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accurately recall known lysine acetylation
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Abstract

Background: Lysine acetylation in protein is one of the most important post-translational modifications (PTMs). It

plays an important role in essential biological processes and is related to various diseases. To obtain a comprehensive

understanding of regulatory mechanism of lysine acetylation, the key is to identify lysine acetylation sites. Previously,

several shallow machine learning algorithms had been applied to predict lysine modification sites in proteins. However,

shallow machine learning has some disadvantages. For instance, it is not as effective as deep learning for processing

big data.

Results: In this work, a novel predictor named DeepAcet was developed to predict acetylation sites. Six encoding

schemes were adopted, including a one-hot, BLOSUM62 matrix, a composition of K-space amino acid pairs, information

gain, physicochemical properties, and a position specific scoring matrix to represent the modified residues. A multilayer

perceptron (MLP) was utilized to construct a model to predict lysine acetylation sites in proteins with many different

features. We also integrated all features and implemented the feature selection method to select a feature set that

contained 2199 features. As a result, the best prediction achieved 84.95% accuracy, 83.45% specificity, 86.44%

sensitivity, 0.8540 AUC, and 0.6993 MCC in a 10-fold cross-validation. For an independent test set, the prediction

achieved 84.87% accuracy, 83.46% specificity, 86.28% sensitivity, 0.8407 AUC, and 0.6977 MCC.

Conclusion: The predictive performance of our DeepAcet is better than that of other existing methods. DeepAcet can

be freely downloaded from https://github.com/Sunmile/DeepAcet.
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Background

Post-translational modifications (PTMs) refer to the chem-

ical modification of a protein after translation. PTMs play a

crucial role in regulating many biological functions, such as

protein localization in the cell, protein stabilization, and the

regulation of enzymatic activity [1]. Studies have shown

that 50–90% of the proteins in the human body undergo

PTMs, mainly through the splicing of the peptide chain

backbone, the addition of new groups to the side chains

of specific amino acids, or the chemical modification of

existing groups. Acetylation is one of the most important

and ubiquitous PTMs in proteins. Protein acetylation is a

widespread covalent modification in eukaryotes that occurs

by transferring acetyl groups from acetyl coenzyme A

(acetyl CoA) to either the α-amino (Nα) group of amino-

terminal residues or to the ε-amino group (Nε) of internal

lysines at specific sites [2]. The lysine acetylation catalyzed

by histone acetyltransferases (HATs) or lysine acetyltrans-

ferases (KATs) reversibly regulates a large number of bio-

logical processes [3]. The function of lysine acetylation in

histones to control gene expression by modifying the chro-

matin structure has been widely studied [4]. Recent studies

in proteomics have shown that most acetylation events

occur on non-chromatin associated proteins and play

an important role in cell signaling and metabolism, protein

activities and structure, and sister chromatid polymerization

[5–7]. In addition to histone acetylation, non-histone
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acetylation is also important. Some studies have shown

that acetylated non-histones affect the stability of mRNA,

intracellular localization, protein-protein interactions, en-

zyme activity and transcriptional regulation [2, 8, 9]. In

addition, most non-histone proteins targeted by acetyl-

ation are associated with cancer cell proliferation, tumori-

genesis and immune functions [10].

Although a large number of lysine acetylated proteins

have been identified, there are still many acetylated pro-

teins that need to be identified. The mechanism of protein

acetylation is still largely unknown. The identification of

acetylation sites will be an essential step in understanding

the molecular mechanisms of protein acetylation. Also,

some cancer [11, 12], neurodegenerative disorders [13, 14]

and cardiovascular diseases [15, 16] are related to aberrant

lysine acetylation. Thus, the identification of acetylation

sites can provide a certain guidance for the treatment of

some diseases [17]. Kim et al. [18] first developed a

method for detecting lysine acetylation sites at the

proteomic level by enriching acetylated peptides with

lysine acetylated-specific antibodies. Choudhary et al. [19]

used high-resolution mass spectrometry to identify 3600

lysine acetylation sites on 1750 proteins. However, the

experimental identification of lysine acetylation is very la-

borious with long periods, for high cost and low through-

put. It is necessary to predict the lysine acetylation sites

through better approaches.

In contrast with time-consuming and expensive experi-

mental methods, computational tools represent an alter-

native method for studying acetylation. Various machine

learning algorithms have been used to predict acetylation

sites, such as support vector machine (SVM) [20–23],

Bayesian discrimination [24], and logistic regression [25].

These predictors, obtained from shallow machine learning

algorithms, have generated good predictions. However,

there is still much room for improvement. First, the

existing tools generally use machine learning methods.

Although NetAcet [26] adopted a neural network, re-

grettably, the training dataset was very limited during

development. With the increase in identified acetylation

sites, deep learning has certain advantages for dealing

with big data. Second, these methods cannot extract

the underlying features of the acetylated protein. To

tackle these problems, we proposed a new predictor,

DeepAcet, which can extract the high-level features and

obtain better predictive results. We adopted two ways

to the train models. One way utilized different encoding

schemes. The other integrated six types of encoding

schemes with an F-score to train the model (Fig. 1).

Results

Performance of DeepAcet

To obtain comprehensive information for the sequences,

we chose different encoding schemes which contained

sequence location information, amino acid composition

information, evolutionary information and physicochemical

properties. Different features will have different predictive

performance. We first applied a 4-fold cross-validation to

test the predictive abilities for the predictors of each

encoding scheme. The results showed that different

types of features have different contributions to predict-

ive performance (Table 1 , Fig. 2). The BLOSUM62

scheme was the most effective feature for prediction,

with an accuracy of 76.23%, specificity of 71.68%, sensitivity

of 80.77%, AUC of 0.7880, and MCC of 0.5267. The next

most effective schemes were the one-hot, CKSAAP, and

AAindex features.

From published articles, it is known that a combination

of different features makes a model better. Therefore, our

next step was to test the predictive performance of com-

bined features. We utilized the CKSAAP encoding scheme

and obtained a 2205-dimension featured vector, a 651-di-

mension featured vector from the one-hot or BLO-

SUM62, a 434-dimension featured vector from the 14

physicochemical properties from AAindex, a 1-dimension

featured vector from IG and a 30-dimension featured vec-

tor from the PSSM encoding scheme. The total dimension

of features was 3972. We utilized all the features without

feature selection as an input to the neural network and

K-fold (k = 4, 6, 8, 10) cross-validation to evaluate their

predictive performance (Additional file 1: Table S1).

It is known from these references [27, 28], that some

features are redundant and have no contribution to the

prediction. Therefore, we calculated the F-score for each

feature and selected 2199 features with values greater

than 0.0001 as the optimal feature set (Additional file 2:

Table S2). As expected, the predictive accuracy greatly

improved from the selected features (Table 2, Fig. 3). All

the accuracy, specificity and sensitivity values were over

80%, with the ACC over 0.8, and the MCC over 0.6.

Based on the selected features, the best predictive per-

formance was achieved with 84.95% accuracy, 83.45% spe-

cificity, 86.44% sensitivity, 0.8540 AUC, and 0.6993 MCC

in a 10-fold cross-validation. Additionally, the ROC curves

in 4-, 6-, 8- and 10-fold cross-validation were very close

to each other, which illustrated the robustness of the

predictor.

Analysis between lysine acetylation and non-acetylation

fragments

We calculated the occurrence composition for various

amino acids in the positive and negative datasets to directly

observe the differences between lysine acetylated and

non-acetylated fragments (Fig. 4a). Also, a Two Sample

Logo [29] was utilized to analyze the occurrence of amino

acids around lysine acetylation and non-acetylation

(Fig. 4b). From Fig. 4a, we can observe that there is cer-

tainly a difference in the amino acids between acetylation
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and non-acetylated fragments. The acetylated fragments

contained more alanine (A), glutamic acid (E), glycine (G),

lysine (K), arginine (R) and valine (V) than in the non-

acetylated fragments. Figure 4b further illustrates that the

compositional and positional information of acetylated

and non-acetylated fragments have statistically significant

differences.

Optimal features analysis

The distribution for each type of feature in the optimal

feature set is shown in Fig. 5. In the 2199 optimal features,

1250 belong to the CKSAAP, 392 to the BLOSUM62, 294

to the one-hot, 262 to the AAindex, 1 to the IG, and 0 to

the PSSM, suggesting that different features offer different

contributions to the classifier. The number of CKSAAP

features make up the largest proportion with 56.84%,

followed by BLOSUM62 with 17.83%, One-hot with

13.37%, and AAIndex with 11.91%. The sequence encod-

ing scheme CKSAAP utilized different k for the amino

acid pair information. BLOSUM62 calculated the similar-

ity of different sequences in the proteins, and AAIndex

used the physiochemical properties of the proteins. These

Table 1 Performance measures and dimensions for the different features

Feature Dimension Accuracy Specificity Sensitivity AUC MCC

One-hot 651 76.25% 74.00% 78.50% 0.7506 0.5256

BLOSUM62 651 76.23% 71.68% 80.77% 0.7880 0.5267

CKSAAP 2205 73.61% 70.79% 76.44% 0.7290 0.4731

IG 1 53.22% 64.02% 42.43% 0.5430 0.0660

AAindex 434 63.65% 53.92% 73.38% 0.6904 0.2783

PSSM 30 49.50% 60.46% 38.53% 0.4941 −0.0103

Word2vec 31 52.78% 56.89% 48.57% 0.4382 0.1814

Fig. 1 The computational framework of the predictor. Step 1, a peptide of the length of 31 with a center lysine (K) was used to extract

sequences from the acetylated proteins. Step 2, six different encoding schemes that are described in Section 2.2 were utilized to encode

fragments. Step 3, these six groups of encoded features were used to the train model in two ways. Step 4, the predicted results of the samples
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optimal features come from different aspects of the pro-

teins, which have different contributions for prediction.

As described above in section 2.2, we selected five dif-

ferent K (0, 1, 2, 3, 4) values, respective to each CKSAAP

encoding scheme. The total number of features for the

optimal feature set with different K values is shown

in Table 3. It can be seen from the table that these

five K values have similar contributions to the optimal

feature set.

Comparison with other existing methods

Comparison with different methods should base on same

learning dataset. The results will be unfairness if we use

different training data. The algorithms will also obtain dif-

ferent results for different feature constructions. However,

we couldn’t access the source codes of other existing tools.

Another suitable method is to test same independent

data which do not been contained in training dataset.

In this work, we adopted the later. To demonstrate the

Fig. 2 Performance measures for the different features. a The Accuracy, Specificity, Sensitivity, AUC values of different features and their error

bars. b ROC curves and their AUC values for different features

Table 2 Performance measures for the 4-, 6-, 8-, and 10-fold

cross-validations

Cross-validation Accuracy Specificity Sensitivity AUC MCC

4 80.79% 80.30% 81.29% 0.8238 0.6159

6 84.28% 82.76% 85.80% 0.8513 0.6858

8 83.12% 82.16% 84.08% 0.8445 0.6625

10 84.95% 83.45% 86.44% 0.8540 0.6993
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performance of our predictor DeepAcet, we further

compared our predictor with other existing tools such as

PAIL [24], PSKAcePred [23], LAceP [25], N-Ace [20], and

BRABSB-PHKA [21], which were trained by shallow ma-

chine learning algorithms. We utilized the independent

test set described in section 2.1 to test the best perform-

ance predictor. The results of the comparison are shown

in Table 4 and Fig. 6. However, some prediction tools’

websites were unavailable [20, 21, 25]. Our deep learning

predictor DeepAcet had an accuracy of 84.87%, specificity

of 83.46%, sensitivity of 86.28%, AUC of 0.8407, and MCC

of 0.6977, which were significantly better than the other

two predictors.

Discussion
In this work, a satisfactory predictor which could pre-

dict unknown acetylation sites, DeepAcet, was obtained

by multilayer perceptron from the combination of various

encoding schemes. For a long time, researchers have

mainly used shallow machine learning algorithms and

Fig. 3 Performance measures of the predictors trained by the optimal features. a The Accuracy, Specificity, Sensitivity, AUC values in 4-, 6-, 8-, and

10-fold cross-validation. b ROC curves and their AUC values in 4-, 6-, 8-, and 10-fold cross-validation
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their methods to predict modified lysine sites. However, in

practical application, shallow machine learning is not good

for the extraction of high-level features and has poor pre-

dictive performance when processing large data. Shallow

machine learning uses machine learning algorithms to

parse data, learn data features and make decisions or pre-

dictions. Deep learning simulates the structure and func-

tion of the human brain by identifying the unstructured

input of representative data and making accurate deci-

sions. In recent years, deep artificial neural networks have

received more and more attention and have been widely

applied to image and speech recognition, natural language

understanding, and computational biology [30–34]. By

propagating data in a deep network, it can effectively

extract data features and highly complex functions to im-

prove the classification ability of predictors. Therefore, a

deep neural network is used in this work. Deep neural net-

works can also better handle high-dimensional encoding

vectors by training complex multi-layer networks.

The length of input peptides to learning architecture is

also one of the hyperparameters. In the prediction of

posttranslational modifications, the general range for pro-

tein fragments are 21–41. We also tested several lengths

such as 21, 23, 25, 27, 29, 33 and 35 on our benchmark data

and found that 31 was the best length (Additional file 3:

Table S3).

Although we implemented a deep learning framework

to build the model and got good results, there is still

room for improvement. First, we only considered the

composition and location information for the fragments

and didn’t consider structural features. Secondly, there is

no systematic method to adjust the hyperparameters

(e.g., the number of neurons and the number of itera-

tions) of the neural network, which can only be adjusted

through the constant experimentation. In the future, we

will consider structural information into the features and

the new neural network. We could obtain better robustness

and accuracy with more experimentally verified acetylation

sites. Meanwhile, researchers have found acetylation is

associated with diseases [35–37]. We could do some

work about the acetylation modification with the dis-

ease association.

Conclusion
Lysine acetylation in protein has become a key post-

transcriptional modification in cell regulation [38]. To

Fig. 4 Comparison of between the lysine acetylation fragments and non-acetylation fragments. a The percentage of amino acids in the lysine

acetylation and non-acetylation fragments. b A Two Sample Logo (p < 0.0001) of the compositional bias around the lysine acetylation and

non-acetylation fragments
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fully understand the molecular mechanism for the bio-

logical processes associated with acetylation, a preliminary

and critical step is to identify the acetylated substrates and

the corresponding acetylation sites. Therefore, the predic-

tion of acetylation sites through computational methods is

desirable and necessary. We built a predictor, DeepAcet,

from six features based on a deep learning framework. To

get the best predictor, feature selection was utilized to

reduce meaningless ones. The predictor achieved an ac-

curacy of 84.95%, specificity of 83.45%, sensitivity of

86.44%, AUC of 0.8540, and MCC of 0.6993 in a 10-fold

cross-validation. For the independent test set, the predict-

ive performance achieved an accuracy of 84.87%, a specifi-

city of 83.46%, a sensitivity of 86.28%, AUC of 0.8407, and

MCC of 0.6977, results which were significantly superior

to those of other predictors. DeepAcet can be freely down-

loaded from https://github.com/Sunmile/DeepAcet.

Methods

Benchmark dataset

We retrieved 29,923 human lysine acetylated sites from

the CPLM database (http://cplm.biocuckoo.org/) [39] and

their proteins from UniProt (http://www.uniprot.org/).

These proteins were truncated with a centered lysine (K)

to a fragment length of 31 after many trials. The missing

amino acids were filled with the pseudo amino acid “X”.

We assigned fragments with the experimental lysine

acetylation site into the positive dataset, S+, and the other

fragments into the negative dataset, S−. In general, if the

training dataset had high homology, over-fitting would

occur during the training process, which would reduce

the generalization ability of the classifier. If more than

30% of the residues in the two comparison fragments were

same, only one of them was retained and the other was

deleted. After removing the redundant fragments, we ob-

tained 16,107 positive and 57,443 negative fragments.

Since the imbalance of a training dataset would cause pre-

diction errors, we randomly selected 16,107 negative frag-

ments from the original dataset, S−.

Particularly, to evaluate the performance of our predic-

tion model and compare it with other existing tools, we

built an independent test set. The independent test set was

obtained by randomly selecting one-fifth of the samples

from the positive and negative datasets. The remaining

samples were used to train the model. Finally, 6442 samples

Table 3 Total number of features for the different K values

K value Number

0 253

1 254

2 259

3 242

4 242

Fig. 5 The number of distributions and their percent for each feature. In the 2199 optimal features, 1250 belong to the CKSAAP, 392 to the

BLOSUM62, 294 to the one-hot, 262 to the AAindex, 1 to the IG, and 0 to the PSSM
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were selected for the independent test set, which contained

3221 positive samples and 3221 negative samples. In

the training set, there were 12,886 positive samples and

12,886 negative samples. The detailed statistics of each

dataset are shown in Table 5. Detailed information on

the training samples and independent test samples are

available in Additional file 4: Table S4 and Additional file 5:

Table S5, respectively.

Feature constructions

All existing operation engines can only handle vectors

but not sequence samples [40]. Thus, an important step

before training the model was to convert the sequences

into numerical vectors that the algorithm could recognize

directly. This process is known as feature encoding or

feature construction. In this work, six encoding schemes

including the basic position, evolutionary information

and physicochemical properties were used to construct

features. One-hot, Blosum62, Composition of K-space

amino acid pairs (CKSAAP), Information gain (IG),

AAIndex, and Position-specific scoring matrix (PSSM)

are available in the Additional file 6: S6.

Feature selection

It is necessary to remove redundant features to train the

model. Through feature selection, a model can improve

its predictive performance with a lower computational

cost. An F-score is a simple but effective technique for

evaluating the discriminative power of each feature in

the feature set [41]. Given the i – th feature vector {pi1,

pi2,⋯pin, ni1, ni2,⋯nim}, the F-score of the i–th feature

is calculated by

Fig. 6 The ROC curve for the independent test set. DeepAcet got the better result than that in PAIL and PSKAcePred

Table 4 Comparision of the performance results with different webserver tools

Prediction method Algorithms Accuracy Specificity Sensitivity AUC MCC

DeepAcet DL 84.87% 83.46% 86.28% 0.8407 0.6977

PAIL BDM 51.16% 54.30% 48.04% – 0.0233

PSKAcePred
LAceP
N-Ace
BRABSB-PHKA

SVM
LR
SVM
SVM

61.01%
---
---
---

50.52%
---
---
---

71.51%
---
---
---

---
---
---
---

0.2250
---
---
---
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F ið Þ ¼
pi−sið Þ2 þ ni−sið Þ2

1

n−1

Xn

k¼1
pik−pið Þ2 þ

1

m−1

Xm

k¼1
nik−nið Þ2

ð1Þ

where pi , ni , si are the average of the positive, negative,

and whole samples, respectively. n, m are the number of

positive and negative samples, respectively. The larger

the F-score value, the greater the influence of this fea-

ture for predictive performance.

Operation algorithm

Deep learning has been focused in recent years in the AI

field, and multilayer perceptron (MLP) is one of these

deep learning frameworks. We constructed a six-layer

MLP (including input and output layers), which is shown

in Fig. 7. The first layer of the network is the input layer,

which is used to input data. The number of neurons in

the first layer is equal to the feature’s dimensions for the

input data. The activation function is used to activate neu-

rons and transfer data to the next layer.

During the neural network training process, we used a

Rectified Linear Unit (ReLU) as the activation function

[42], and a softmax loss function [43] in our model.

Additionally, the error backpropagation algorithm [44]

and the mini-batch gradient descent algorithm were uti-

lized to optimize the parameters. In the transmission of

data from input to output, neural networks could learn

and extract underlying features of the data. The last

layer was the output layer, and the number of neurons

in this layer denoted the number of categories. We

adopted the softmax function [43], which is commonly

used in classification as an activation function in the

output layer. The mini-batch gradient descent algorithm

was meant to use a small part of the training samples to

train the model each time, which could reduce the cal-

culation of the gradient descent method. The optimal

value for batch size was 40. To accelerate the rate of gra-

dient descent and suppress the oscillation, we adopted a

momentum item in the process of optimizing weights and

bias. To reduce overfitting, we used dropout methods in

every layer of the neural network except for the last layer.

Table 5 The number of samples for the imbalanced, balanced,

training and independent test sets

Imbalanced
dataset

Balanced
dataset

Training Independent
test

Positive 16,107 16,107 12,886 3221

Negative 57,443 16,107 12,886 3221

Fig. 7 The framework of the neural network. A total of six neural levels were implemented. To reduce overfitting, we used the dropout method

in every layer except the last one. Additionally, the previous layers used the RELU function to avoid gradient diffusion. We introduced the softmax

function to classify the last layer
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This way, not every neuron had a full connection, which

could reduce overfitting and speed up the training of the

neural network. Detailed parameter information about the

neural network is shown in Additional file 7: Table S7.

The predictor for the above deep learning framework is

called DeepAcet.

Measurements of performance

The common performance measures of accuracy (Acc),

specificity (Sp), sensitivity (Sn), Receiver Operating Charac-

teristic (ROC) curves, Area Under the ROC curve (AUC)

and Matthews correlation coefficient (MCC) were used to

assess the performance of the predictor. Accuracy indicates

the percentage of the test set correctly predicted. The speci-

ficity (also called the true negative rate) represents the pro-

portion of negatives that are correctly predicted. The

sensitivity (also called the true positive rate or the recall)

measures the proportion of positives that are correctly pre-

dicted. The MCC accounts for the true and false positives

as well as negatives, and is usually regarded as a balanced

measure [24]. Importantly, 4-, 6-, 8-, and 10-fold cross-val-

idation were performed. The common measurements are

found below

Sp ¼
TN

TN þ FP

Sn ¼
TP

FN þ TP

Acc ¼
TP þ TN

TP þ TN þ FP þ FN

MCC ¼
TP � TN−FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FNð Þ TN þ FPð Þ TP þ FPð Þ TN þ FNð Þ
p

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð2Þ

Additional files

Additional file 1: Table S1. The performance of six combined features

without F-score. The table shows the performance measures (Accuracy,

Specificity, Sensitivity, AUC, MCC) for the combination of six encoding

methods. (XLSX 11 kb)

Additional file 2: Table S2. The F-score values of each feature. The

table shows the F-score values of the 3972 features obtained by six

encoding methods. (XLSX 100 kb)

Additional file 3: Table S3. – The performance of different lengths of

input peptides. The table shows the performance measures (Accuracy,

Specificity, Sensitivity, AUC, MCC) for different lengths (21, 23, 25, 27, 29,

31, 33, 35) of fragments. (XLSX 12 kb)

Additional file 4: Table S4. The training set for lysine acetylation. The

table shows all training sets (positive and negative fragments). (XLSX 1137 kb)

Additional file 5: Table S5. - The independent test set for lysine

acetylation. The table shows all independent test sets (positive and

negative fragments). (XLSX 314 kb)

Additional file 6: S6. Six encoding feature constructions. The

supplementary material describes six encoding schemes. (DOCX 20 kb)

Additional file 7: Table 7. Detailed parameter information about the

neural network. The table contains the parameter information of MLP:

the number of neurons in each layer, activation function, momentum,

loss function, batch size, and learning rate. (XLSX 16 kb)
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