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A deep learning framework to 
discern and count microscopic 
nematode eggs
Adedotun Akintayo1, Gregory L. Tylka2, Asheesh K. Singh  3, Baskar Ganapathysubramanian1, 

Arti Singh3 & Soumik Sarkar1

In order to identify and control the menace of destructive pests via microscopic image-based 

identification state-of-the art deep learning architecture is demonstrated on the parasitic worm, the 
soybean cyst nematode (SCN), Heterodera glycines. Soybean yield loss is negatively correlated with the 

density of SCN eggs that are present in the soil. While there has been progress in automating extraction 

of egg-filled cysts and eggs from soil samples counting SCN eggs obtained from soil samples using 
computer vision techniques has proven to be an extremely difficult challenge. Here we show that a 
deep learning architecture developed for rare object identification in clutter-filled images can identify 

and count the SCN eggs. The architecture is trained with expert-labeled data to effectively build a 
machine learning model for quantifying SCN eggs via microscopic image analysis. We show dramatic 

improvements in the quantification time of eggs while maintaining human-level accuracy and avoiding 
inter-rater and intra-rater variabilities. The nematode eggs are correctly identified even in complex, 
debris-filled images that are often difficult for experts to identify quickly. Our results illustrate the 
remarkable promise of applying deep learning approaches to phenotyping for pest assessment and 

management.

Disease and pathogen detection processes in plants are classi�ed into direct and indirect methods1. Direct detec-
tion techniques, such as molecular markers using polymerase chain reactions (PCRs) and deoxyribonucleic acid 
(DNA) arrays, have been widely studied and analyzed. Lately, indirect disease detection techniques, via imaging 
for instance, have dramatically improved, and there is a signi�cant interest in developing techniques for fast 
and automated analysis of such images2. In this context, object classi�cation and detection in images become 
critical2–5. In certain cases, objects to be detected and enumerated by imaging techniques are much fewer or less 
conspicuous in the presence of extraneous objects6. Such cases have been termed rare object detection problems, 
with speci�c examples including pathogen detection (e.g., sexual and asexual spores)7, plant part detection8 and 
identi�cation of foreign or unwanted objects from samples with applications in health, food and plant sciences 
and industries1. Our current study of identifying and quantifying soybean cyst nematode (SCN) eggs recovered 
from the soil using microscopic images is one such scenario where we demonstrate the e�ectiveness of our pro-
posed deep learning paradigm in pathogen assessment.

�e SCN is an obligate parasitic worm that develops from eggs to adults in as little as 24 days9,10. Feeding on 
soybean roots by the nematodes can inhibit the growth of the plants, cause yellowish discoloration of the leaves 
and increase the plants’ risk to more severe infections of diseases such as brown stem rot and sudden death 
syndrome11. SCN damage in the US alone is estimated to account, on an average, for a yield loss of about 3.5 
million metric ton (one-third of the total loss)12,13, equivalent to >$1 billion per year in value14. �e nematode 
had been managed successfully for decades by growing non-host crops, such as corn, in alternating years with 
soybean varieties that were bred to be resistant to the nematode. But virtually all of the resistant soybean varieties 
possessed the same set of resistance genes and, consequently, SCN populations have developed increased ability 
to reproduce on resistant soybean varieties15, leading to yield loss of the resistant varieties. Because of the loss of 
e�ectiveness of resistance, there is renewed need to monitor SCN population densities by collecting soil samples 
and quantifying the numbers of SCN eggs present in the soil.
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A�er collection of soil samples from the �eld, SCN cysts (dead SCN females containing eggs) and debris are 
separated from other soil matter in processes known as elutriation11 or wet-sieving and decanting16. �e resulting 
suspension of SCN cysts and debris is crushed by some means, commonly using a rubber stopper on the surface 
of a sieve17, then the eggs are recovered on a sieve, suspended in water with acid fuchsin and heated to color the 
eggs a pink-magenta color18 (see Supplementary Fig. 1). A sample of the stained egg suspension (typically 1 ml) is 
taken and placed on a nematode-counting slide that facilitates manual counting by trained technicians19 using an 
optical microscope (see illustration in Supplementary Fig. 3). While all other stages of the sampling and extraction 
process have undergone some degree of mechanization20,21, and can now be done in a fairly automated fashion, 
counting the number of SCN eggs has not yet been successfully automated, in spite of signi�cant e�orts using 
image processing strategies. Prior to 2015, most image-processing-based approaches have only been marginally 
successful11, exhibiting highly inconsistent performance and requiring frequent tuning, thus, limiting utility and 
ensuring that manual, human, visual identi�cation and counting remains the gold standard. �e di�culties in 
automation are primarily due to the resemblance of eggs with pervasive inorganic and organic debris, as well as 
the variability in coloration and occlusion of the eggs that occurs with eggs extracted from di�erent soil types. 
�e accurate counting of SCN eggs is further exacerbated by the occurrence of relatively few eggs per plate or 
image, hence ‘rare object detection’ problem (see examples in Supplementary Fig. 1 to understand the complexity). 
Even manual quanti�cation of the SCN eggs on the frames require su�cient training because the debris can 
easily be confused with the SCN eggs and vice versa. Furthermore, trained technicians may have di�erent levels 
of training and experience and get fatigued during this manual search process leading to both intra-rater and 
inter-rater variabilities (Fig. 1). �erefore, accurately recognizing and counting SCN eggs is a serious bottleneck 
to high-throughput assessment of SCN population densities as manual, human, visual counting is both time con-
suming, as well as mistake-prone.

Deep learning approaches have recently had a transformative impact in image analytics, speci�cally in auto-
matically learning complex patterns of interest for applications such as object recognition and scene understand-
ing5, image de-noising and enhancement22, detection and labeling23. Within the deep learning paradigm, we 
design a novel end-to-end Convolutional Selective Autoencoder (CSAE)24 that possesses remarkable detection 
speed, consistency and accuracy in identifying SCN eggs across a wide variety of solution coloration, soil types 
and debris �elds. �e architecture was developed for this rare-object detection class of problems in such a man-
ner that makes it robust to various data quality types without signi�cant degradation in performance. A CSAE 
(illustrated in Fig. 2) has two main parts – the �rst part is called an encoder that learns to capture salient features 
from the input image in a layer-wise hierarchy while rejecting noise and other spurious disturbances, such that 
the patterns of interest in the input image can be faithfully reconstructed by the second part, called the decoder. 
�e ‘selectivity’ aspect comes from the training procedure where the convolutional network model is trained in 
a way that it learns only to reconstruct an ‘egg’ pattern and mask/reject every other pattern in the input image. 
�is supervised learning scheme uses a small set of microscopic images carefully annotated by experts to mark/
highlight all SCN eggs to the best of their judgement.

We train the CSAE with labeled patches (image segments smaller than the entire image frame) from 644 
microscopic image frames obtained from soil samples collected in fall 2015 and processed to extract the SCN 
eggs. Upon training, the model scans through the test images, patch by patch, and then identi�es if each patch 
contains an SCN egg. Note that the detection of SCN egg(s) in each patch is a�ected by the presence of neighbor-
ing objects in the patch. �is is particularly important for detection in the ‘high-cluttered’ images. We therefore 
fuse information from multiple overlapping local patches to provide a high level of con�dence in estimating the 

Figure 1. Approach overview showing the work�ow that leads to the automated quanti�cation process as an 
alternative to the human expert quanti�cation which su�ers from intra-rater and inter-rater variabilities.
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existence of an SCN egg in a particular patch. While a high degree of overlap has the potential to improve the 
detection performance, it does require the processing of a higher number of patches. �erefore, the degree of 
overlap among the patches is determined to achieve an optimal trade-o� between the detection accuracy and the 
computational complexity (i.e., detection time). Details of the data acquisition, labeling of the data, training of the 
model, and fusion of patch-level model inferences are given in the Methods section.

Results and Discussion
Testing data sets were collected in spring 2016 from two di�erent SCN-infested �elds with di�erent soil char-
acteristics. �e �rst farm, ‘A’, had 24 test sets (each test set consisting of 50 microscopic image frames) that were 
‘less-cluttered’, while the second farm, ‘B’, had 24 test sets (each test set consisting of 50 microscopic image frames) 
that were ‘high-cluttered’. �e sets which have more eggs and debris lumped together in di�erent regions of the 
microscopic images are termed ‘high-cluttered’, while the ‘less-cluttered’ group contains sets with mostly dis-
tinct SCN eggs and debris (For quanti�ed de�nition of these image types, see Supplementary Section - Dataset and 
Supplementary Fig. 2). Figure 3 illustrates the robustness of deep learning model in identifying SCN eggs under 
such widely varying conditions. Since the sizes of the objects of interest (i.e., eggs with area of roughly 5000 µm2) 
and the debris are much smaller compared to the entire image frames, we demonstrate the e�cacy of the CSAE 
framework by zooming into a few representative areas of certain de�ned frames. �e highlighted examples in 
Fig. 3 illustrates the model’s robustness to some extreme cases. �e �rst example in Fig. 3(a) shows an egg in a 
signi�cantly cluttered background. �e CSAE model can reliably reconstruct the egg with high con�dence (evi-
denced by the high pixel intensity value of the reconstructed egg object) while masking the other objects. �e 
second example in Fig. 3(b) shows the ability of the machine learning model to detect and reconstruct an SCN egg 
object, where it is occluded in the input frame. In the third representative example shown in Fig. 3(c), an inter-
esting phenomenon is shown that is observed in some cases where a worm is coming out of the egg. �e CSAE 
model is able to reconstruct the egg in this scenario. Lastly, we show one of the very few false alarms obtained 
from the test frames in Fig. 3(d). In this case, while the object detected as an egg does have signi�cant similarities 
in shape and size with an actual egg, the model associates a low pixel intensity signifying the low con�dence it has 
in making this prediction. �is suggests that CSAE identi�ed objects can be automatically triage and selectively 
remove to further improve object recognition (see Supplementary material). Most interestingly, we had a few 
instances where the CSAE purportedly had false alarms, which were later con�rmed to be actual eggs missed by 
the human expert.

We provide the statistical summary of CSAE results in Fig. 4. First, we compare the machine counts on both 
‘less-cluttered’ and ‘high-cluttered’ testing sets with human counts of SCN eggs. Note, each set count (human or 
machine) has 50 image frames. Error bars (+/−5%) are also included around the human counts for evaluating 
the machine counts. Egg counting performance is observed to be comparable with human experts for both the 
‘less-cluttered’ and the ‘high-cluttered’ cases. While the ‘less-cluttered’ group in Fig. 4(a) have ≈92% (22 out 
of 24) of sets where detection accuracy is ≥95%, the ‘high-cluttered’ group in Fig. 4(b) have ≈96% (23 out of 
24) of sets greater than or equal to 95% (More result frames are included in the Supplementary material). �e 
‘high-cluttered’ group contains more eggs alongside the debris and fewer misses hurt the detection less compared 
to the ‘less-cluttered’ group. We note however, that the ‘high-cluttered’ frames need a higher degree of overlap 
of patches (i.e., more computational time) to achieve the reported detection performance and the ‘less-cluttered’ 
frames have slightly less sensitivity to changes in the model learning hyper-parameters. However, more compu-
tational time issue is a mute argument with the availability of more powerful computers. A comparison of the 

Figure 2. Deep Convolutional Selective Autoencoder architecture for rare object detection from images with 
application to SCN egg detection in cluttered microscopic images.
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distributions of the counts by human expert as well as machine is provided in Fig. 4(c). �e distributions of both 
counts are seen to be close, judging by the mean values and the deviations around them. While the bar plots 
show overall egg count comparison for di�erent test sets, we present detailed performance metrics in Table 1. 
�e reported metrics are slight variants of the classical metrics such as false alarm and missed detection because 
it is infeasible to count the number of all objects in any frame as is required for the classical metric computation. 
Moreover, the few SCN eggs in each frame are already very laborious and time-consuming to count, therefore 
the debris, which are many more in number in the frames, will be rather unrealistic to count. �e aggregated 
performance metrics show that our framework has signi�cantly high degree of accuracy and robustness to noise 
and variability of the microscopic images. Furthermore, the imaging defects also include non-standard imaging 
processes (di�erent image background lighting and orientations during the microscopic imaging), inconsisten-
cies in intensity of colorization of eggs with the acid fuchsin stain, occlusion problems such as a non-egg blob on 
an egg, overlapping of SCN eggs and a worm (hatching juvenile) coming out of an egg.

Rapidly evolving algorithms in machine learning can lead to signi�cant breakthroughs in complex plant phe-
notyping problems that have stubbornly resisted automation for decades25. Such approaches result in extremely 
consistent results that reliably relieve the expert of the monotony of dull repetitive tasks, while lowering quanti�-
cation time and overall detection cost per sample.

In conclusion, a robust technique for identifying and counting rare objects in images have been proposed. 
�e end-to-end convolutional selective autoencoder approach is trained for the current problem of searching 
for SCN eggs on microscopic images. A highly focused selectivity criterion is embedded in the training samples 
to aid CSAE discriminate the eggs from the highly similar debris. �e current results show the robustness of 
the model, trained by the architecture, to identify the eggs despite the non-standardized lighting conditions, 
fuchsin coloring and clutter-level of the testing and training images. In general, CSAE reduces the cost of human 
counting as well as fatigue associated with it and therefore, can replace the manual practice of SCN egg counting. 
From a machine-driven SCN egg counting perspective, the current state-of-the-art, traditional computer vision 

Figure 3. Sample detection results with images from diverse environment and di�erent background staining 
for a: (I) set B1 example, (II) set B2 example, (III) set B13 example, and (IV) set B9 example; the dark purple 
boxes indicate highly con�dent detection, the light purple box indicates the low con�dence detections, the red 
box indicates occluded eggs and the green box is a false alarm, while the low intensity in reconstruction suggests 
low detection con�dence of the model.
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technique using hand-cra�ed features11, claims to achieve a count within 10% of the expert counts over only few 
frames. In contrast, our CSAE model achieves an accuracy of around 96% and an overall F1-score of 0.944 on 2400 
frames. CSAE is able to count 1440 frames/day/core (1 frame/minute) in very ‘high-cluttered’ frames, potentially 
reducing the number of days required for 108,000 frames (the number of frames considered in11) to only 70 days 
as opposed to 462 days as reported in11 using only a single core standard computer. However, in ‘less-cluttered’ 
frames the counting speed can increase dramatically to 242 frames/minute as we do not require signi�cantly 
overlapping test patches from frames. With this speed, all 108,000 frames can be counted in <1 day. CSAE is also 
able to reduce cost of human counting as well as reduce fatigue associated with it. Importantly also, the method 
section will show how we reduce the cost of the extraction step by discarding the fuschin staining condition as we 
train the algorithm purely on grayscale images. Finally, we anticipate a proliferation of such ‘learning enhanced 
automation’ approaches that will have a transformative impact on agriculture, life and food sciences.

Figure 4. Statistics of transfer learning for spring 2016 image frames (total of 2400) testing results with model 
trained on fall 2015 (total of 644) frames for, (a) ‘less-cluttered’ group containing 24 sets labeled {A1, …, A24} 
of 50 frames, (b) ‘high-cluttered’ group containing 24 sets labeled {B1, …, B24} of 50 frames. �e error bars 
are derived (as +/−5%) around the human counts for each of the image sets and (c) the distributions of the 
machine and human counts for the ‘high-cluttered’ and ‘less-cluttered’ results.
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Some of the research directions that are currently being pursued are: (1) improving the object detection algo-
rithm to handle occlusion of SCN eggs by debris as well as overlapping of multiple SCN eggs, (2) developing an 
easy interface such as a smart phone “app” for pathologists to easily estimate the SCN eggs on microscopic plates.

Methods
Soil sample and imaging. Dataset generation begins with collection of soil samples from SCN-infested 
�elds by arbitrary placement of 25.4 mm diameter probes in a zigzag11 intervals on several farms in the state of 
Iowa of the United States. Soil samples were suspended in water, then sieved to separate root fragments and larger 
sized debris from the dead SCN females (called cysts) that are full of eggs16. �e cysts recovered from the soil are 
physically crushed to break the cysts in order to release the SCN eggs held within17. Extracted SCN eggs and asso-
ciated debris are placed in beakers with water and a few drops of acid fuchsin stain, heated to boiling, and then 
cooled18 when a 1 cm3 sample is placed in a nematode-counting slide. Images of the samples were taken under the 
microscope. To ensure that a wide variety of samples were used, two sets of soil samples collected from two �elds 
each time were processed: the �rst was during fall 2015 and then the second, in the spring of 2016.

SCN marking and curation. An easy-to-use marking tool was created to enable trained nematologists to 
label the eggs in the images. �e tool was deployed on a touch-screen-enabled device as an app so that the loca-
tion of the eggs can be marked. �e location of every SCN egg is marked in each image and the pixel locations of 
each SCN egg stored into a database. �e work�ow of the mobile app, in its MATLAB based graphical user inter-
face (GUI) development environment, is shown in Fig. 5. In the GUI, SCN eggs are the foreground objects, with 
the bene�t of nematologists provided labels illustrated in Fig. 5(a), while all other non-egg objects are masked. 
�e app shows in a sequential way, the set of microscopic frames opened while the highlighted one represents the 
annotated one.

Each image in the dataset was labeled, i.e., the location of every SCN egg in each image was precisely marked 
by two nematologists working independently. �e use of two independent nematologists enable the quanti�cation 

Adapted metric Formulae
‘Less-cluttered’ 
group

‘High-cluttered’ 
group Aggregate

Average detection accuracy algorithm count

human count error margin

∑

∑ +
= .94 70%

2036

2150
= .97 00%

459

475
= .95 05%

2495

2625

Average alarm-to-egg ratio ∑

∑ +

excess count affected sets

human count error margin

( )
= .0 75%

16

2150
4 00%

21

475
= . = .1 40%

37

2625

Average miss-to-egg ratio undercounts affected sets

human count error margin

( )∑

∑ +
= .0 60%

13

2150
= .0 63%

3

475
= .0 61%

16

2625

Average precision algorithm count

human count error margin excess count

∑

∑ + +∑
= .94 00

2036

2166
= .93 00%

459

496
93 73%

2495

2662
= .

F1- Score × ×

+

Average precision Average detection accuracy

Average precision Average detection Accuracy

2 0.943 0.949 0.944

Table 1. Performance metrics of algorithm on spring 2016 test sets, which are the ‘less-cluttered’ 24 sets labeled 
{A1, …, A24} having 50 frames, ‘high-cluttered’ group containing 24 sets labeled {B1, …, B24} of 50 frames 
and the aggregate performance of all the total 2400 testing images. Error margin is found by taking 5% (i.e., the 
upper bound of the error bar) of the total human count for all image sets in each category.

Figure 5. MATLAB GUI development of the mobile app that annotating the highlighted image of (a) based on 
expert information and producing the result in (b).
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of intra- and inter-rater variability resulting from the deep learning approach. �is process took more than two 
weeks of e�ort by each trained nematologist.

Although the app does a decent job of separating the foreground from the background as desired, it does not 
learn any model to automate further detection. �e operating principle of the app however provided some ideas 
for learning to automate the detection and counting process. We have 644 annotated images and corresponding 
raw images constituted the training images. �e images exhibited a wide diversity of soil samples, coloration 
intensities and SCN number densities. Additionally, spring 2016 images served as testing dataset. A�er testing 
was done, the images and results were returned to experts for validating the algorithm’s performance.

Data preprocessing. �e stained training images are converted back to gray-scale images (eliminating the 
requirement for fuchsin staining in the extraction stage) from all the training images. �e pixels intensities of 
images, X and labels, Y pair, denoted by {(X1, Y1), …, (XI, YI)} are normalized from [0, …, 255] → [0.0, …, 1.0]. 
�is important pre-processing step is included to reduce the e�ects of random disturbances other than debris that 
may not be averagely uniform in either the test or training examples.

Network training. �e most intensive part of the analysis architecture was the training stage. �e main idea 
in network training is to learn salient hierarchical features that are suitable for characterizing the SCNs26–28. Given 
I examples of M × N-dimension training images and labels that yield patches of sizes, m × n each, were randomly 
extracted from each of normalized training images XiMN and at corresponding positions in the labels, YiMN. �e 
objects in the training patches are pose-centered in the selectivity function that is described later. At each convo-
lution and deconvolution, a chosen (c × c) -size �lter is convolved with a z0 –dimensional chosen mini-batches of 
stacked patches belonging to the training images. z1 –dimensional feature maps are derived with a recti�ed linear 
unit, ReLU2 activation, C, on the convolution that enforces local correlation. In the process, joint weights, Wcc and 
biases, bc are expressed as,

Y C X W b[ ] (1)z m c n c

j

z mn
j

cc
j

c
j

( 1)( 1)0 0∑= +− + − +
ˆ ⁎

where, Ŷ  is the algorithm’s estimate, * is a convolution operator, and j is the number of mini-batches present in the 
training examples. A�er some convolution layers, the feature maps are maxpooled29 to enhance invariance prop-
erty of the convolved maps. �ese layers are alternated to produce the depth of the convolutional network, some-
times interlacing random unit dropout30 to control over �tting. �is is especially useful to dropout units in the 
fully connected layer to reduce the number of over-�tted parameters.

�e fully connected or bottleneck layers is the feature embedding layer. Here, the most important units 
explaining the output are encoded and decoded for each chosen mini-batch as,

∑= +ˆ ˆY E W Y b[ ] (2)e

j

e R

j

e
j

∑= +ˆ ˆY D W Y b[ ] (3)d

j

d e

j

d
j

where ŶR

j
 represents the vectorized inputs, Ye

j
ˆ  and Ŷd

j
 are the encoded and decoded outputs respectively, E and D 

are encoder and decoder functions which are also ReLUs. �e set: {W, b} are weights and biases for the sub-
scripted functions.

An unpooling31 layer is added so that local neighbor’s features maps are again zoomed out by widening and 
stretching in a symmetric manner around the edge pixel based on the unpool. �e output of the unpool layer is 
passed to a �nal deconvolution layer. �e layer is similar to the convolution layer, and it helps to �nally enforce 
local neighbors of the most e�ective feature mapping to the mini-batch label estimates. �e estimates are then 
compared with the actual available training labels. Training for such comparison of the estimates and the labels 
is done in this case by optimizing an objective function formed by getting the error between the output estimate 
and the ground truth label of each local neighborhood. �e optimization technique that is found most e�ective 
is based on the Nesterov momentum-based stochastic gradient descent method. �e error in each case is back 
propagated to adjust the model parameters {W, b} in all the parameterize-able layers for a number of iteration 
called epochs. Such error plots are usually monitored and are a qualitative measure of the trainability of the 
algorithms. �e model training was performed by reducing each labeled image into a set of non-overlapping 
patches with each patch either containing a single egg or no eggs. A total of labeled 1240360 image patches of 
(16 × 16) dimensions derived from images (M × N) = (480 × 640) that were collected in fall 2015 were used to 
train algorithm. A detailed breakdown of the total labeled image patches and their constituents is available (see 
Supplementary Table 1 for breakdown). �e training architecture in Fig. 6 consists of convolution, maxpooling, 
reshape, fully connected, unpooling and deconvolution layers that are arranged in a hierarchical end-to-end 
manner. Unpooling and deconvolution layers facilitates architecture’s object recognition ability and confers the 
advantage of several more abstraction - layers32.

�e architecture is an autoencoder31, because it has both the encoder and the decoder section. A review of the 
building blocks of such architectures can be found in literature2,33.

According to best practices in machine learning, training patches and corresponding labels are divided into 
80% for training and 20% validating the algorithm, learning rate of 0.002 was improved by momentum of 0.975. 
Training is done on our graphics processing unit Titan Black machine having 2880 compute nodes and 6GB 
memory in �eano library (version 0.7)34, Lasagne (version 0.2) and Nolearn (version 0.1) wrappers of python. 
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Filter sizes, (c × c) = (3 × 3) is found to be least costly in the mini-batches training where, z0 and z1 are each 128 
patches. Training the model in Fig. 6 generates an overall of 743209 parameters (weights and biases).

Selectivity function. In order to tackle the speci�c class of problems, namely rare object detection, which is 
complicated by the large level of similarity between the soil debris and other spurious background noise elements 
to the object of interest (i.e., SCN egg), we improve the architecture’s discriminative ability by the introduction of 
a selectivity function. Selectivity is an intermediate process between the pixel-wise and super pixel segmentation 
which learns to label as positive only the bounding box containing the object of interest. �e algorithm enables 
the model to learn how to discard units that are undesirable based on the bounding boxes.

�e function only propagates the network activations/units that appear in patches that contain the fully visible 
SCN eggs, but rejects or masks activations/units that occur in patches where either the SCN eggs are not fully 
present or where there are no SCN eggs. �us, apart from regular debris objects (that are visually quite di�erent 
from eggs), the sets of units that are masked also include the debris that are visually similar to parts of eggs. 
Qualitatively, selectivity is a dynamic labeling function where the same bounding box can take on both an SCN 
egg at some point, while the image is masked as a debris at another point. A qualitative description of the function 
is captured in Fig. 7 and video-based illustration is provided in the attached Supplementary Video.

Figure 6. Convolutional selective autoencoder training architecture with a key describing the abbreviations 
in the architecture and image transformations implemented by the named core layers of the convolutional 
autoencoder.

Figure 7. Patch-wise frames selected from video of the progression of an SCN egg example. Selectivity is seen 
to have superior properties than the pixel-wise semantic segmentation for solving similarity problem between 
the SCN eggs and debris.
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Although, selectivity is a dynamic labeling technique, it is the major ingredient that enabled the autoencoder 
network training to achieve the tasks. In Fig. 7, the SCN egg data input of either (I) or (II) are similar to debris in 
such a manner that a vanilla autoencoder network trained for semantic segmentation on pixel-wise basis would 
confuse the SCN eggs with debris and increase the likelihood of false alarms, but the selectivity ensures that the 
occurrence of such false positives is curtailed. We observe that the pose centering ability of the network is due to 
the selectivity criteria included. Selectivity also improves the SCN egg features learning ability of the autoencoder 
leading to a better accuracy.

Network testing. At inference time, testing images were also patched to (m × n), similar to training images, 
but usually with local neighborhood overlap for e�ective fusion of local neighbor’s results. �e number of patches 
for each test image is U × V.

U
M m s

s
V

N n s

s
,

(4)

h

h

w

w

=
− +

=
− +

sh and sw are step sizes in the vertical and horizontal image dimensions. We stress here that the step sizes in 
Equation 4 mostly a�ect the computation complexity, which increases as the step size reduces (being inversely 
proportional for sh, sw   N, where N is the set of natural numbers). �is implies that reducing either sh and sw leads 
to a nonlinear increase in the number of patches to be independently analyzed35.

Automated egg Counting. �e detected eggs are then counted by using a matrix labeling function called 
bwlabel36. �is simple image topology function is designed to count the number of connected components (blobs) 
that are activated in a binary conversion of an image. Its performance relies on the fundamental graph-theoretic 
de�nitions such as paths, components, neighbors, adjacency, among other terminologies. While there are deep 
learning networks which automates the counting of objects on frames37, the problem here uses a simple bwlabel 
function in order to ensure lower deployment overhead. �e labeling algorithm begins with scanning along the 
vertices from the top-le� node to the bottom-right node while assigning labels to the foreground pixels based on 
the labels of node of its adjacent neighbor. �en, equivalent labels are sorted into equivalent classes, a�er which 
di�erent labels are assigned to the classes. Some more labels are then replaced with the labels assigned to the 
equivalent class in another scan through the image. �e steps involved in the autoencoder implementation for 
the training and testing images are shown in Fig. 8. In all the 2400 frames, except 1 (test frame in Fig. 3 where 
multiple SCN eggs overlap), the counting tool was e�cient, but an enhanced method is required for some rare 
occurrence of overlapping and/or occluded SCN eggs.

Code and data availability. This protocol and source code, sample model, training and testing 
datasets are freely available for academic use in GitHub repository, https://github.com/pythonuser200/
Convolutional_Selective_Autoencoder.
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