this paper, we will tackle these 

challenges, and our main contributions are summarized as follows:

• We provide a DL-based framework for the beamforming optimization in the multiple-

input-single-output (MISO) downlink, where the BS has multiple antennas while each user

terminal has a single antenna. The proposed framework is designed based on the CNN

structure. Different from existing works where the CNN was applied to power control

[29, 30], resource allocation [45], and wireless scheduling [46], the proposed framework

combines the signal processing module with the neural network module and exploits expert

knowledge such as the uplink-downlink duality and the known structure of optimal solutions,

so as to improve learning efficiency by specifying the best parameters to be learned; those

parameters are typically not the direct beamforming matrix. This framework can deal with
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three types of beamforming optimization problems: 1) problems whose optimal solutions are 

easy to find and the constraints are easy to meet; 2) problems whose optimal solutions are 

easy to find but the constraints are hard to meet; and 3) problems which have no practically 

useful algorithm that can achieve optimal solutions efficiently. Under this framework, we 

propose three BNNs for solving three typical optimization problems in MISO systems, 

i.e., the SINR balancing problem under a total power constraint, the power minimization 

problem under QoS constraints, and the sum rate maximization problem under a total power 

constraint.

• In the proposed supervised BNNs for the SINR balancing problem and the power minimiza-

tion problem, instead of estimating the beamforming matrix with NK elements, where N 

is the number of the transmit antennas at the BS and K is the number of users, we exploit 

the uplink-downlink duality of solutions [5, 6, 12] and predict the virtual uplink power 

allocation vector with only K elements. Thus, the demand on the prediction capability 

of the BNNs in terms of network neurons and layers is significantly reduced. Also, the 

training and prediction complexity and cost are reduced. In the proposed BNN for the sum 

rate maximization problem, we exploit the known structure of optimal solutions and predict 

two power allocation vectors with totally 2K elements. This approach still has advantages 

compared to predicting the beamforming matrix directly.

• We propose a hybrid two-stage BNN with both supervised and unsupervised learning to find 

the beamforming solution to the sum rate maximization problem [29], since no practically 

useful algorithm can find the global optimum. In the first stage, we use the supervised 

learning method with the mean squared error (MSE)-based loss function to make the 

predictions as close as possible to the WMMSE algorithm, which is known to achieve the 

locally optimal solution. In the second stage, we modify the metric in the loss function to 

be the sum rate, and update the network parameters according to the unsupervised learning 

method, which achieves a performance close to that of the WMMSE algorithm.

The remainder of this paper is organized as follows. Section II introduces the system model and

formulates three beamforming optimization problems in the MISO downlink. Section III provides

the framework for the beamforming optimization and then Sections IV, V and VI propose the

BNNs under the framework for the SINR balancing problem, the power minimization problem,
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and the sum rate maximization problem, respectively. Numerical results are presented in Section

VII. Finally, conclusion is drawn in Section VIII.

Notations: The notations are given as follows. Matrices and vectors are denoted by bold capital

and lowercase symbols, respectively. (A)T and (A)H stand for transpose and conjugate transpose

of A, respectively. The notations || • ||1 and || • ||2 are l1 and l2 norm operators, respectively.

The operator diag(a) denotes the operation to diagonalize the vector a into a matrix whose main

diagonal elements are from a. Finally, a ∼ CN (0,Σ) represents a complex Gaussian vector

with zero-mean and covariance matrix Σ.

II. SYSTEM MODEL

We consider a downlink transmission scenario where a BS equipped with N antennas serves

K single-antenna users. The channel between user k and the BS is denoted as hk ∈ CN×1 . The

received signal at user k is given by

yk = hHk

K∑
k′=1

wk′xk′ + nk, (1)

where wk represents the beamforming vector for user k, xk ∼ CN (0, 1) is the transmitted symbol

from the BS to user k, and nk ∼ CN (0, σ2) denotes the additive Gaussian white noise (AWGN)

with zero mean and variance σ2. The received SINR of user k equals

γdlk =
|hHk wk|2∑K

k′=1,k′ 6=k |hHk wk′|2 + σ2
. (2)

One conventional optimization problem seeks to maximize minkγdlk /ρk subject to a transmit

power constraint, where ρk’s are constant weights denoting the importance of the sub-streams.

Such an optimization problem is referred to as interference or SINR balancing, and has been

investigated in many works [2–4]. The SINR balancing problem is formulated as:

P1: max
W

min
1≤k≤K

γdlk
ρk
, s.t.

K∑
k=1

||wk||2 ≤ Pmax, (3)

where W = [w1,w2, . . . ,wK ] is a set of beamforming vectors and Pmax is the power budget.

Another important problem is the power minimization problem under a set of SINR constraints

[6, 7]. A network operator may be more interested in how to minimize the transmit power while

fulfilling the demands for QoS, i.e.,
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P2: min
W

K∑
k=1

||wk||2, s.t. γdlk ≥ Γk,∀k, (4)

where Γk is the SINR constraint of user k. For ease of reference, we define Γ = [Γ1, · · · , ΓK ]
T as 

the SINR constraint vector.

Finally, the weighted sum rate maximization problem under the power constraint is also an 

important issue that has attracted lots of attention [2, 9, 10], which can be formulated as:

P3: max
W

K∑
k=1

αk log2(1 + γdlk ), s.t.
K∑
k=1

||wk||2 ≤ Pmax, (5)

where αk is a constant weight of user k.

We choose the above problems as representative examples to demonstrate the effectiveness of 

our proposed DL beamforming framework. The practical algorithms to find optimal solutions 

are available for P1 [8, 12, 47] and P2 [5, 7, 8, 12, 13], so supervised learning can be adopted. In 

this work, for simplicity, we assume the optimal solution to problem P2 always exists and do not 

consider the infeasibility of QoS constraints. Under this assumption, P2 still has the additional 

challenge of satisfying the strict QoS constraints. P3 is a difficult nonconvex problem and is 

usually solved using the iterative WMMSE approach [9, 10], therefore supervised learning is 

insufficient and further improvement is needed. In the rest of the paper, we will show how the 

solutions to these three types of problems can be efficiently learned by the proposed DL-based 

beamforming framework.

III. A DL-BASED FRAMEWORK FOR BEAMFORMING OPTIMIZATION

DL-based neural networks were initially designed for solving classification problems, but they 

can also achieve satisfactory performance in regression problems. For example, the DNN was 

used to predict transmit power [27, 28]. Existing works mainly take real data, such as channel 

gains and transmit power, as input and output, but channel and beamforming matrices are both 

complex. In addition, predicting the beamforming matrix with NK elements directly may lead to 

inaccurate and even under-fitting results. Obviously we can use wider or deeper neural networks 

with more neurons to improve the learning ability, but such a huge network will lead to high 

training and implementation complexities and cannot guarantee the learning performance. For 

example, too deep or wide neural networks can cause over-fitting.
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Fig. 1. A DL-based framework for the beamforming optimization in MISO downlink, which includes two main modules:

the neural network module and the beamforming recovery module. The neural network module is composed of an input layer,

convolutional (CL) layers, batch normalization (BN) layers, activation (AC) layers, a flatten layer, a fully-connected (FC) layer,

and an output layer, whereas the key features and the functional layers in the beamforming recovery module are specified by

the expert knowledge.

The proposed DL-based framework for the beamforming optimization in MISO downlink is

shown in Fig. 1. We choose the CNN architecture as the base of the framework, because the

CNN has strong ability of extracting features. In addition, the CNN can reduce the number

of learned parameters by sharing weights and biases [30]. The CNN has a lot of applications

in wireless networks, such as power control [29, 30], resource allocation [45], and wireless

scheduling [46]. To overcome the challenge of predicting the beamforming matrix directly, we

take the expert knowledge of the beamforming matrix into account. The proposed framework,

instead of estimating the beamforming matrix directly, only predicts the key features extracted

from the beamforming matrix according to the expert knowledge specific to the problem of

interest. Therefore the demand for the prediction capability of the BNNs in terms of network

neurons and layers, as well as the complexity, is significantly reduced.

A. Structure of the Proposed Framework

The proposed framework includes two main modules: the neural network module and beam-

forming recovery module. The neural network module is composed of an input layer, convo-

lutional layers, batch normalization layers, activation layers, a flatten layer, a fully-connected 

layer, and an output layer, whereas key features and the functional layers in the beamforming 

recovery module are specified by the expert knowledge. For ease of clarification, we assume 

that, besides the input, output, flatten, and fully-connected layers, there are L = |L| groups of 

functional layers in the neural network module and each group includes a convolutional layer, 

a batch normalization layer, and an activation layer. Below we give a brief introduction to these
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layers.

1) Input Layer: The complex channel coefficients are fed into the neural network module

to predict the key features, which are not supported by the current neural network software.

To deal with this issue, two data transformations are available. One is to separate the complex

channel vector, for example h = [hT1 , · · · ,hTK ]T ∈ CNK×1, into the in-phase component R(h)

and quadrature component I(h), where R(h) and I(h) contain the real and imaginary parts 

of each element in h, respectively. We call this transformation I/Q transformation. Another 

transformation, suggested by [48], is to map the complex channel vector h into two real vectors 

P(hk) and M(hk), where the former contains the phase information and the latter includes the 

magnitude information of h. This transformation is referred to as P/M transformation. As far as 

we know, there is no evidence to show which transformation is better. In this work, we adopt I/Q 

transformation of complex channels and formulate the input of the first convolutional layer as 

[R(h), I(h)]T ∈ R2×NK . Note that the samples are fed into the neural network module in batches 

during the training process.

2) Convolutional Layer: Each convolutional layer l ∈ L creates cl convolution kernels of size

al × al that are convolved with the layer input Iconv,l ∈ Rb
(1)
l−1×b

(2)
l−1×cl−1 , where b(1)

l−1 and b(2)
l−1 are

the height and width of the output of the convolutional layer l−1, respectively. Note that c0 = 1

b
(1)
0 = 2, and b

(2)
0 = NK. The parameters of the convolution kernels, including the weights

Ξl ∈ Ral×al×cl and a bias vector ξl ∈ Rcl×1, are shared among different elements in Iconv,l to

extract features. More specifically, the output Oconv,l ∈ Rb
(1)
l ×b

(2)
l ×cl of the convolutional layer l

is

Oconv,l = Conv (Iconv,l,Ξl, ξl) , l ∈ L, (6)

where the operator Conv(·, ·, ·) denotes the convolution operation.

3) Batch Normalization Layer: The batch normalization layers are introduced in the neural 

network module, which can be put before or after the activation layers [49] according to practical 

experience. In the proposed framework, we adopt the former where the batch normalization layers 

normalize the output of the convolutional layers through subtracting the batch mean and dividing 

by the batch standard deviation, i.e.,

Zbn,l,c[i, j] =
Oconv,l,c[i, j]− µl,c√

Varl,c + εl,c
, l ∈ L, c = 1, · · · , cl, i = 1, · · · , b(1)

l , j = 1, · · · , b(2)
l (7)
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where X[i, j] denotes (i, j)-th element of matrix X , Oconv,l,c ∈ Rb
(1)
l ×b

(2)
l is the c-th slice of

Oconv,l, µl,c =
∑F

f=1

∑b
(1)
l

i=1

∑b
(2)
l

j=1 O
(f)
conv,l,c[i,j]

Fb
(1)
l b

(2)
l

and Varl,c =
∑F

f=1

∑b
(1)
l

i=1

∑b
(2)
l

j=1

(
O

(f)
conv,l,c[i,j]−µl,c

)2
Fb

(1)
l b

(2)
l

are the batch

mean and variance of the c-th slice, respectively, εl,c is a small float added to the variance to avoid 

dividing by zero, and F is the batch size. Note that such a simple normalization process may 

change what the layer can represent. To address this issue, two trainable parameters θl,c and βl,c are 

introduced to scale and shift the normalized value Zbn,l,c[i, j] as Ẑbn,l,c[i, j] = βl,cZbn,l,c[i, j] + θl,c. 

This “denormalization” process is allowed by changing only these two parameters, instead of 

changing all parameters which may lead to the instability of the neural network module. Besides, 

the work in [49] claimed that the batch normalization layer can reduce the probability of over-

fitting, enable a higher learning rate, and make the neural network less sensitive to the 

initialization of weights. Note that the batch normalization layers are element-wise functions, such 

that they do not change their respective input shapes.

4) Activation Layer: Since the predicted variables are continuous and positive real numbers, 

it is suggested that the activation functions that can generate negative values, such as tanh and 

linear functions, should not be used in the last activation layer. The rectified linear unit (ReLU) 

and sigmoid functions are good choices for the last activation layer, which are given as

ReLU(z) = max(0, z) and sigmoid(z) =
1

1 + e−z
, (8)

respectively. The most common choice for the intermediate activation layers is the ReLU func-

tion. Note that the functions performed in the activation layers are element-wise functions, such

that their outputs have the same shapes of their inputs, respectively.

5) Flatten Layer, Fully-connected Layer, and Output Layer: The flatten layer is only used to

change the shape of its input into a vector, for the fully-connected layer to interpret. The output

ofc ∈ Rm×1 of the fully-connected layer is

ofc = Πifc + π, (9)

where ifc ∈ R2NKcL×1 is the input vector, Π ∈ Rm×2NKcL and π ∈ Rm×1 account for the weight

matrix and bias vector, respectively, and m is the number of the neurons in the fully-connected

layer. The main function of the output layer is to generate the predicted results after the neural

network finishes training.

Note that apart from these functional layers, the loss function also plays an important role

in the proposed framework, which is marked on the output layer in Fig. 1. The loss function
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together with the learning rate guides the learning process of the neural network. In other words,

the loss function “tells” the neural network how to update its parameters. Since the output values

are continuous, it is suggested to utilize the mean absolute error (MAE) or the MSE as a metric.

Given the predicted results of the f -th sample in the neural network module is q̂(f) and the

target result is q(f), the MAE and MSE are defined as

MAE =
1

FK

F∑
f=1

||q(f) − q̂(f)||1 and MSE =
1

FK

F∑
f=1

||q(f) − q̂(f)||22, (10)

respectively. Generally speaking, the MAE function is more robust and is not affected by outliers. 

On the contrary, the MSE loss function is highly sensitive to outliers in the dataset because the 

MSE function tries to adjust the model according to these outlier values, at the expense of other 

samples [50]. In this work, the training dataset is generated by simulations and outliers are not 

an issue. Then we choose the MSE as the loss metric because its gradient is easier to calculate 

than that of the MAE.

6) Beamforming Recovery Module: The beamforming recovery module is an important com-

ponent whose aim is to recover the beamforming matrix from the predicted key features at 

the output layer. The functional layers in the beamforming recovery module are designed ac-

cording to the expert knowledge of the beamforming optimization which maps/converts the key 

features to the beamforming matrix. The expert knowledge is problem-dependent and has no 

unified form, but what is in common is that the expert knowledge can significantly reduce the 

number of variables to be predicted compared to the beamforming matrix. For example, the 

uplink-downlink duality and specific solution structures are the typical expert knowledge for 

beamforming optimization.

The key features should be chosen carefully to meet some constraints required by applying the 

universal approximation theorem [27, 43], so that a feedforward network exists which can 

approximate the continuous mapping from the channel coefficients to the key features. More 

specifically, assume that τ is a vector containing the chosen key features, the mapping function 

f(•) from h to τ , i.e., τ = f(h), should be a real-valued continuous function over a compact set. 

The compact set requirement holds whenever the possible values of the input h are bounded. 

However, the continuity of the mapping function depends on the choice of the key features.

In next three sections we will propose three BNNs under the proposed framework for problems 

P1, P2, and P3, respectively, and provide implementation details to show how to make use of
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the expert knowledge and choose the key features.

B. Computational Complexity

The computational complexity of the proposed framework involves two main tasks: the online

prediction and the offline training. To the best of our knowledge, complexity analysis of the

offline training is still an open issue mainly because of the complex implementation of the

backpropagation process. However, since the training is performed offline, and updated at a much

longer time-scale compared to the online prediction, we assume its complexity can be afforded

[51]. Thus, we focus on the complexity of the online prediction. In addition, the functional

layers are problem-dependent in the beamforming recovery module, so only the complexity of

the neural network module is analyzed below.

Given there are cl kernels of size al × al in the l-th convolutional layer, then the numbers

of multiplication and addition operations of convolutional layer l are the same and equal to

a2
l b

(1)
l b

(2)
l cl−1cl. Thus, the total time complexity of all convolutional layers measured by the num-

ber of multiplications is O
(∑

l∈L a
2
l b

(1)
l b

(2)
l cl−1cl

)
[52]. It is known that the batch normalization

layers and activation layers are element-wise functions, thus the computational complexity of

total batch normalization layers and total activation layers in L groups is O
(∑

l∈L b
(1)
l b

(2)
l cl

)
.

The numbers of multiplication and addition operations of the fully-connected layer are also the

same and equal to b(1)
L b

(2)
L cLm, respectively. Then the time complexity of the fully-connected layer

is given as O
(
b

(1)
L b

(2)
L cLm

)
. Besides, the complexity of the input, output, and flatten layers are

ignored due to the simplicity of their functions. If all convolutional layers use the kernels of size

3× 3 and apply stride 1 and zero padding 1, then b(1)
l = 2 and b(2)

l = NK,∀l ∈ L. Based on the

above analysis and assuming the parameters of the neural network module are fixed, predicting

the output of the neural network module needs 2NK
∑

l∈L(9clcl−1 + cl) + 2NKcLm + 2m

arithmetic operations including multiplications, divisions, and exponentiations, and has an ap-

proximate complexity O (NK).

IV. BNN FOR SINR BALANCING PROBLEM

As mentioned above, estimating the beamforming matrix directly leads to the higher com-

plexity of prediction due to the large amount of variables. In order to reduce the prediction

complexity, we introduce a scheme which first predicts the power allocation vector as the key
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feature and then achieves the corresponding beamforming matrix based on the predicted results.

Such a scheme is based on the expert knowledge named the uplink-downlink duality.

A. Uplink-Downlink Duality

Before we present the BNN for the SINR balancing problem P1, we first introduce the

following lemma to describe the uplink-downlink duality of problem P1 [12].

Lemma 1. Given W̃ = [w̃1, w̃2, . . . , w̃K ] and Pmax, we have

Cdl(W̃, Pmax) = Cul(W̃, Pmax), (11)

where Cdl(W̃, Pmax) and Cul(W̃, Pmax) are given as

Cdl(W̃, Pmax) = max
p

min
1≤k≤K

γdlk (W̃,p)

ρk
(12)

s.t. ||p||1 ≤ Pmax,

||w̃k||2 = 1, ∀k,

and

Cul(W̃, Pmax) = max
q

min
1≤k≤K

γulk (W̃,q)

ρk
(13)

s.t. ||q||1 ≤ Pmax,

||w̃k||2 = 1,∀k,

respectively, with

γdlk (W̃,p) =
pk|hHk w̃k|2∑K

k′=1,k′ 6=k pk′ |hHk w̃k′ |2 + σ2
, (14)

and

γulk (W̃,q) =
qk|hHk w̃k|2∑K

k′=1,k′ 6=k qk′ |hHk′w̃k|2 + σ2
. (15)

Note that p = [p1, . . . , pK ]T and q = [q1, . . . , qK ]T are downlink and uplink power vectors,

respectively1.

Note that problem (12) is an equivalent virtual problem of problem P1 whose optimal solutions

are connected by W∗ = W̃∗P∗ where P∗ = diag(p∗), W∗ is the optimal solution to problem

1Lemma 1 can be easily extended to the case with non-identical noise power levels. More details can refer to [12].
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P1, and W̃∗ and p∗ are the optimal solutions to problem (12). Based on Lemma 1, we find that

the uplink and downlink scenarios have the same achievable SINR region and the normalized

beamforming designed for the uplink reception immediately carries over to the downlink trans-

mission [12]. Thus we first obtain the optimal power allocation q∗ and beamforming matrix W̃∗

for the easier-to-solve uplink problem (13) instead of the downlink problem (12). Then given the

optimal beamforming W̃∗, the optimal p∗ is obtained as the first K components of the dominant

eigenvector of the following matrix [53]

Υ(W̃∗, Pmax) =

 DU Dσ

1
Pmax

1TDU 1
Pmax

1TDσ

 , (16)

where σ = σ21, 1 = [1, 1, . . . , 1]T ∈ RK×1, D = diag{ρ1/|(w̃∗1)Hh1|2, . . . , ρK/|(w̃∗K)HhK |2},

and

[U]kk′ =

|(w̃
∗
k′)

Hhk|2, if k′ 6= k,

0, else.
(17)

Finally, the downlink beamforming matrix is derived as W∗ = W̃∗P∗. Thus, instead of predicting

W directly, we can predict the uplink power allocation vector q. In the supervised learning

method, the prediction performance of the BNN depends on the quality of training samples. To

generate the training samples, the optimal q∗ and W̃∗ can be found by an iterative optimization

algorithm in [12, Table 1].

Note that Υ(W̃∗, Pmax) is a non-negative matrix and the optimal objective value of problem

P1 is the reciprocal of the largest eigenvalue of Υ(W̃∗, Pmax) [53]. According to the Perron-

Frobenius theory, for any nonnegative real matrix Ω with spectral radius χ(Ω), there exist a

vector δ ≥ 0 such that Ωδ = χ(Ω)δ [54]. Based on [12, Theorem 3], the sequence of the target

value of problem P1 provided by the iterative algorithm in [12, Table 1] is strictly monotoni-

cally increasing and the largest eigenvalue of Υ(W̃∗, Pmax) is unique. Then the corresponding

eigenvector containing q is a continuous and bounded function of h according to [55, Chapter

3]. Thus, we can use a neural network to approximate the mapping function from h to q [43].

B. BNN Structure

The proposed BNN for problem P1, shown in Fig. 2, is based on the proposed BNN framework

in Fig. 1. The functions and operations of the basic layers such as the input, convolutional, batch

normalization, and output layers, are the same as those in the proposed framework. Therefore,
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Fig. 2. BNN for the SINR balancing problem.

we do not explain these layers here and readers can refer to Section III for detail. Note that in 

the proposed BNN for problem P1, the intermediate activation layers are fulfilled with the ReLU 

function whereas the last activation layer is implemented using the sigmoid function. Besides the 

existing layers in the framework, a scaling layer and a conversion layer are also introduced in 

the BNN for problem P1, which belong to the beamforming recovery module. In the following, 

we give the details of the scaling layer and the conversion layer.

1) Scaling Layer: Due to the existence of prediction error, it is almost impossible to guarantee 

that the output of the output layer always meets the power constraint in problem P1. According to 

[56], the optimal solution is achieved when the equality of the constraint in problem P1 holds. 

Therefore, we scale the results of the output layer q̂ to meet the power constraint by the following 

transformation,

q̂∗ =
Pmax
||q̂||1

q̂. (18)

2) Conversion Layer: After receiving the scaled power allocation vector q̂∗, we can achieve

the downlink beamforming matrix Ŵ∗ as the final output of the BNN based on q̂∗ by the

conversion layer. The beamforming recovery implemented by the conversion layer includes the

following process:

1) Calculate T∗ = σ2IN +
∑K

k=1 q̂
∗
khkh

H
k .

2) Calculate w̃∗k = w̃∗k/||w̃∗k||2, ∀k, where w̃∗k = (T∗)−1hk.

3) Find the maximal eigenvalue ψ∗max of Υ(W̃∗, Pmax) and the associated eigenvector with

respect to ψ∗max, i.e., Υ(W̃∗, Pmax)
[
p̂∗

1

]
= ψ

(i)
max

[
p̂∗

1

]
.

4) Output Ŵ∗ = W̃∗P̂∗ as the final result where P̂∗ = diag(p̂∗).

Note that the time complexity of the beamforming recovery module is O(KN2 +N3 +K3).

In the proposed BNN for the SINR balancing problem P1, the supervised learning with the loss



A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON COMMUNICATIONS 16

function based on the MSE metric is adopted.

V. BNN FOR POWER MINIMIZATION PROBLEM

Similar to the BNN for the SINR balancing problem P1, the BNN for the power minimization

problem P2 obtains the downlink beamforming matrix according to the uplink-downlink duality,

i.e., the expert knowledge. Specifically, we first predict the uplink power allocation vector as the

key features using the trained neural network, then obtain the normalized beamforming matrix

based on the predicted results. Finally, the downlink beamforming matrix is recovered from the

normalized beamforming matrix by the uplink-downlink conversion method.

A. Uplink-Downlink Duality

Note that the conversion method adopted in the BNN for problem P1 can not be used again,

because the power budget Pmax is unknown in the power minimization problem P2. Instead, we

employ the conversion method in the following lemma [47].

Lemma 2. Given the optimal beamforming matrix W̃∗ = [w̃∗1, . . . , w̃
∗
K ] for the uplink problem2,

i.e.,

min
q,W̃

K∑
k=1

qk

s.t. γulk (W̃,q) ≥ Γk,

||w̃k||2 = 1,∀k,

(19)

where γulk (W̃,q) is given as in (15).

The optimal beamforming vectors w∗k,∀k, for the downlink problem P2, can be obtained

by multiplying the optimal normalized beamforming vector w̃∗k by a scaling factor, i.e., w∗k =

p∗kw̃
∗
k,∀k, where p∗k is the k-th element of vector p∗ = [p∗1, . . . , p

∗
K ]T ∈ RK×1 and

p∗ = σ2Ψ−11, (20)

2In this work, for simplicity, we assume the solution to problem P2 always exists. However, it can happen that the wireless

network only satisfies some of the users and thus the user selection is needed. To address this issue, a possible solution is to

train another neural network for user selection, and then optimize the beamforming matrix among the selected users.
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Fig. 3. BNN for the power minimization problem.

where

[Ψ]kk′ =


1

Γk
|hHk w̃∗k|2, if k = k′,

−|hHk w̃∗k′|2, else.
(21)

The vector p∗ of the scaling factors is the optimal downlink power allocation vector. Given

the optimal normalized beamforming matrix W̃∗, Lemma 2 allows us to achieve the optimal

downlink power vector p∗ by (20), then W∗ = W̃∗P∗. Actually, if we know the uplink power

allocation vector q, the normalized beamforming matrix W̃ can be inferred as

w̃k =
T−1hk
||T−1hk||2

,∀k, (22)

where T = σ2IN +
∑K

k=1 qkhkh
H
k . Therefore, the only results that need to be predicted by the

BNN is the uplink power allocation vector q, which reduces significantly the computational

complexity compared to the strategy that attempts to predict the beamforming matrix directly.

The iterative algorithm in [5] provides a way to achieve the optimal q∗ as the training samples

in the supervised learning method. Besides, such an iterative algorithm suggests the mapping

function from h to q is continuous [27, Theorem 1], so it can be approximated by a neural

network.

B. BNN Structure

The BNN for problem P2 in Fig. 3 is also based on the proposed BNN framework. However,

the operations of the conversion layer in Fig. 3 are different from those in the BNN for problem

P1. After receiving the uplink power allocation vector q̂∗ from the output layer, the beamforming

recovery in the conversion layer performs the following operations:

1) Calculate T∗ = σ2IN +
∑K

k=1 q̂
∗
khkh

H
k .
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2) Calculate w̃∗k = w̃∗k/||w̃∗k||2, ∀k, where w̃∗k = (T∗)−1hk.

3) Calculate the downlink power allocation vector p̂∗ = σ2(Ψ∗(W̃∗,Γ))−11.

4) Output the downlink beamforming vectors ŵ∗k = p̂∗kw̃
∗
k,∀k, as the final results.

Here, the time complexity of the beamforming recovery module is O(KN2 +N3 +K3). Note

that the predicted power vector q̂∗ by the BNN is, in general, not exact. The prediction error

will lead to the inaccuracy of power allocation vector p̂∗ as well as the downlink beamforming

Ŵ∗. More specifically, if the predicted power vector q̂∗ has an acceptable accuracy with respect

to the target power vector q∗, i.e., ||q∗ − q̂∗||22 < ε where ε is a small constant, then we can

obtain a suboptimal solution whose objective value is larger than that of the optimal solution, i.e.,∑K
k=1 ||ŵ∗k||22 >

∑K
k=1 ||w∗k||22. Intuitively, the extra power consumption qextra =

∑K
k=1 ||ŵ∗k||22 −∑K

k=1 ||w∗k||22 can be regarded as the cost of the prediction error. However, if the predicted vector
2
2q̂∗ has a significant error, i.e., ||q∗ −q̂∗|| � ε, the downlink beamforming Ŵ ∗ inferred from the 

prediction q̂∗ may become infeasible since some elements of the vector p̂∗ have negative values. 

This suggests that different from problem P1, there is a certain probability of infeasibility of the 

BNN prediction for problem P2. However, our experiments show that the failure probability of the 

proposed BNN for problem P2 is lower than 1% in most settings. More details will be given in 

Section VII. Moreover, the supervised learning with the loss function based on the MSE metric is 

adopted in the proposed BNN for problem P2.

VI. BNN FOR SUM RATE MAXIMIZATION PROBLEM

Different from the SINR balancing problem P1 and the power minimization problem P2, no 

practically useful algorithm is available to find the optimal solution to the sum rate maximization 

problem P3 and we can not make use of uplink-downlink duality directly. However, we will 

exploit a connection between problems P2 and P3 to find some key features of the optimal 

solution to problem P3.

A. Solution Structure

A fact was mentioned in [57] that the optimal solution to problem P2, using the minimal

amount of power to achieve the given SINR targets, must meet the power constraint in problem

P3 to achieve the maximal sum rate. More specifically, given the optimal transmit power P ? of

problem P2 and setting the total power constraint Pmax in problem P3 as P ?, the SINR values



A MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON COMMUNICATIONS 19

of each user in problem P3 can be calculated. By setting the SINR targets in problem P2 with

these calculated SINR values, the solutions to problems P2 and P3 will be the same. According

to the connection between problems P2 and P3, it has been pointed out in [2] that the optimal

downlink beamforming vectors for problem P3 follows the structure as

w∗k =
√
pk

(IN +
∑K

k=1
λk
σ2 hkh

H
k )−1hk

||(IN +
∑K

k=1
λk
σ2 hkhHk )−1hk||2

,∀k, (23)

where λk is a positive parameter and
∑K

k=1 λk =
∑K

k=1 pk = Pmax according to the strong duality

of problem P2. This is because Pmax is the optimal cost function in problem P2 and
∑K

k=1 λk

is the dual function. Note that the parameter vector λ = [λ1, . . . , λK ]T can be considered as

a virtual power allocation vector. The solution structure in (23) provides the required expert

knowledge for the beamforming design in problem P3 and λ and p are the key features. But

to our best knowledge, there is no low-complexity algorithm in the literature that can find the

optimal p∗k and λ∗k in (23). The WMMSE algorithm is a good choice to find the locally optimal

solutions [9, 10], and such an iterative algorithm ensures the continuity of the mapping from

the channel to the solution, and can be learned by a neural network [27, 30]. Therefore, we can

obtain the power allocation vectors p and λ according to the WMMSE algorithm. The supervised

learning with the loss function based on the MSE metric will be first used to achieve as close

to the results of the WMMSE algorithm as possible, i.e.,

Loss =
1

2LK

L∑
l=1

(
||p(l) − p̂(l)||22 + ||λ(l) − λ̂(l)||22

)
, (24)

λ̂

where p(l) and λ(l) are the power vectors obtained from the WMMSE algorithm, and p̂(l) and
(l) are the predicted results of the BNN. It is worth pointing out that the results in the training 

samples of problems P1 and P2 are optimal, thus the MSE-based loss function is equivalent to the 

objective function and the supervised learning method updates network parameters towards the 

direction of the optimal solution. However, the WMMSE algorithm for problem P3 is locally 

optimal and thus (24) is not equivalent to the real objective of problem P3 which aims to 

maximize the weighted sum rate. To further improve the sum rate performance, we continue to 

train the BNN in an unsupervised learning way, whose loss function takes the objective function 

directly as a metric, i.e.,

Loss = − 1

2KL

L∑
l=1

K∑
k=1

α
(l)
k log2

(
1 + γ

ul,(l)
k

)
. (25)
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Fig. 4. BNN for the sum rate maximization problem.

B. Hybrid BNN Structure

The BNN for problem P3 is presented in Fig. 4. The major difference from the BNNs in

Figs. 2 and 3 is that the BNN in Fig. 4 has two stages of training. The first stage is responsible

for pre-training using the supervised learning method with the loss function based on the MSE

metric (24), while the second stage is responsible for enhanced training using the unsupervised

learning method with the loss function whose metric is the objective function (25). Such a

hybrid learning method of the supervised and unsupervised learning can significantly improve the

learning performance and also accelerate convergence [29]. More specifically, the pre-training, as

the approximation of WMMSE algorithm, starts with the random initialization of neural network

parameters and the loss function (24). After the pre-training is finished, the neural network

parameters are reserved and the loss function is replaced by (25), such that the second-stage

training can achieve improved performance than the first-stage training.

Different from the BNNs in Figs. 2 and 3, the output layer in Fig. 4 generates 2K values

including the power allocation vectors p̂ and λ̂. Then the scaling layer scales the results of the

output layer q̂ and λ̂ to meet the power constraint by the following method:

p̂∗ =
Pmax
||p̂||1

p̂ and λ̂∗ =
Pmax

||λ̂||1
λ̂. (26)

Finally, the construction layer constructs the downlink beamforming vectors according to (23):

ŵ∗k =
√
p̂∗k

(IN +
∑K

k=1

λ̂∗k
σ2 hkh

H
k )−1hk

||(IN +
∑K

k=1

λ̂∗k
σ2 hkhHk )−1hk||2

,∀k. (27)

Thus, the time complexity of the beamforming recovery module for problem P3 is O(KN2+N3).
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h̃

VII. SIMULATION RESULTS

To evaluate the performance of the proposed BNNs, we carry out numerical simulations to 

compare the BNNs with several benchmark solutions (when available), including the optimal 

beamforming, the ZF beamforming [58], the RZF beamforming [59], and the WMMSE algorithm. 

We consider a downlink transmission scenario where the BS is equipped with N = 6 antennas and 

its coverage is a disc with a radius of 500 m. There are K = 4 single-antenna users and these users 

are distributed uniformly within the coverage of the BS. Note that none of these users is closer to 

the BS than 100 m. The channel of user k is modelled as hk = 
√
dkh̃k ∈ CN×1 where

k ∼ CN (0, IN ) is the small-scale fading [60] and dk = 128.1 + 37.6 log10(ω)[dB] denotes the 

pathloss between user k and the BS [61] with ω representing the distance in km. Here, shadow 

fading is omitted for simplicity. The noise power spectral density is −174 dBm/Hz and the total 

system bandwidth is 20 MHz. For simplicity, we assume all the sub-streams have the same 

importance and all the users have the same priority, i.e., ρk = 1, ∀k, and αk = 1, ∀k. Besides, 

perfect CSI is assumed to be available at the BS.

In our simulation, we prepare 20000 training samples and 5000 testing samples, respectively. 

The validation split is set to 0.2 and the training data is randomly shuffled at each epoch. All 

the BNNs have the same structure as shown in Table I. The fully-connected layer in the BNNs 

for problems P1 and P2 has K neurons but that in the BNN for problem P3 has 2K neurons. 

The Glorot normal initializer [62] is used for weight initialization and biases are initialized to 0. 

Adam optimizer [63] is used with the MSE metric-based loss function. However, in the second 

stage of the BNN for problem P3, the metric of the loss function becomes the sum rate. The 

last activation layer is the sigmoid function so that the target output in the training and testing 

samples should be normalized into (0,1] by dividing a factor. Also, the channel coefficients are 

normalized by the noise power before being fed into the BNNs to avoid entering the insensitive 

area of the sigmoid function. The proposed BNN solutions are implemented in Python 3.6.5 with 

Tensorflow 1.2.1 and Keras 2.2.2 on a computer with 1 Intel i7-7700U CPU Core and RAM of 

32GB, and the benchmarks are also implemented in Python 3.6.5 with a popular library numpy. 

Note that unless explicitly mentioned otherwise, all the neural network modules adopt the default 

setting in Table I and a separate neural network model is trained for each different case.
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TABLE I

PARAMETERS OF THE NEURAL NETWORK MODULES.

Layer Parameter

Layer 1 (input) Input of size 2×NK, batch of size 200, 100 epochs

Layer 2 (convolutional) 8 kernels of 3× 3, zero padding 1, stride 1

Layer 3 (batch normalization) Momentum=0.99, ε = 0.001

Layer 4 (activation) ReLU

Layer 5 (convolutional) 8 kernels of 3× 3, zero padding 1, stride 1

Layer 7 (batch normalization) Momentum=0.99, ε = 0.001

Layer 6 (activation) ReLU

Layer 8 (flatten)

Layer 9 (fully-connected) K or 2K neurons

Layer 10 (activation) Sigmoid

Layer 11 output layer Adam optimizer, learning rate of 0.001, MSE metric
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Fig. 5. The SINR performance averaged over 5000 samples in two different cases: (a) without large-scale fading and (b) with

large-scale fading under {K = 4, N = 6}.

A. BNN for the SINR Balancing Problem

We first consider the BNN for the SINR balancing problem P1, which updates network

parameters in a supervised learning way. The iterative algorithm in [12, Table 1] is used to

generate the training and testing samples. The ZF beamforming is achieved by allocating power

to make all the users have the same SINR value under a total power constraint. Fig. 5 shows the

SINR performance averaged over 5000 samples in two cases: one only considering the small-

scale fading but the other considering both the small-scale fading and large-scale fading. In both
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Fig. 6. Comparison of four different beamforming solutions,

i.e., the optimal solution, the ZF beamforming, the RZF

beamforming, and the BNN solution under {K = N ,

Pmax = 20 dBm}.
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Fig. 7. The SINR performance versus different transmit

antenna numbers using the same trained BNN under {K =

4, N = 10, Pmax = 20 dBm}.

cases, the SINR performance of the proposed BNN solution is very close to that of the optimal

solution [12]. It is observed that there is an obvious gap between the optimal solution and the

ZF beamforming in the low normalized transmit-power (Pmax

σ2 ) regime of Fig. 5(a) as well as the

low transmit-power regime of Fig. 5(b). However, the gap decreases as the (normalized) transmit

power increases.

To further compare the SINR performance of the optimal solution, the ZF beamforming,

the RZF beamforming whose regularization parameter is set as Pmax

K
, and the BNN solution,

we evaluate the output SINR in Fig. 6 assuming that the number of users is the same as the

number of BS antennas, i.e., K = N , and they increase together. It is shown that the BNN

solution has some performance loss compared to the optimal solution due to the estimation

error, but the BNN solution always achieves a better performance than the ZF beamforming and

RZF beamforming. This fact indicates the application prospect of the BNN: the computational

complexity and time of the BNN solution is similar to those of the ZF beamforming and RZF

beamforming, but is much lower than that of the optimal solution because the optimal solution

relies on an iterative process. Besides, we also find that the SINR performance of the four

solutions decrease as the transmit antenna number (user number) increases and among the four

solutions the ZF beamforming suffers most from the performance loss.

Table II presents the comparison of two input formats, i.e., I/Q transformation and P/M
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TABLE II

I/Q TRANSFORMATION VERSUS P/M TRANSFORMATION.

K/N 4 6 8 10 12

I/Q transformation
MSE 0.084 0.038 0.022 0.014 0.010

MAE 0.223 0.147 0.111 0.088 0.075

P/M transformation
MSE 0.086 0.039 0.022 0.014 0.010

MAE 0.225 0.149 0.111 0.087 0.073

transformation, in terms of the MSE performance and MAE performance of the predicted

normalized power under the case with K = N and Pmax = 20 dBm. As shown in Table II, I/Q

transformation and P/M transformation have close performance.

In Fig. 7, we demonstrate the generality of the proposed BNN by fixing the user number as

K = 4 and the transmit power as Pmax = 20 dBm and show the SINR performance versus

different transmit antenna settings. We train only a single BNN with {K = 4, N = 10}, but

allow the number of transmit antennas to vary from 4 to 10 when using the trained BNN. Then

the redundant entries at the inputs and outputs are filled with 0’s. It can be seen that these

predicted results are very close to that of the optimal solution. This fact suggests the generality

of the BNN, i.e., we can train a large BNN with more antennas which will also work for the

cases with less antennas without re-training. This will be useful when some transmit antennas

of the BS are malfunctioning or turned off.

B. BNN for the Power Minimization Problem

In this subsection, we consider the BNN for the power minimization problem P2, which also

updates network parameters in a supervised learning way. The iterative algorithm in [5] is used

to generate the training and testing samples. The ZF beamforming for comparison is achieved by

minimizing the power for each user with a QoS constraint since there is no inter-user interference.

We first investigate the effect of the SINR constraints of users on the power consumption. For

convenience of comparison, we assume the SINR constraints of all users are the same, i.e.

Γk = Γ, ∀k. In Fig. 8, we compare the power performance of the optimal beamforming, the

ZF beamforming, and the beamforming obtained by the BNN. Note that both Figs. 8(a) and

8(b) have two Y-axes where the left Y-axis is used to measure the (normalized) transmit power

averaged over the feasible sample set of the BNN solution and the right Y-axis is used to show
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Fig. 8. The power performance averaged over the feasible sample set of the BNN solution in two different cases: (a) without

large-scale fading and (b) with large-scale fading under {K = 4, N = 6}.

the feasibility of the BNN. As mentioned in Section V, the BNN may fail to find a feasible

solution to problem P2 if the prediction error is unacceptable.

Figs. 8(a) and 8(b) present the (normalized) transmit power performance in the cases without

and with consideration of the large-scale fading, respectively. In both cases, the (normalized)

transmit power performance of the BNN solution is close to that of the optimal solution, and

significantly outperforms the ZF beamforming in the low SINR-constraint regime which is higher

than that of the optimal solution. We also find that, according to Fig. 8(b), the BNN solution

performs slightly worse than the ZF solution when the SINR constraint is large, this is because

the ZF solution becomes closer to the optimal solution as the SINR constraints increase, but the

performance of the BNN solution is still close to that of the optimal solution. This fact suggests

that when the SINR constraints are high, the ZF solution is a good choice instead of the BNN

solution. Besides, we find that the feasibility of the BNN solution in both cases is more than

99.4%.

To further compare the BNN solution with the optimal solution and the ZF beamforming,

we plot their power performance and execution time per sample in Figs. 9(a) and 9(b), re-

spectively. Here, we consider two convergence strategies for the optimal iterative algorithm:

the high convergence threshold (ε1 = 10−2) which can be reached with less iterations and the

low convergence threshold (ε2 = 10−4) which requires more iterations for problem P2, i.e.,
|
∑K

k=1 ||w
(t−1)
k ||2−

∑K
k=1 ||w

(t)
k ||

2|∑K
k=1 ||w

(t−1)
k ||2

≤ εκ, κ ∈ {1, 2}. In Fig. 9, the BS antenna number and SINR target
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Fig. 9. Comparison of three different beamforming solutions, i.e., the optimal solution, the BNN solution, and ZF beamforming:

(a) power performance and (b) execution time per sample averaged over 5000 samples under {Γ = 5 dB, N = 8}.

of users are fixed as N = 8 and Γ = 5 dB. It is observed from Fig. 9(a) that as the user number

K increases, the performance gap between the ZF beamforming and the optimal beamforming

with the low convergence threshold becomes large because more users share the array gain.

The BNN solution, with the feasibility of up to 99%, shows a better performance than the ZF

beamforming and the optimal iterative algorithm with the high convergence threshold. Fig. 9(b)

demonstrates that compared to the optimal solution with the low convergence threshold, the BNN

solution can reduce the execution time per sample by about two orders of magnitude, which is

slightly longer than that of the ZF beamforming. This is because the BNN solution and the ZF

beamforming are obtained without an iterative process, but the BNN needs to execute the neural

network operations as well as the conversion process. We can reduce the iteration times using

the high convergence threshold, but this leads to the power performance degradation. According

to the results in Figs. 9(a) and 9(b), we can conclude that the BNN solution provides a good

balance between the performance and computational complexity.

C. BNN for the Sum Rate Maximization Problem

In this subsection, we evaluate the performance of the BNN for the sum rate maximization

problem P3 based on the proposed hybrid learning under the assumption that K = 4 and N = 4.

The ZF beamforming with pk = Pmax

K
,∀k and the RZF beamforming with pk = λk = Pmax

K
,∀k are

introduced as two baseline solutions. Since the performance of the WMMSE algorithm heavily
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Fig. 10. The sum rate performance averaged over 5000 samples in two different cases: (a) without large-scale fading and (b)

with large-scale fading under {K = 4, N = 4}.

relies on initialization [9, 10], two different initialization methods, the RZF initialization and the

random initialization, are considered and the WMMSE algorithm with the RZF initialization

is used to generate samples for the supervised learning in the first stage. First, Fig. 10 shows

the sum rate performance averaged over 5000 samples in two different cases: the former case

in Fig. 10(a) only considers small-scale fading and and the latter case in Fig. 10(b) considers

both small-scale fading and large-scale fading. It is shown that the sum rate performance of

all solutions increases as the (normalized) transmit power increases and different initialization

methods of the WMMSE algorithm have a large performance gap. We observe that in both cases

the proposed BNN solution based on the hybrid learning always achieves a performance close

to that of the WMMSE algorithm with the RZF initialization, while the performance of the

supervised learning-based BNN solution is less satisfactory. This is because the second stage

of the hybrid learning method aims to maximize the sum rate and its performance is bounded

by the global optimal solution to problem P3. But the aim of the BNN solution based on the

supervised learning is to achieve as close to the WMMSE solution as possible and its performance

is restricted by the WMMSE solution, which is verified in Figs. 10(a) and 10(b).

We further compare the sum rate performance and the computational complexity, in terms

of the execution time per sample, of five beamforming solutions in Figs. 11(a) and 11(b),

respectively. The iteration number of the WMMSE algorithm is limited to at most 10. We fix the

transmit power budget as Pmax = 30 dBm and assume the transmit antenna number is the same
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Fig. 11. Comparison of five different beamforming solutions, i.e., the WMMSE solution, BNN solutions based on the supervised 

learning and the proposed hybrid learning, respectively, the RZF beamforming, and the ZF beamforming: (a) sum rate performance 

and (b) execution time per sample averaged over 5000 samples under {K = N , Pmax = 30 dBm}.

as the user number, i.e., N = K. As the number of transmit antennas increases, the sum rate 

performance of all five solutions increases simultaneously. The performance of the proposed 

BNN solution based on the hybrid learning method is always close to that of the WMMSE 

algorithm with the RZF initialization, but is superior to those of the other four solutions and the 

performance gap becomes larger when the number of the transmit antenna increases. According 

to Fig. 11(b), the execution time per sample of the BNN solutions based on the supervised 

learning and hybrid learning methods is at the same level, which is slightly longer than that of 

the ZF beamforming and the RZF beamforming, for the same reason of Fig. 9(b). As expected, 

the WMMSE algorithm consumes the most time because of its iterative process. Similar to the 

other proposed BNNs, it proves that the proposed BNN solution to the sum rate problem P3 

provides a good balance between the performance and computational complexity.

VIII. CONCLUSIONS

In this paper, we proposed a DL-based framework for fast optimization of the beamforming 

vectors in the MISO downlink and then devised three BNNs under this framework for the 

SINR balancing problem under a total power constraint, the power minimization problem under 

individual QoS constraints, and the sum rate maximization problem under a total power con-

straint, respectively. The proposed BNNs are based on the CNN structure and expert knowledge. 

The supervised learning method was adopted for the SINR balancing problem and the power
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minimization problem because effective algorithms are available for generating training samples. 

However, there is no practically useful algorithm to find the optimal solution to the nonconvex 

sum rate maximization problem, therefore the corresponding BNN adoptes a hybrid learning 

method which first pre-trains the neural network based on the supervised learning method, 

and then updates the network parameters with the unsupervised learning method to further 

improve learning performance. Furthermore, in order to reduce the complexity of prediction, the 

proposed BNNs take advantage of expert knowledge to extract key features instead of predicting 

beamforming matrix directly. Simulation results demonstrated that the proposed BNN solutions 

provided a good balance between the performance and computational complexity.

This work is an attempt to apply the DL technique to beamforming optimization. Actually, 

a lot of extension works are worth further study. For example, it is unclear so far which input 

format, I/Q transformation or P/M transformation, is better. In addition, the joint optimization of 

user selection and beamforming design for the power minimization problem is interesting and 

it deserves more investigation. Besides, user mobility, machine-type communications, imperfect 

CSI, and multi-cell scenarios are also interesting extensions for future works.
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