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Abstract—Facing the difficulty of expensive and trivial data collection and annotation, how to 

make a deep learning-based short-term voltage stability assessment (STVSA) model work well on a 

small training dataset is a challenging and urgent problem. Although a big enough dataset can be 

directly generated by contingency simulation, this data generation process is usually cumbersome and 

inefficient; while data augmentation provides a low-cost and efficient way to artificially inflate the 

representative and diversified training datasets with label preserving transformations. In this respect, 

this paper proposes a novel deep-learning intelligent system incorporating data augmentation for 

STVSA of power systems. First, due to the unavailability of reliable quantitative criteria to judge the 

stability status for a specific power system, semi-supervised cluster learning is leveraged to obtain 

labeled samples in an original small dataset. Second, to make deep learning applicable to the small 

dataset, conditional least squares generative adversarial networks (LSGAN)-based data augmentation is 

introduced to expand the original dataset via artificially creating additional valid samples. Third, to 

extract temporal dependencies from the post-disturbance dynamic trajectories of a system, a 

bi-directional gated recurrent unit with attention mechanism based assessment model is established, 

which bi-directionally learns the significant time dependencies and automatically allocates attention 

weights. The test results demonstrate the presented approach manages to achieve better accuracy and a 

faster response time with original small datasets. Besides classification accuracy, this work employs 

statistical measures to comprehensively examine the performance of the proposal. 

Index Terms—Short-term voltage stability, deep learning, generative adversarial networks, data 

augmentation, bi-directional gated recurrent unit, attention mechanism. 

 
NOMENCLATURE 

Acronyms 

STVS Short-term voltage stability 

STVSA Short-term voltage stability assessment 

PMU Phase measurement unit 

TS Time series 

ANN Artificial neural network 

DT Decision tree 

ELM Extreme learning machine 

RVFL Random vector functional link network 

SVM Support vector machine 

RF Random forest 

RNN Recurrent neural network 

CNN Convolutional neural network 

GCN Graph convolutional network 

GRU Gated recurrent unit 

LSTM Long short term memory 

BiGRU-Attention Bi-directional gated recurrent unit with attention mechanism 

GAN Generative adversarial network 

LSGAN Least squares generative adversarial network 

CGAN  Conditional generative adversarial network 

DLBAN Deep LSGAN-BiGRU-Attention network 

SFCM Semi-supervised fuzzy c-means 

COP-k-means Constraint-partitioning k-means 
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WD Wasserstein distance 

MMD Maximum mean discrepancy 

FID Fréchet inception distance 

ROC Receiver operating characteristic 

AUC Area under the receiver operating characteristic curve 

MCC Matthews correlation coefficient 

SC Silhouette coefficient 

FC Fully connected 

TDS Time-domain simulation 

OTW Observation time window 

PDC Phasor data concentrator 

SNR Signal-to-noise ratio 

Symbols 

U Membership matrix 

V Cluster center 

F Supervision information 

d Euclidean distance 

α Scaling factor 

G Generator 

D Discriminator 

Z Noise signal 

y Label information 

rt Reset gate 

zt Update gate 

ht Hidden state 

∆t Sampling time 

μ Empirical mean 

cov Empirical covariance 

Subscripts 

t Sampling time 

N Number of all the instances 

L Number of the total buses 

T Observation time window size 

q Length of time series 

c Number of clusters 

att Attention mechanism 

dense Fully connect layer 

Superscript 

r Real data 

g Generated data 

I. Introduction 
Short-term voltage stability assessment (STVSA) has always been regarded as a critical task to 

ensure the secure and stable operation of a power system. The short-term voltage stability (STVS) of 

the power system refers to the ability of the bus voltage to quickly restore to an acceptable level after a 

large disturbance [1, 2]. From the perspective of pattern recognition, STVSA can be viewed as a binary 

classification problem [3, 4]. With the reform of electricity markets, decommissioning of aging thermal 

power plants and rapidly growing load demands, the power transmission capacity is approaching its 

limit, which seriously threatens the voltage stability of today’s power systems [5]. Due to the inherent 

variability and uncertainty of renewable power sources [6], the increasing penetration of renewable 

generations and induction motor loads also poses new challenges for the system voltage stability [7]. 

Therefore, how to detect the STVS status of power systems accurately and timely has become a 

challenging and urgent problem.  

Some pioneering studies have been devoted to solving this STVSA problem, such as stability 

assessment based on energy function [8] and stability boundary analysis based on PV plane [9]. In 

reference [10], a model and data hybrid method was proposed for monitoring the STVS status in real 

time. Although Lyapunov exponents approach can achieve model-free STVSA, the turbulent Lyapunov 

exponents lingering around 0 will take a long time to obtain a reliable assessment result [11]. Different 

from the above methods that are heavily reliant on accurate power system physical models, data-driven 

STVSA approaches based on machine learning have recently attracted growing concerns from 
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academia and industry, as the successful commercial application of wide-area measurement systems 

makes high-precision synchronized measurements available. Shallow machine learning techniques, 

such as artificial neural networks (ANNs) [12], decision trees (DTs) [4, 5, 13], extreme learning 

machines (ELMs) [14], and random vector functional link networks (RVFL) [15, 16] have been 

reported to deal with the STVSA problem. More recently, state-of-the-art works are able to cope with 

missing data, knowledge transfer, self-adaptive classification. To be specific, reference [14] realizes a 

hierarchical self-adaptive STVSA by using an ensemble-based randomized learning model, while 

reference [16] proposes a missing-data tolerant method for post-fault STVSA. Compared with these 

shallow networks, emerging deep learning techniques can effectively extract deep features in an 

end-to-end manner without depending on expert domain knowledge. In the area of security assessment 

of power systems, some deep learning algorithms have been introduced. In [17], generative adversarial 

network (GAN) is used to solve the missing-data problem in dynamic security assessment of power 

system. Deep transfer learning and deep neural network (DNN) are adopted for static security 

assessment in [18]. Recurrent neural network (RNN) [19] and convolutional neural network (CNN) [20] 

have been employed for transient stability assessment of power systems. And for the STVSA problem, 

graph convolutional network (GCN) [3], long short-term memory (LSTM) [21, 22] are also adopted. 

However, although the deep learning is introduced into the field of STVSA, how to make the deep 

learning model work well on the small training dataset is still a quite challenging task.  

The commonly-used deep learning model RNN is quite efficient in dealing with sequential data 

mining problems. LSTM and GRU, as 2 variants of RNN, can solve the gradient disappearance and 

gradient explosion problem suffered by standard RNNs [23]. Moreover, compared with LSTM, GRU 

has a simpler structure together with fewer parameters, which enables GRU to have higher training 

efficiency without sacrificing accuracy. Meanwhile, attention mechanisms have proven to be 

remarkably effective in learning important information about time series (TSs) data. Thus, in this work, 

bi-directional gated recurrent unit with attention mechanism (BiGRU-Attention) is utilized to capture 

the time dependencies in post-disturbance system dynamics for STVSA. As is well known, compared 

with traditional shallow machine learning methodologies, access to a large corpus of training data is a 

crucial prerequisite to ensure that a deep learning algorithm, as the core of the big data intelligence, can 

effectively learn complex data distribution characteristics [24, 25]. Due to the lack of a unified and 

reliable criterion, it is tough and expensive to obtain large-scale, balanced data with accurate labels. 

Besides data labeling, training data collection itself is expensive and laborious in practical applications, 

which constitutes an important barrier for developing a deep learning based STVSA model with a high 

performance in real-world applications. In view of this, it’s of great significances to train a deep 

learning model to enable it to work well on small data in the STVSA field. Unfortunately, to the best 

knowledge of the authors, there is no research devoted to addressing this problem until now. 

Facing the difficulty of the expensive and trivial data collection and annotation, the motivation of 

this work is to cope with training a deep learning model with small dataset. It’s known that data 

augmentation plays a critical role in training a successful deep learning model since it can increase the 

diversity of training data. As far as STVSA is concerned, there exist 2 different means to collect large 

amounts of training data: contingency simulation and data augmentation. Although a big enough data 

set can be directly generated by contingency simulation, data augmentation is a superior and 

irreplaceable proposition. In contrast to the cumbersome, complicated and inefficient contingency 

simulation, data augmentation provides a low-cost and efficient way to artificially inflate the 

representative and diversified training datasets with label preserving transformations. As an effective 

extension of original GAN proposed by Goodfellow in 2014 [26], least squares generative adversarial 

network (LSGAN) was put forward in 2017 [27] and has been successfully for renewable scenario 

generation due to its powerful generative modelling ability [28]. In view of this situation, this paper 

puts forward a deep adversarial data augmentation technique based on LSGAN such that the 

BiGRU-Attention-based STVSA model is able to be applicable to small training datasets.  

To highlight the research gaps and contributions of the proposed work in this paper, a 

comprehensive comparison with the state of the art methods and recent studies has been performed in 

Table Ⅰ, where the symbol  and  respectively indicates the relevant references adopt or don’t adopt 

the corresponding method contained in the items.  
TABLE Ⅰ 

Comparison of the proposed approach with related works 

References 
Items 

Deep learning Data augmentation Labeling data Statistical measures 

[3]     

[4]     
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[5]     

[14]     

[15]     

[21]     

[22]     

Proposed approach     

In Table Ⅰ, the listed items are introduced in detail as follows: 

Deep learning: it means that the STVSA model is established based on deep learning techniques. 

Data augmentation: it means that the finite small dataset is expanded by using data augmentation. 

Labeling data: Before training the STVSA model, the collected data are annotated with the exact 

class labels information. 

Statistical measures: statistical measures, such as operating characteristic curve (AUC), Matthews 

correlation coefficient (MCC), and F1-score, are used to comprehensively measure the overall 

characteristics of the constructed assessment model [22, 29, 30]. 

According to this table and the above literature review, the most important contributions can be 

highlighted as follows: 

(1) The paper presented a novel deep-learning intelligent system incorporating LSGAN-based data 

augmentation and BiGRU-Attention-based assessment model, called Deep LSGAN-BiGRU-Attention 

network (DLBAN). 

(2) By leveraging data augmentation, the proposed deep learning-based assessment model is able 

to work well with small training datasets, which is a new methodology in the field of power system 

stability analysis. 

(3) To fully capture the temporal dependence from the input post-disturbance dynamic trajectories 

of power systems, BiGRU-Attention is utilized to extract the latent information from the forward and 

backward directions, where attention mechanism improves the feature learning ability through 

automatic allocation of attention based on the importance of input information. 

(4) Due to the unavailability of a reliable quantitative criteria in the STVSA field, semi-supervised 

fuzzy c-means (SFCM) is adopted to determine the labels of samples whose stability statuses cannot be 

intuitively distinguished according to domain knowledge. 

(5) This work has performed extensive statistical tests using statistical indicators such as AUC, 

MCC, and F1-score to comprehensively examine the performance of the proposed approach. 

Ⅱ. Semi-Supervised Cluster Learning  
In this study, the purpose of the semi-supervised cluster learning is to label different samples. 

Although the STVS of power systems can be quantified by many existing indices reflecting the STVS 

related risk level [2, 12, 14], this work aims to judging whether a power system can hold short-term 

voltage stability after a large disturbance by using a supervised binary classification model, rather than 

monitoring the system STVS related risk level. By using labeled samples, the training process of the 

built supervised deep learning model is realized, and thereby achieving the accurate assessment of the 

STVS. Unfortunately, there is still no unified reliable criterion to determine the STVS for a given 

power system up to now, how to efficiently label all training data becomes a bottleneck, which hinders 

the application of data-driven STVSA methods into real-world power systems [5]. In this context, this 

section details how to assign a binary label for the samples by using semi-supervised cluster learning. 

According to domain knowledge, the labels of some samples can be easily obtained. For example, 

if all post-contingency bus voltages are above 0.9 or below 0.75, there is no doubt that it can be labeled 

as stability or instability. Considering that the precisely labeled samples, as prior knowledge, can guide 

the clustering process to good search spaces, the semi-supervised cluster learning is adopted to obtain 

all class labels of the dataset, which avoids the blindness of the unsupervised clustering method and a 

large amount of time required for labelling different samples by using expertise [31]. 

A. Semi-Supervised Fuzzy C-Means Algorithm 
In this study, SFCM is used to obtain the exact class labels of all the samples [32]. For an 

m-dimensional dataset { },1jX x j N , it is divided into c  clusters. And for each sample 

1 2=( , , , )j j j jmx x x x , it is divided into the cluster 
iS , 1 i c  by fuzzy membership. In 

semi-supervised learning, the samples with exact labels are served as the prior knowledge during the 

iterative optimization process. The objective function of SFCM is given as follows [32]: 



 

 

5 

 

2 2 2 2

1 1 1 1

min ( , ) ( )
c N c N

ij ij ij ij j ij

i j i j

J U V u d u f b d                          (1)   

where [ ]ijU u  is the membership matrix, 
1 2( , , , )cV v v v  is the cluster center, where 

iv  is the 

ith cluster center; 
2

ijd  is the Euclidean distance between jx  and 
iv ; [ ]ij c NF f  represents the 

supervision information, ijf  is the pre-knowledge of iju ; the first term of (1) is the objective 

function of standard FCM and the second term reflects supervised clustering;  ( 0 ) is a scaling 

factor, which is used to measure the importance of the given classification information; [ ]T

jb b  

represents whether sample jx  has a known class label, and the condition that jb  needs to meet is  

1 is labled;

0 otherwise.

j j

j

b x

b

，

，
                                  (2)                         

Specifically, the representation of the membership iju  and the cluster center 
iv  are as follows: 
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The details of the SFCM algorithm used in this work can be found in [32]. 

B. Silhouette Coefficient 
In this paper, the silhouette coefficient (SC) is adopted to evaluate the performance of the 

semi-supervised cluster learning algorithm [33]. A larger value of SC implies a better clustering 

performance, which means that the points of the same cluster are more compact and the points between 

different clusters are more separated. The SC is defined as [33]: 

1

1

max( , )

N
j j

j j j

b a
SC

N a b
                                      (5) 

where ja  represents the compactness of the inner-cluster and jb  reflects the separation between 

inter-clusters. For dataset { }jX x , 1 j N , it is divided into c  clusters denoted by 

1 2{ , , , }cS S S , here j ix S  and ja  represents the average distance between jx  and other points in 

the inner-cluster; for inter-cluster (1 , )kS k c k i , ( , )D i k  represents the average distance 

between jx  and all points in 
kS , and min{ ( , ) 1 , }jb D i k k c k i  is the minimum average 

distance from jx  to all other clusters. 

III. DLBAN Framework 
This paper proposes a novel deep-learning intelligent system combining LSGAN and 

BiGRU-Attention for STVSA, named DLBAN. The basic principles of LSGAN and BiGRU-Attention 

are described in detail as follows. 

A. Least Squares Generative Adversarial Network 
Compared with the original GAN, the least squares loss function is adopted for discriminator 

instead of the sigmoid cross-entropy loss function in LSGAN [27]. By doing so, the samples that are 

far from the decision boundary are penalized and move toward the boundary, thus the vanishing 

gradients problem is effectively solved. The cost function of LSGAN can be formulated as [28]: 

2

( )

2

( )

1
min ( ) ( ( ) )

2

1
( ( ( )) )

2

data

Z

x P x
D

Z P Z

L D E D x b

E D G Z a

                               (6) 
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2

( )

1
min ( ) ( ( ( )) )

2 ZZ P Z
G

L G E D G Z c                                (7) 

where D  is the discriminator and ( )dataP x  denotes the genuine probability distribution; G  is the 

generator which samples the input noise variable Z from Gaussian distribution ( )ZP Z . 

In this paper, a conditional version of LSGAN is used where the class labels are binarized by 

using one-hot encoding [34]. Label y as the condition is attached to noise signal Z, which constitutes 

the generator’s input ( , )Z y . Similarly, label y is appended to real data x as the discriminator’s input 

( , )x y . Thereby, the cost functions are rewritten as  

2

, ( , )

2

( ), ( , )

1
min ( ) ( ( , ) )

2

1
( ( ( , ), )- )

2

data

Z data

x y P x y
D

Z P Z y P x y

L D E D x y b

E D G Z y y a

                          (8) 

2

( ), ( , )

1
min ( ) ( ( ( , ), ) )

2 Z dataZ P Z y P x y
G

L G E D G Z y y c                           (9) 

Here, a, b, and c satisfy the following conditions: b−c=1, and b−a =2. Specifically, a, b and c are taken 

as 0, 1, and 1. 

B. BiGRU-Attention 
BiGRU can fully capture time dependence in forward and backward directions from input 

information. To improve the performance of the BiGRU, an attention mechanism is adopted to focus 

on the key hidden information.  

1) BiGRU 

As a variant of RNNs, GRU overcomes the gradient disappearance and gradient explosion 

problems during training process. Compared with LSTM, GRU is a simpler algorithm with few 

parameters. The structure of GRU is shown in Fig. 1. 

 
Fig. 1.  The structure of GRU 

In Fig. 1, t denotes the sampling time at moment t; the reset gate tr  determines how much 

information in the previous state is to be ignored. The update gate 
tz  decides how much information 

in the previous state is added to the current state; tr  and 
tz  are updated as follows [35]: 

1( )t r t r t rr W x U h b                                    (10) 

1( )t z t z t rz W x U h b                                    (11) 

where  is the sigmoid function; 
1th  represents the previous hidden state; at time t , the new 

hidden state is calculated as 

1(1 )t t t t th z h z h                                   (12) 

where th represents the current candidate state;  denotes the element-wise product. The 

representation th  is as follows: 

1tanh( ( ) )t h t t h t hh W x r U h b                               (13) 

In equations (10-13), W, U and b are the parameters that need to be tuned during the training process of 

the GRU. 

1-



 

 

7 

 

As for the STVSA, both the previous and subsequent states contribute to the output at the current 

state. Hence, BiGRU is utilized in this study by concatenating forward and backward GRU together to 

make full use of information in the previous and subsequent states. 

2) Attention Mechanism 

The attention mechanism allocates enough attention to key information and highlights the impact 

of important information, thereby the accuracy can be improved [35]. Considering that the system 

dynamics information at different sampling times contributes to varying degrees for the STVSA, the 

attention mechanism is adopted to better measure the importance of the extracted hidden layer features 

and automatically assign corresponding weights to them.  

The formulas for calculating the normalized weight of the attention mechanism s  can be 

formulated as follow: 

tanh( )t att t attu W h b                                      (14) 

exp( )

exp( )

t att

t

t attt

u u

u u
                                     (15) 

t t

t

s h                                          (16) 

where 
tu  is a fully connected (FC) layer for learning hidden layer features, followed by a softmax 

layer which outputs a probability distribution t ; 
attW  and 

attb  denote trainable weights and bias; 

attu  is a randomly initialized context vector; the output of the attention mechanism is represented by 

s . The mechanism selects and extracts the most significant temporal information from hidden layers 

by multiplying t  concerning the contribution to the decoding tasks [35]. 

C. Structure of DLBAN Framework 
The DLBAN framework proposed in this paper consists of 2 deep learning algorithms LSGAN 

and BiGRU-Attention. The structure of DLBAN framework is shown as Fig. 2. 

Original Small 

Dataset with 

Lables 

LSGAN
Output Generated TS 

Samples

Big Training Dataset

BiGRU-Attention

Input

Data augmentation

Deep learning 

based STVSA model  
Fig. 2.  The structure of DLBAN Framework 

In the DLBAN framework, large-scale, reliable, balanced data with accurate labels are generated 

firstly by LSGAN based on the original small dataset, which is not only increases the amount of 

training data but also improves the quality of training data. Then, a big training dataset consisting of the 

generated samples and original small dataset is obtained, achieving a low-cost and efficient data 

augmentation. Finally, based on the obtained big training dataset, the BiGRU-Attention-based deep 

learning model that requires massive training data to effectively learn is trained. In this way, the 

proposed DLBAN framework enables the proposed deep learning-based STVSA model to give full 

play to its powerful advantages in deep feature mining, even if in case of a small dataset. 

Ⅳ. Proposed STVSA Intelligent System 
The proposed DLBAN-based STVSA intelligent system is illustrated in Fig. 3.  
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 Time-domain 
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small dateset

aggregateLSGAN-based
Data Augmentation BiGRU-Attention model

DLBAN Framework

Noise
 Z~PZ(Z)

y
 (One-hot)

TS1 TS2 TSq

optimal parameters

Fig. 3.  Flowchart of the proposed STVSA method 

From Fig. 3, it can be seen that the implementation of the proposed STVSA method can be divide 

into 4 stages. 

1) Stage 1: the original small dataset is generated by using time-domain simulations (TDSs) and 

the SFCM;  

2) Stage 2: the data augmentation is performed by aggregating the original small dataset and the 

artificially inflated training set from the LSGAN;  

3) Stage 3: the BiGRU-Attention assessment model is built for offline training;  

4) Stage 4: the BiGRU-Attention assessment model is utilized for online STVSA. 

A. Generation of Original Small Dataset 
In this paper, N instances are generated by TDSs, which can be formulated as  

1 2{ , , , , }, [1, ]j NTSD TS TS TS TS j N                              (17) 

In this formula, N  is the number of all the instances. 

According to the domain knowledge, the voltage trajectories shown in Fig. 4 can be 

straightforwardly classified as stable or unstable. Here, during the process of semi-supervised 

clustering learning based on the SFCM, a part of samples with known labels obtained according to 

domain knowledge are served as prior information for data annotation. 
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a) Stable samples                        b) Unstable samples 

Fig. 4.  Examples of different STVS samples 

And then, an original small dataset is obtained, in which all samples have class labels. In the 

original small dataset, the input TSs of N instances are composed of the 3 electrical quantities which 

are strongly related to the STVS status. In this paper, the 3 quantities are respectively the bus voltage 

amplitude, the active power, and the reactive power (abbreviated as U/P/Q), denoted by: 
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,1 ,

, 1 ,2

,2 1 ,3

{ , , },

{ , , },

{ , , },

j s L

j j L j L

j L j L

TS TS forU

TS TS TS for P

TS TS for Q

                               (18) 

,1 ,2 , , ,1 ,2 , , ,1 ,2 , ,{ , , , , , , , , , , , , , , , , , },1j j j j t j q j j j t j q j j j t j qTS U U U U P P P P Q Q Q Q t q   (19) 

where jTS  is the TSs collection of the thj sample of DTS; L  is the number of the total buses; the 

dimension of jTS  is 3L ; here, the length of each TS is the same. In (19), q T t  is the TS 

length, T is the size of an observation time window (OTW) and t  denotes sampling time. In this 

study, the length of OTW is selected as 0.03s through the sensitivity analysis, which will be presented 

in detail in the follow-up case studies. 

B. Data Augmentation 
In this work, the LSGAN is utilized for data augmentation, which plays an important role as a link 

between small dataset and deep learning techniques in the proposed intelligent system. To be specific, 

data augmentation uses the original small data set obtained by TDSs and the SFCM as its input, and 

outputs massive labeled data with high quality, which provides a necessary prerequisite in term of 

data resources for training deep learning classification models. The big training dataset obtained by 

data augmentation serves as the input of the BiGRU-Attention based assessment model. By this means, 

the data augmentation step supports the STVS stability assessment in this study.  

The detailed architecture of the LSGAN used in this work is shown in Fig. 5. 

 
 Fig. 5.  The architecture of LSGAN 

Based on the architecture of LSGAN, how data augmentation happens will be described clearly as 

follow. The class labels obtained by SFCM are converted into 2-dimensional vector by using one-hot 

encoding. The 2-dimensional vector combined with the 100-dim noise vector z is used as the input of 

the generator. As shown in Fig. 5, the generator of the LSGAN is made up of 2 FC layers and 1 

deconvolution layer. Firstly, the 102-dimensional input vector is reshaped into 49*2*64 dimensions 

through 2 FC layers. And then, it is fed into the deconvolution layer with the kernel size of 5*5*64 

(height 5, width 5, number of channels 64, and stride 2). Finally, the output of deconvolution layer is a 

3-dimensional feature tensor with size 97*3*1, which is the same size for the generated samples.  

For the discriminator of LSGAN, either real or generated data is used as its input. The 

discriminator consists of 2 convolutional layers and 1 FC layer. The kernel size of 2 convolutional 

layers are respectively 5*5*64 and 5*5*128. The 2 convolutional layers map the input into a 24*1*128 

tensor. Finally, the last FC layer outputs a 1-dimensional vector which represents the probability of the 

input information stemming from the real data. 

In this way, the generator and discriminator are trained through an alternating iteration procedure 

and finally reach a Nash equilibrium, which can generate fake samples as real as possible for data 

augmentation. Thus, at the offline training stage, the BiGRU-Attention-based STVSA model can fully 

capture the time dependencies on the basis of the augmented big training dataset. 

C. Offline Training 
The architecture of the BiGRU-Attention based assessment model at the offline training stage is 

shown in Fig. 6.  
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Fig. 6. BiGRU-Attention model 

The BiGRU-Attention model used in this paper mainly includes 5 layers, which are the input layer, 

BiGRU layer, attention layer, FC layer, and output layer.  

For each sample, the input of the BiGRU-Attention model is all buses’ TSs constituted by input 

features and at each sampling moment, it is an m-dimensional feature vector 

,1 , ,1 , ,1 ,{ , , , }t t t L t t L t t Lx U U P P Q Q . 

The BiGRU layer aims to extract the latent temporal dependency from the input features. 

Different from an original GRU, the hidden state th  is influenced by both the forward hidden state 

th  and the backward hidden state th  in the BiGRU. In this way, the BiGRU is capable of more fully 

capturing the dependency. 

The input of the attention layer is the activated output vector 
th  of the BiGRU layer. In the 

attention layer, the strong correlated hidden features will be automatically allocated high weights and 

vice versa, which improves the assessment performance through emphasizing the significant 

information which affects the stability status.  

The FC layer in the BiGRU-Attention is used to output the stability results, which is shown as  

softmax( )dense denseC W s b                                   (20) 

where s  denotes the input of the FC layer; 
denseW  is the weight matrix; 

denseb  represents the bias 

matrix; the softmax() refers to the activation function. The output of the FC layer is the final STVSA 

result of the built BiGRU-Attention model. 

For a given dataset 
1{ ( ), ( )}N

jX j y j  with N training samples, the offline training based on the 

BiGRU-Attention model aims to obtain network parameters W, U, and b. The Adam optimizer is 

adopted to find the optimal value of these parameters, and the Euclidean distance with L2 norm is used 

as the loss function. 

D. Online Application 
At the online application stage, real-time measurements are collected by phase measurement units 

(PMUs). Once the measurements are acquired, it will be fed into the assessment model which obtains 

its optimal parameters through offline training. And then, the STVS result of a system can be 

determined immediately. If the assessment result indicates that the system isn’t able to maintain 

stability status, remedial control measures must be taken to prevent the system from voltage collapse at 

once; otherwise, the assessment model continues to monitor the system stability status. Note that at the 

online application stage, the trained model can be updated periodically to improve the adaptability of 

the proposed intelligent system for unexpected cases under various operating conditions. 

E. Evaluation Indicators 
To properly evaluate the quality of the generated samples obtained by the LSGAN-based data 

augmentation and the performance of the BiGRU-Attention based assessment model, the following 

evaluation indicators are introduced in this work. 

1) Evaluation indicators of data augmentation 

In this paper, the Wasserstein distance (WD), Maximum mean discrepancy (MMD), and Fréchet 

inception distance (FID) are adopted as the quantitative evaluation indicators to validate the diversity 

and quality of the generated samples obtained by the LSGAN based data augmentation. 

a) WD 
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The WD is used to measure the affinity between real data distribution Pr and generated data 

distribution Pg, which is defined as [36]:  

( , )~ ( , )
WD( , ) inf [ ( , )]r g

r g

r g

r g x xP P
P P E d x x                        (21) 

Here, ( , )r gP P  is the set of joint distributions, in which the marginal are respectively Pr and Pg. A 

low WD indicates that the 2 distributions are similar, and the quality of generated samples is good. 

b) MMD 

The MMD measures the dissimilarity between the 2 probability distributions, which is widely 

applied to evaluate the quality of the generated samples. The MMD of 2 data distributions Pr and Pg is 

given by [36]: 

( , ')~ ~ ( , ')~
~

MMD( , ) [ ( , ')] 2 [ ( , )] [ ( , ')]
r r r r r g g g

g g

r g x x P r r x P r g x x P g g
x P

P P E k x x E k x x E k x x      (22) 

In (22), k is a fixed kernel function. If the 2 distributions Pr and Pg are closer, the value of MMD is 

lower, indicating a better quality of generated samples. 

c) FID 

Based on the convolution feature of the Inception network, the FID models the real data 

distribution Pr and the generated data distribution Pg as a Gaussian distribution with means μr and μg 

and empirical covariances covr and covg. The FID is computed as follows [37]: 
1/2FID( , ) Tr[cov cov 2(cov cov ) ]r g r g r g r gP P                 (23) 

Note that the lower the value of FID, the better the quality and diversity of generated data. 

Meanwhile, the FID can also effectively reflect the problem of model collapse. 

2) Evaluation indicators of STVSA model 

Besides accuracy, this paper also uses other statistical indicators such as AUC, MCC, and 

F1-score to evaluate the performance of the STVSA model. 

a) Accuracy 

Accuracy is a commonly-used index to evaluate the performance of the STVSA model [4, 5, 

12-15]. 

Accuracy
TP+TN

TP FP FN TN
                            (24) 

In (24), the accuracy is the proportion of the correctly predicted samples by the model, which 

evaluates the performance of the proposed method as a whole. 

b) AUC 

AUC is the area under the receiver operating characteristic (ROC) curve which is a 2-dimensional 

depiction of classifier performance [38]. And the larger the value of AUC, the better the performance 

of the classification model. The horizontal and vertical axes of the ROC curve are as follows [22, 29, 

38]: 

TPR
TP

TP FN
                                  (25) 

FPR
FP

FP TN
                                  (26) 

where TPR denotes the proportion of all stable samples that are correctly predicted to be stable; FPR is 

the proportion of all unstable samples that are misjudged as stable.  

c) MCC 

MCC is considered to be an important statistical indicator for evaluating the classification 

performance of stable/unstable samples of different methods, which is defined as [30]: 

MCC
( )( )( )( )

TP TN FP FN

TP FP TP FN TN FP TN FN
                  (27) 

The MCC value is between -1 and +1, the value of +1 means perfect prediction, and -1 means that 

the prediction result is completely inconsistent with the real situation. 

d) F1-score 

The F1-score is a weighted average of the precision and recall for a specified confidence threshold 

to estimate overall classification accuracy, which is given as follows [22, 30, 38]. 

TP
precision

TP FP
                              (28) 

TPR
TP

recall
TP FN

                            (29) 
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F1-score 2
precision recall

precision recall
                         (30) 

Ⅴ. Case Study 
To verify the effectiveness and superiority of the proposed method, it has been examined through 

a series of comprehensive tests on the New England 39-bus system, which is widely used in the field of 

STVSA [12, 14, 15, 22]. The main hyper-parameters of LSGAN and BiGRU-Attention are respectively 

given in Tables Ⅱ and Ⅲ. Note that the parameters are chosen by the try-and-error method in this 

study. 
TABLE Ⅱ 

Hyper-paraments setting of LSGAN 

Hyper-parameters Values 

learning rate 0.0001 

beta1 0.5 

k 4 

batch size 32 

epoch 100 

iteration 3000 

In Table Ⅱ, the learning rate and beta1 of the Adam optimizer are respectively set to 1×10
-4

 and 

0.5; Generally speaking, discriminator needs to be trained more than the generator, k is the parameter 

used to control the balance of discriminator and generator; 32 batch sizes were used to maximize the 

usage of GPU resources. The total number of training epochs is 200; the number of iterations is 3000. 
TABLE Ⅲ 

Hyper-paraments setting of BiGRU-Attention 

Hyper-parameters Values 

learning rate 0.0001 

dropout 0.25 

hidden layer unit 64 

batch size 64 

epoch 200 

attention size 8 

From Table Ⅲ, it can be found that the values of learning rate in LSGAN and BiGRU-Attention 

are the same; the number of hidden layer units of BiGRU-Attention network is 64; the value of batch 

sizes is 64; to prevent overfitting, a dropout of 25% for the BiGRU and FC layer is implemented [39]. 

The BiGRU-Attention based model is trained for 200 epochs. Attention size represents the linear size 

of the attention weights. 

All experiments have been implemented via the Google TensorFlow 1.14.0 on a windows 

platform with an Intel Xeon CPU E5-2678 v3, an NVIDIA GeForce RTX 2080 Ti GPU and 64GB 

RAM. The programming language used in this study is Python 3.7. Note that PMU data is simulated 

through detailed TDSs by using the commercial power system simulation software PSD-BPA.  

A. Generation of Original Small Dataset 

In this study, detailed TDSs are employed for generating the original small dataset. The STVS 

status of the system is strongly correlated with the dynamic characteristics of fast acting load 

components like an induction motor and an exciter after a large disturbance [1]. To this regard, a 

typical induction motor is considered in the dynamic modeling of loads. To cover different 

contingencies and operating conditions, a variety of different operating conditions, including fault 

location, fault type, fault clearing time, and proportions of dynamic load, are considered in the TDSs. 

(i). The total load demand is respectively set to 80%, 100%, and 120% of the base level; 

(ii). All loads employ a composite load model consisting of static ZIP loads and motor loads in 

parallel, where the proportions of motor loads are respectively set to 60%, 70%, 80%, and 90%; 

(iii). A 3-phase short-circuit fault is imposed on each transmission line as the fault type adopted in 

this study. 

(iv). The short-circuit faults are respectively set to located at 0%, 20%, 40%, 60%, 80% of a 

certain transmission line; 
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(v). A fault clearing time is varied in the range [0.15 s, 0.2 s] when a short-circuit fault occurs at 

0.1 s. 

Based on the above setting, the original small dataset including 1200 samples is got by the TDSs, 

and the sampling time is 0.01s. By adding the generated cases stemming from data augmentation into 

the original small dataset, the final dataset with total 10640 samples is obtained for the subsequent 

analysis. In this study, the original small dataset is divided into the training dataset and the testing 

dataset randomly according to a ratio of 3:1, which accords with [4, 12, 22]; so does those in the final 

dataset. 

B. Performance Test of SFCM 
To examine the effectiveness of the SFCM, it is compared with the commonly used 

constraint-partitioning k-means (COP-k-means) [4]. According to the silhouette coefficient, the 

computation results of these semi-supervised cluster learning algorithms are shown in Table Ⅳ. 
TABLE Ⅳ 

Comparison of different clustering algorithms 

Index SFCM COP k-means 

silhouette coefficient 0.3856 0.3482 

It can be seen from Table Ⅳ that the SC value of the SFCM is higher than that of the 

COP-k-means, which suggests that hidden rules contained in datasets can be better mined, and a set of 

more reliable class labels can be obtained by the SFCM. 

C. Performance Test of LSGAN 
In this part, WD, MMD, and FID are employed to examine the performance of the proposed deep 

adversarial data augmentation in terms of affinity and diversity. Besides, to verify the validity of 

LSGAN used in this paper, we compared it with the conditional GAN (CGAN) under the same 

condition. Furthermore, to conduct a reliable assessment, all experiments are performed 3 times with 

different random seeds, and the means are reported in Table V. 
TABLE V 

WD, MMD and FID comparison of LSGAN and GAN 

Evaluation indicators LSGAN CGAN 

WD 4.56 5.31 

MMD 0.06 0.062 

FID 2.19 2.40 

Compared to the CGAN, it can be seen that LSGAN model improves the WD value by 21.9%, 

MMD value by 3.23%, and FID value by 8.75% respectively, showing the superior performance in 

terms of affinity, quality, and diversity. In other words, LSGAN model can generate the synthetic data 

with high-quality data, demonstrating its outstanding advantages of data augmentation. And then, the 

accuracies of the presented DLBAN before and after data augmentation are shown in Table VI. 
TABLE VI 

Accuracy Comparison of before and after data augmentation 

Dataset Accuracy (Final dataset) Accuracy (Original dataset) 

Testing dataset 99.44% 95.76% 

Training dataset 99.51% 95.94% 

From Table Ⅵ, it can be found that the training and testing accuracies have been significantly 

improved via LSGAN-based data augmentation. This fact suggests that data augmentation is an 

effective tool that enables the proposed deep learning-based assessment model to work well with small 

datasets. 

D. Performance Test of BiGRU-Attention Based Model 
To reasonably evaluate the performances of the proposed model, comparative tests with other 

deep learning networks (LSTM and GRU) and shallow machine learning networks (DT and Support 

Vector Machine (SVM)) by using evaluation indicators including accuracy, AUC, MCC, and F1-score. 

Here, the parameter settings of LSTM and GRU are the same as that of BiGRU-Attention, while the 

SVM adopts the grid search together with cross-validation to determine its optimal parameters. The test 

results of different algorithms are shown in Table Ⅶ. 
TABLE Ⅶ 

Comparison about accuracy of different approaches 
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Approach Accuracy 

BiGRU-Attention 99.44% 

GRU 97.14% 

LSTM 96.39% 

DT 92.33% 

SVM 84.33% 

It can be seen from Table Ⅶ that the accuracy of the BiGRU-Attention is the highest, and that the 

accuracies of the GRU and LSTM are also higher than those of the DT and SVM. This demonstrates 

that learning from temporal dependencies of the quantified TSs contributes to obtain high accuracies. 

Furthermore, the BiGRU-Attention outperforms the GRU and LSTM via the bidirectional information 

transmission and attention mechanism in this study.  

To further comprehensively measure the superiority of the proposed method, the performance of 

the proposed method is further analyzed and discussed based on some statistical indicators, as shown in 

Table Ⅷ. 
TABLE Ⅷ 

Comparison about MCC, F1-score and AUC of different approaches 

Approach MCC F1-score AUC 

BiGRU-Attention 0.9888 0.9945 0.9993 

GRU 0.9432 0.9653 0.9894 

LSTM 0.9285 0.9539 0.9879 

DT 0.8406 0.9363 0.9510 

SVM 0.6669 0.8773 0.9356 

As far as the MCC is concerned, its value always exceeds 0.98 by using deep learning, where the 

MCC of the BiGRU-Attention is 4.83% higher than the GRU, 6.49% higher than the LSTM. In 

contrast to the DT and SVM, it is respectively increased by 17.63% and 48.27%. And so do this in the 

test results in terms of the F1-score and AUC, i.e., the indicator value of the BiGRU-Attention is not 

only much higher than those of the DT and SVM but also much better than those of the GRU and 

LSTM. These results further validate that the proposed method outperforms the widely used deep 

learning algorithms (GRU, LSTM) and traditional shallow learning ones (DT, SVM). 

Besides accuracy, the costs of misdetections and false alarms are another concerns when using 

deep learning for STVSA. The misclassification costs of different assessment models are shown in 

Table Ⅸ. 
TABLE Ⅸ 

Comparison about accuracy Misclassification costs of different approaches 

Approach Condition 

Prediction accuracy on the testing dataset 

Classified as 

stable(%) 

Classified as 

unstable(%) 

BiGRU-Attention 
Stable 98.92%(1368/1383) 1.08%(15/1383) 

Unstable 0%(0/1277) 100%(1277/1277) 

GRU 
Stable 95.88%(1326/1383) 4.12%(57/1383) 

Unstable  1.49%(19/1277) 98.51%(1258/1277) 

LSTM 
Stable 94.65%(1309/1383) 5.35%(74/1383) 

Unstable 1.72%(22/1277) 98.28%(1255/1277) 

DT 
Stable 92.35%(169/183) 7.65%(14/183) 

Unstable 7.69%(9/117) 92.31%(108/117) 

SVM 
Stable 91.80%(168/183) 8.20%(15/183) 

Unstable 27.35%(32/117) 72.65%(85/117) 

Taking the costs of misdetections and false alarms into account, the reliability of the presented 

approach is verified in Table Ⅸ. In particular, the misdetection rate of the proposed approach is 0%, 

which is superior to those of the others. For STVSA, a high false alarm rate will cause some economic 

losses but will not impair the STVS of the system; while a high misdetection rate will make the system 
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take no measure to prevent possible instability accidents, which may lead to disastrous consequences. 

Hence, a conclusion may be safely drawn that the 0 misdetection rate and acceptable false alarm rate 

obtained by the proposed model confirm its reliability. 

E. Computational Efficiency Analysis 
Taking into account that the STVS issue is a fast phenomenon of the order of several seconds [1], 

it is critical to detect stability results quickly. Since the online assessment time of the trained 

Furthermore, considering that the reliable remedial control needs to be started up within a short time, a 

proper OTW is of an essential impact on the performance of the classification. A smaller window size 

will lead to a rapid, but inaccurate assessment; while a larger size window will lead to an accurate, but 

untimely assessment. By performing a sensitivity analysis, the performance of the BiGRU-Attention 

model is tested under the OTWs with different lengths, as shown in Fig. 7. 
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Fig. 7.  Accuracies under different OTWs  

From Fig. 7, it can be observed that when the length of the OTW exceeds 30 ms, the accuracy of 

the BiGRU-Attention-based STVSA model only marginally rises. Therefore, to achieve the trade-off 

between assessment accuracy and rapidness, the OTW length is selected as 30 ms, which outperforms 

other existing state-of-the-art methods with a shorter response time and no sacrifice of accuracy [5, 

13-15]. Besides, the BiGRU-Attention model only needs 0.069 ms to obtain the assessment results 

during online monitoring, which is a desirable speed. And compare with the length of the OTW for 
data acquisition, it can be ignored. 

According to the IEEE Standard C37.118.2-2011, the typical communication delay between PMU 

and phasor data concentrator (PDC) is 0.02 to 0.05 second [40]. Consequently, taking the 

communication into account, the maximum response time is no more than 0.08 second, which reserves 

sufficient time for the measurement, electrical communication, and other delays from PDCs to a 

dispatch center of power systems. Furthermore, it can ensure the immediate decision-making and 

subsequent control actions against the short term voltage instability. 

F. Robustness Test under Noisy Environments 
Since noises are inevitable during the collection and transmission process of PMU data [20], the 

robustness of the proposed method is tested under noisy environments. Here, Gaussian white noises 

with different signal-to-noise ratios (SNRs) are added into the PMU data, where a smaller SNR 

indicates a higher noise level. Here, 3 scenarios with SNRs 50 dB, 40 dB, and 30 dB are respectively 

tested in this section. In terms of accuracy, AUC, MCC, and F1-score, the test results under noisy 

environments are listed in Table Ⅹ. 

TABLE Ⅹ 

Performance comparison under different SNRs 

SNR Accuracy MCC F1-score AUC 

50dB 99.40% 0.9880 0.9944 0.9976 

40dB 99.36% 0.9872 0.9939 0.9948 

30dB 99.32% 0.9865 0.9939 0.9905 

It can be seen from Table Ⅹ that although the assessment accuracy will decrease slightly with the 

increase of the background noise level, it is always above 99% in various noise environments. 

Similarly, the other 3 indicators MCC, F1-score, and AUC also hold a very high level, which fully 

verifies the excellent robustness of the proposal against noises. 
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Ⅵ. Conclusion 
Deep learning has been proven as a promising technique for STVSA. As current state-of-the-art 

deep learning algorithms suffer from the inapplicability of a small training dataset with insufficient 

data due to expensive and trivial data collection and annotation, how to make a deep learning-based 

STVSA model work well on a small training dataset is a challenging and urgent problem. Although a 

big enough dataset can be directly generated by contingency simulation, data augmentation is a 

superior and irreplaceable proposition by artificially inflating the representative and diversified training 

datasets in low-cost and efficient way. In view of this, this paper proposes a deep-learning intelligent 

system incorporating data augmentation for the STVSA and performs simulations on the IEEE 39-bus 

system. Based on the test results, the main conclusions of this paper are as follows: 

(1) By leveraging data augmentation, the proposed deep learning framework DLBAN enables a 

deep learning-based assessment model to work well with small training datasets. This provides a 

general tool for enabling deep learning to handle the problem of the unavailability of big data. 

(2) The BiGRU-attention-based assessment model is able to not only fully capture the temporal 

dependence in time series data, but also improve the feature extraction ability via attention mechanism. 

(3) The test results demonstrate that the proposed approach outperforms other state-of-the-art 

alternatives with better accuracy and faster response time. Through implementing statistical tests, the 

superiority of the DLBAN has been further validated by using statistical indicators AUC, MCC, and 

F1-score besides accuracy. 

(4) For a small-scale dataset, LSGAN-based data augmentation manages to significantly improve 

the training and testing accuracies in our study. Besides, the test results under noisy environments 

verify the good robustness of our proposed approach. 

In future work, the problem of missing PMU information will be considered for STVSA. Besides, 

efforts will be devoted to eliminating the impact of the class imbalance problem caused by rare 

instability events. Another interesting topic is to use automated reinforcement learning (Auto-RL) to 

maximize the predictive performance of the presented STVSA model by automatically determining the 

most suitable model architecture and hyperparameters [41]. 
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