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A deep learning model based
on dynamic contrast-enhanced
magnetic resonance imaging
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of benign and malignant
breast lessons
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Objectives: The study aims to investigate the value of a convolutional neural

network (CNN) based on dynamic contrast-enhanced magnetic resonance

imaging (DCE-MRI) in predicting malignancy of breast lesions.

Methods: We developed a CNN model based on DCE-MRI to characterize

breast lesions. Between November 2018 and October 2019, 6,165 slices of 364

lesions (234 malignant, 130 benign) in 364 patients were pooled in the training/

validation set. Lesions were semi-automatically segmented by two breast

radiologists using ITK-SNAP software. The standard of reference was

histologic consequences. Algorithm performance was evaluated in an

independent testing set of 1,560 slices of 127 lesions in 127 patients using

weighted sums of the area under the curve (AUC) scores.

Results: The area under the receiver operating characteristic (ROC) curve was

0.955 for breast cancer prediction while the accuracy, sensitivity, and

specificity were 90.3, 96.2, and 79.0%, respectively, in the slice-based

method. In the case-based method, the efficiency of the model changed by

adjusting the standard for the number of positive slices. When a lesion with

three or more positive slices was determined as malignant, the sensitivity was

above 90%, with a specificity of nearly 60% and an accuracy higher than 80%.

Conclusion: The CNN model based on DCE-MRI demonstrated high accuracy

for predicting malignancy among the breast lesions. This method should be

validated in a larger and independent cohort.
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Introduction

Although breast cancer mortality is decreasing, largely owing

to improved treatments, breast cancer incidence has been steadily

increasing (1). Female breast cancer has now surpassed lung

cancer as the leading cause of global cancer incidence in 2020,

with an estimated 2.3 million new cases, representing 11.7% of all

cancer cases (2). Along with mammography and ultrasound,

dynamic contrast-enhanced magnetic resonance imaging (DCE-

MRI) plays an integral role in the detection and characterization

of breast cancer (3). Although MRI is the most sensitive imaging

modality to detect breast cancer, the specificity of breast MRI is

only moderate, with positive predictive values of 35–64% for

screening MRI in high-risk women (4). Lesion identification can

be limited by background enhancement, which may mask or

mimic lesions, and many benign lesions also show strong contrast

enhancement, leading to a false-positive diagnosis, unnecessary

biopsy, or overtreatment. To increase the number of screening

and preoperative MRI performed, it is urgent to find an efficient

way, such as developing imaging models, to differentiate between

benign and malignant lesions to improve the diagnostic accuracy.

Machine learning (ML) is poised to address some or all of

these problems. Deep learning (DL) is a subtype of machine

learning that uses layers of artificial neurons, called neural

networks, to learn. It has turned out to be robust at discovering

intricate structures in high-dimensional data and has beaten other

machine-learning techniques in many aspects (5). A

convolutional neural network (CNN) is a common deep-

learning method applied to analyze photographic, pathological,

and radiographic images, which is capable of automatically

learning features in contrast to those traditional methods where

hand-crafted features are used. CNN has frequently been

implemented for medical image analysis in various clinical

tasks, including segmentation, abnormality detection, disease

classification, computer-aided diagnosis, and retrieval (6). For

classification tasks, the CNNs take the raw image data as input

and extract the features using a hierarchy of layers to learn

discriminative patterns. Supervised by the pathological results of

the case, the models must predict the likelihood of cancer and

non-cancer.

Currently, deep learning has been widely applied to detect

and diagnose breast cancer by mammography and has shown

promising results (7–11). Studies are limited regarding the use of

CNNs for diagnostic classification of lesions in breast MRI (for

differential diagnosis of benign vs malignant lesions) due to

multiple sets of images with varying tissue contrast and images
Abbreviations: AUC, Area under the receiver operating characteristic curve;

BI-RADS, Breast Imaging Reporting and Data System; CNN, Convolution

neural network; DL, Deep learning; ML, Machine learning; MRI, Magnetic

resonance imaging; NPV, Negative predictive value; PPV, Positive

predictive value.
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of DCE-MRI at different times with varying signal intensities

(12, 13). In this study, we developed a CNNmodel for predicting

malignancy among the breast lesions based on DCE-MRI.
Materials and methods

Study population

This retrospective study was approved by the Institutional

Ethics Committee of our hospital and the informed consent

requirement was waived (No. XHEC-D-2021-185). Between 1

November 2018 and 31 October 2019, a total of 1,020 lesions of

807 patients were enrolled in the training/validation set. Inclusion

criteria were as follows: (1) pathological results were obtained

through vacuum-assisted breast biopsy or open surgery; (2)

patients underwent breast MRI examination before the operation.

Exclusion criteria were as follows: (a) did not exhibit an enhancing

lesion on DCE-MRI or with insufficient image quality and/or (b)

the patients received any therapy before breast MRI examination.

The image quality was evaluated by two experienced radiologists in

breast imaging in consensus.

For independent testing, the cases performed from January

to December 2014 were collected based on the same

selection criteria.
Imaging acquisition

Imaging was performed on a 3.0 T whole-body MRI scanner

(Ingenia, Philips, Netherlands for patients in the training/

validation set; Signa HDxt, GE Healthcare, America for

patients in the testing set). The patients were positioned in the

prone position with both breasts placed in an eight-channel

phase-array breast coil. The acquisition parameters of the breast

MRI protocol are given in Table 1. Details of the MRI protocol

have been added in Appendix 1.

The Volume Image Breast Assessment (VIBRANT)

sequence on Signa HDxt and enhanced T1 high-resolution

isotropic volume excitation (e_THRIVE) on Ingenia were

obtained before and four times after the intravenous injection

of Gadopentetate Dimeglumine (Gd-DTPA; Beilu, Beijing,

China) with 0.1 mmol/kg at a flow rate of 2 ml/s and a 20 ml

normal saline flush.
Data preprocessing and annotation

After the digital image and communication in medicine

(DICOM) images were obtained, two trained breast imaging

radiologists with 9 years and 2 years of work experience
frontiersin.org
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subsequently reviewed the MRIs. The lesion area was segmented

semi-automatically on the second T1-weighted postcontrast

image at a pixel-wise level using ITK-SNAP software (version

3.8, http://www.itksnap.org), an open-source software platform

for medical image informatics and analysis. Then, the region of

interest (ROI) was manually modified and cross-checked by the

two experienced radiologists. Then, the MRIs were reviewed and

converted to 16-bit tiff format images. Located at each breast

with lesions on the image, a circumscribed square window was

cropped and rescaled to 600 × 600 pixel2. These square 16-bit tiff

images located at the lesion were the input data of the model

(Figures 1, 2).

We stacked the 2D lesion area images of all the slices and

obtained a 3D lesion segmentation of the volumetric data. The

standards for labeling benign and malignant adopt pathological

diagnosis as the gold standard. An automated program was used

to generate the anchor box needed by the faster-region based

convolutional neural network (Faster R-CNN) model. The

anchor box generation algorithm was fixed at square to avoid

image feature distortion caused by aspect ratio changes. This was

different from the strategy used for processing natural camera

images. The algorithm was designed to combine the non-

combined areas that belong to the same lesion into one larger

anchor box. The network architecture of the Faster R-CNN for

ROI localization is shown in Figure 3.
System construction

Model structure
The faster R-CNN, whose backbone CNN adopts the

Xception structure, is selected as our developing model. The

backbone CNN is followed by a deconvolution layer to expand

the feature map and ensure enough detailed features to

distinguish between benign and malignant. The input image

size of the model is set to 600 × 600. The faster R-CNN model

has two outputs. The first output is responsible for locating the

ROI. The second output further classified the lesion area as
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benign or malignant. The pipeline of the system consisting of the

CNN and the Faster R-CNN is shown in Figure 4. The network

architecture of CNN for differentiation between benign and

malignant tumors is shown in Figure 5.

Model training
In the training phase, considering that the amount of

training data is insufficient, 5-fold cross-validation is

implemented by the scikit-learn package 0.23.2 version. The

best model selection is based on the minimum area under the

receiver operating characteristic (AUC) metrics as the criterion.

Given a three-dimensional affine matrix, random rotating at any

angle, scaling with a magnification of 0.8–1.2, and shifting within

10 pixels were used for data augmentation. Approximately 70%

of the training MRIs were extracted to apply data augmentation

to avoid bias of the model toward the recognition of augmented

data over real data.

Software and hardware used for development
We constructed, trained, and evaluated the model using

Python with TensorFlow-Gpu 2.0 version. The development

computer had two NVIDIA 1080Ti graphic cards and an i7-

8800k Intel CPU.

Predictive performance and
statistical analysis

The acquisition of the testing dataset was different from the

training/validation dataset. In order to prevent the excessive

generalization errors caused by different data sources, we fine-

tuned the model with a part of the testing dataset, which is a

common method used in the computer vision field. Our fine-

tuning method was as follows: we combined the fine-tuning

dataset with the original training/validation dataset to form a

new training/validation dataset, loaded the trained model

parameters as initial values, reduced the learning rate by an

appropriate multiple (in our cases, 3 is the best from grid

search), and retrained all the parameters with the previous

model parameters as the initial values.

Then we tested the fine-tuned model on the testing dataset

and used two statistical methods: slice-based and case-based.

The slice-based method is the direct model execution, and the

case-based method is closer to the actual diagnosis process.

The main performance of the models to differentiate

between benign and malignant was assessed by AUC.

Furthermore, the accuracy, sensitivity, and specificity for

diagnosing breast cancer cases and images were evaluated. The

Chi-square test or Fisher’s exact test were used to evaluate the

differences for categorical variables. Intergroup comparison was

performed using the Mann–Whitney U-test for continuous data

with a non-normal distribution. All the statistical analyses were

performed via SPSS 25.0 (IBM) and MatLab. A two-sided P-

value of <0.05 was considered statistically significant.
TABLE 1 Acquisition Parameters Used in the Breast DCE-MRI Protocol.

Parameters e_THRIVE VIBRANT

slice thickness/gap, mm 2/0 1.2/0

matrix 407 × 404 416 × 320

FOV, cm 34 38

TR/TE/TI, ms 4.2/2.1/- 4.3/2.1/14

FA 12 10

resolution,mm 0.835 × 0.841 0.913 × 1.188
FOV, field of view; TR/TE, repetition time/echo time; FA, flip angle.
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Results

Patient characteristics

Finally, a total of 364 lesions in 364 patients (mean age: 52.3 ±

15.5 years, age range: 12–88 years) were used in the training/

validation dataset, including 234 malignant lesions and 130

benign lesions. One hundred and twenty-seven lesions in 127

patients (mean age: 51.7 ± 14.6 years, age range: 17–79 years) were

used in the testing set, including 85 malignant lesions and 42
Frontiers in Oncology 04
benign lesions. The size of the lesions in the training/validation set

and the testing set was 2.40 ± 1.39 cm and 2.10 ± 0.98 cm,

respectively (P = 0.106). The major histological types and

enhancement types on MRI of all lesions are listed in Table 2.
Performance of the CNN models

A total of 6,165 slices of 364 lesions were collected for the

training/validation dataset, which was used to adjust the
FIGURE 1

Fibroadenoma in a 29-year-old woman. (A) T1-weighted postcontract image. (B) Annotation masks (in red) are superimposed over the MR images.
The annotations were made by radiologists using ITK-snap. (C) The anchor box was generated by the Faster R-CNN model after the segmentation.
FIGURE 2

Invasive breast cancer in a 57-year-old woman. (A) T1-weighted postcontract image. (B) Annotation masks (in red) are superimposed over the
MR images. The annotations were made by radiologists using ITK-snap. (C) The anchor box was generated by the Faster R-CNN model after
the segmentation.
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parameters to train a robust model. The testing dataset

consisted of 1,403 slices from 127 lesions in order to assess

the performance and test the generalization ability of

the model.
Slice-based
In the testing set, the algorithm performance for breast

cancer diagnosis showed 90.3% accuracy, 96.2% sensitivity,

and 79.0% specificity, with the area under the curve ROC of

0.955 (Figure 6).
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Lesion-based
The lesion-based results of the testing set are shown in Table 3.

By adjusting the standard of the number of positive slices, the

performance of the model changed. When a lesion with three or

more positive slices was determined as malignant, the sensitivity was

above 90%with nearly 60% specificity and greater than 80% accuracy.

Diagnostic performances for mass and non-
mass enhancement

The diagnostic performance of the CNN model for mass and

non-mass enhancement is shown in Table 4. The negative

predictive value (NPV) and specificity for non-mass enhancement
FIGURE 3

The network architecture of Faster R-CNN for ROI localization.
FIGURE 4

The pipeline of the system consisting of CNN and Faster R-CNN.
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were lower than those for mass, while the positive predictive value

(PPV), sensitivity, and accuracy for non-mass enhancement were

slightly higher than those for mass (Figures 7, 8).

Discussion

Although MRI is a powerful tool for the diagnosis and

screening of breast cancer, the utility of breast MRI has been

restricted because of the limited availability of sites that could
Frontiers in Oncology
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offer this method and the lack of experienced radiologists for

interpreting breast MR images. In addition, a suspicious lesion

detected by MRI usually needs to be investigated through a biopsy.

However, the biopsy is an invasive procedure at risk of infection and

misdetection. Continued concerns have been raised regarding

potential harm associated with unnecessary biopsies and surgeries

that are triggered by imaging findings in patients who do not have

breast cancer (14, 15). Our study was to distinguish breast lesions

between benign and malignant and prevent unnecessary biopsy by

objectively analyzing noninvasive breast MRI images.
Machine learning (ML) is likely to address some or all of

these limitations. A machine learning model incorporating the

full spectrum of patient data offers a means to distinguish

patients with breast cancer from those without and thereby

reduce unnecessary surgical interventions. In other words, it can

help to improve diagnostic specificity and decrease false-positive

interpretations. McKinney et al. (10) reported that the artificial

intelligence (AI) system outperformed radiologists during breast

cancer screening with a greater AUC by an absolute margin of

11.5% and could reduce the workload of the second reader by

88%. Yala et al. (9) reported that the Deep Learning (DL) model

had the potential to improve specificity to 94.2% for triaging the

mammogram as cancer-free and reduce the workload by 19.3%.

Compared with other machine learning methods, one advantage

of CNNmodels is their capability in image analysis (deep feature

extraction) and prediction algorithm construction, thereby

precluding the need for separate steps of extracting hand-

crafted radiomic features and using them as an input for an

algorithm to construct a prediction model. Another advantage is

the ability to learn complex datasets and achieve high

performance without prior feature extraction. For dealing with

lesion localization, a faster-region based convolutional neural

network (Faster R-CNN), which has the advantage of automatic
TABLE 2 Pathology Type and Enhancement Type of Lesions Included
in the DataSet.

Lesion type Training/Validation
dataset

Testing
dataset

P-
value

Malignant lesions 234 85 0.591

Invasive ductal
cancer

187 71

Ductal carcinoma
in situ

15 3

Mucinous
carcinoma

9 2

Other invasive
cancer

23 9

Benign lesions 130 42

Adenosis 11 7

Fibroadenoma 91 34

Intraductal
papilloma

15 1

other benign lesions 13 0

Enhancement type 0.688

Mass 304 108

Non-mass 60 19

Total 364 127
FIGURE 5

The network architecture of CNN for prediction of benign and malignant breast lesions.
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image segmentation—defining the tumor bounding box

(16–18), has been used for identifying the contour of the

tumor area before lesion classification. Due to the complex

construction, a novel diagnostic system that integrates CNN

and the Faster R-CNN model is proposed in our study.

In this study, our CNN faster-RCNN-based diagnostic

system demonstrated the potential to distinguish between

malignant and benign breast lesions and was successfully
Frontiers in Oncology 07
validated using MRI conducted by another 3.0T system (Signa

HDxt; GE Healthcare). Several novel aspects of our study should

be emphasized. First, this is the first report that describes the

development of CNN and Faster R-CNN models to facilitate the

diagnosis of breast tumors. Second, we stacked the expert-

labelled 2D slices of one lesion and obtained a 3D lesion

structure to extract volumetric features, which are as

important as local texture features in recent literature reports
TABLE 3 Diagnostic Performances of the CNN model evaluated in slice-based and case-based method.

Parameter Slice-based case-based 1* case-based 2* case-based 3*

Accuracy 90.3% 80.4% 78.0% 81.1%

Specificity 79.0% 40.5% 47.6% 59.5%

Sensitivity 96.2% 100.0% 92.9% 91.8%

Positive predictive value 89.8% 77.3% 78.2% 82.1%

Negative predictive value 91.6% 100.0% 76.9% 78.1%
*case-based 1: As long as one slice is positive, the lesion is classified as malignant;
case-based 2: At least two or more slices are positive, the lesion is classified as malignant; case-based 3: At least three or more slices are positive, the lesion is classified as malignant.
FIGURE 6

ROC curves for benign vs. malignant classification.
TABLE 4 Diagnostic Performances of the CNN model for mass and non-mass enhancement.

Mass Non-mass enhancement

Accuracy 90.2% 91.1%

Specificity 80.9% 0%

Sensitivity 95.9% 97.5%

Positive predictive value 89.1% 93.3%

Negative predictive value 92.5% 0%
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for improving diagnostic performance (19). The generated heat

maps made it possible to better understand how the model

extracted characteristics, including misclassification.

Additionally, with a stable algorithm framework, there is no

subjective bias in the image recognition process. The recognition

result is stable and does not change with time and operating

factors, which can provide a reliable reference for radiologists to

reduce variation.
Frontiers in Oncology 08
It is worth highlighting that our model had high sensitivity

(96.2%) and a large AUC (0.955) for the classification of breast

tumors in the external validation, which demonstrated the

potential for adaptability and robustness. The fact is that

different pulse scan sequence protocols of institutions vary,

and in the previous study, most radiomics or deep learning

models are trained and tested within the same source dataset. In

this study, we used a separate dataset for independent testing.
FIGURE 7

Invasive breast cancer in a 57-year-old woman in the testing set with true-positive result. (A-C) Axial, Sagittal, and Coronal T1-weighted
postcontract image showed non-mass enhancement in the right breast. (D) 3D reconstruction of the lesion.
FIGURE 8

Adenosis in a 46-year-old woman in the testing set with false-positive result. (A–C) Axial, Sagittal, and Coronal T1-weighted postcontract image
showed non-mass enhancement in the right breast. (D) 3D reconstruction of the lesion.
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The images of the training set and testing set were acquired from

two different machines (Philips vs. GE), both with a standardized

protocol, and all results suggest that deep learning can achieve

high accuracy and has the potential for clinical implementation.

Several limitations of our study should be considered. First, the

specificity of the model was relatively low when distinguishing

breast lesions rather than images, due to the high proportion of

images of malignant lesions in the dataset. Additionally, the NPV

and specificity of the model for non-mass enhancement were low,

which was because there were only three benign non-mass

enhancements in the testing set, and the model predicted that

they were all malignant. Second, we only used DEC-MR images in

this study. Recently, multiparametric MRI has also been studied

with DL (13, 20). A combined DL model developed incorporating

mammography and clinical variables also showed promising

results (11, 21). More risk factors such as clinical information,

including age, family history of breast cancer, menopausal status,

and multiparametric MRI features could be used in future studies.

Third, because of the architecture of the CNN, the internal

parameters or weights of each layer were invisible. Therefore, the

fact that similar frames, even neighboring frames, are classified

into different categories cannot be explained exactly. Although the

precise reason for this remains unclear, this type of incorrect

classification might be due to the limited ability of the CNN used

in the current study, which will be more sophisticated in the future.

In conclusion, our trained system rendered a promising

performance in classifying the breast lesions into benign or

malignant, highlighting its potential for future application as a

new tool for clinical diagnosis. The automatic methods can help

improve diagnostic accuracy by decreasing interobserver variations,

reducing the number of false-positive biopsies and the burden of

radiologists. The workload reduction could free radiologists to

provide more patient care and perform guided procedures. The

number of cases in the database is expected to increase, and the

hyperparameters in deep learning are expected to be more

optimized, which will further increase the accuracy of the model.
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