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Deformation is a comprehensive reflection of the structural state of a concrete dam, and research on prediction models for concrete
dam deformation provides the basis for safety monitoring and early warning strategies. This paper focuses on practical problems
such as multicollinearity among factors; the subjectivity of factor selection; robustness, externality, generalization, and integrity
deficiencies; and the unsoundness of evaluation systems for prediction models. Based on rough set (RS) theory and a long short-
term memory (LSTM) network, single-point and multipoint concrete dam deformation prediction models for health monitoring
based on RS-LSTM are studied. Moreover, a new prediction model evaluation system is proposed, and the model accuracy,
robustness, externality, and generalization are defined as quantitative evaluation indexes. An engineering project shows that the
concrete dam deformation prediction models based on RS-LSTM can quantitatively obtain the representative factors that affect
dam deformation and the importance of each factor relative to the effect. The accuracy evaluation index (AVI), robustness
evaluation index (RVI), externality evaluation index (EVI), and generalization evaluation index (GVI) of the model are superior
to the evaluation indexes of existing shallow neural network models and statistical models according to the new evaluation
system, which can estimate the comprehensive performance of prediction models. The prediction model for concrete dam
deformation based on RS-LSTM optimizes the factors that influence the model, quantitatively determines the importance of
each factor, and provides high-performance, synchronous, and dynamic predictions for concrete dam behaviours; therefore, the
model has strong engineering practicality.

1. Introduction

Due to unique advantages in design, construction, and opera-
tional management, concrete dams account for a large propor-
tion of all dams and have become the preferred dam type for
the construction of high dams. However, most of the concrete
dam projects are located in harsh alpine valleys. Thus, the
dams are subjected to various dynamic, static, and special
cyclic loads during service, and the design, construction, and
operational management must be tailored to these conditions.
Therefore, service safety behaviour involves a nonlinear
dynamic process that includes material and structure interac-
tions and multiple factors [1]. As a comprehensive variable
that reflects the safety state of concrete dams, deformation
can be used as an important index of structural behaviours
and trends. Therefore, strengthening the prediction models

for deformation, conducting safety monitoring, and estab-
lishing early warning systems are important ways to ensure
long-term service safety of concrete dams [2].

In recent years, the successful application of dam
engineering theory, finite element theory, and artificial intel-
ligence (AI) technology has greatly promoted the develop-
ment of concrete dam deformation prediction models. The
most commonly used methods [3] for influential factor selec-
tion in concrete dam deformation prediction models include
prior knowledge, linear correlation coefficient, stepwise
regression, principal component analysis (PCA), and grey
correlation analysismethods. However, in actual applications,
the prior knowledge method relies too much on experience
and has large errors. Notably, thewater pressure, temperature,
and dam age are generally selected as influential factors in
hydrostatic seasonal temporal (HST) models considering
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simplified physical models of dams and dam foundations, the
burial conditions of monitoring equipment, prototype moni-
toring data, engineering mechanical analysis, and deductive
investigation. The limitation of the PCA method is that only
linear relations between variables are considered. If the depen-
dence is nonlinear, themisinterpretation of resultsmay occur.
The grey correlation analysis method can only sort factors
according to their relevance, and there is no clear criterion
for selecting influential factors. Moreover, multiple collinear-
ity can exist among the factors selected by conventional
methods, which may reduce the accuracy of the model and
adversely affect the prediction results [4]. Meanwhile, predic-
tion models do not consider the influence of nonquantitative
factors such as the seepage flow, crack opening degree, and
lifting pressure; the dam constructionmaterials; the construc-
tion quality; and the geological conditions. Additionally,
model interpretation is important for evaluating the perfor-
mance of prediction models, especially the model accuracy.
The HST model has been traditionally used to identify the
response of a dam to a considered action, such as a hydrostatic
load, or to variations in factors such as temperature and time
[5]. However, such analyses are only valid if the predictor
variables are independent, which is not generally true [6]. In
contrast, intelligent models (such as neural network, multi-
layer perceptron, and support vector machine models) have
not been applied to interpret dam behaviour. Traditional
models are frequently termed “black box”models, in reference
to their lack of interpretability. Therefore, in the selection pro-
cess of the factors that influence concrete dam deformation
prediction models, imperfect selection criteria and neglecting
important factors can seriously affect the prediction perfor-
mance of the model. Single-point statistical models, deter-
ministic models, and hybrid models [7–10] have evolved
into multipoint intelligent models [11–16]. Based on the
traditional statistical model, Gu et al. treated deformation at
multiple measurement points and the spatial coordinates of
these points as variables and established a spatiotemporal
distributed prediction model of the deformation field of a
concrete dam. Li et al. investigated the spatial and temporal
expression of the factors that affected the deformation of an
RCC dam and established a spatiotemporal deformation
prediction model for RCC dams based on measured data.
The prediction results agreed to the actual dam deformation
data. Li et al. used the strong functional nonlinear mapping
ability of a back propagation (BP) neural network to replace
the complex factor subset in the traditional spatial deforma-
tion field model with water level, temperature, time, andmea-
surement point variables as the input of the neural network. A
BP network prediction model was established for dam defor-
mation at multiple points. Chen et al. proposed a spectral
decomposition method to decompose the monitoring data
collected at multiple measurement points into several mutu-
ally independent latent variables for noise reduction and
monitoring data processing. A least square support vector
machine prediction model was established between the envi-
ronmental data and latent variables, and the horizontal
displacement ofMianhuatan Damwas successfully predicted.
Many scholars have addressed these issues. The successful
application of new methods has expanded the theoretical

knowledge of dam deformation prediction and model estab-
lishment and provided important guiding significance for
engineering practice. However, due to the complexity of
concrete dam engineering, the structural volatility of dams,
and the uncertainty of working conditions, there are still some
shortcomings in existing prediction models. It is difficult for
some models to process massive amounts of monitoring data
in real time with extensive mining data mechanisms for high-
performance prediction targets, such as those in practical
applications. It is important to appropriately evaluate the
prediction performance of a model from all angles because
the practical value of the models can be guaranteed, different
models can be compared, and different warning thresholds
can be defined. There are various indexes [17] that can be used
to assess how well a model matches the observed data, among
which the most commonly used are the mean squared error
(MSE), root mean squared error (RMSE), coefficient of deter-
mination (R2), mean absolute error (MAE), mean absolute
percentage error (MAPE), and average relative variance
(ARV). The result of any of these indexes is frequently
equivalent to a given prediction task. Specifically, an accu-
rate model will have small MSE, RMSE, MAE, and MAPE
values and high R2 and ARV values. However, these accuracy
indexes have differences that can be relevant but are often not
considered [18]. Commonly, robustness and generalization
ability are neglected in themodel assessment, and quantitative
evaluation indexes are not always used in practical applica-
tions. Therefore, it is necessary to explore methods for factor
selection, establish high-performance, dynamic, synchronous
prediction models, and design a scientific and comprehensive
evaluation system which are urgent for concrete dam defor-
mation prediction.

Attribute reduction is one of the core concepts of RS
theory, which addresses incompleteness, redundancy, and
ambiguity in data in the field of machine learning. This
approach avoids the use of complex discernibility matrices
and uses attribute importance as heuristic information to
obtain inductive sets and importance analysis results; excel-
lent results can be obtained in factor selection for prediction
models based on RS theory [19–21]. Moreover, long short-
term memory (LSTM) based on the memory architecture in
deep learning (DL) can overcome the memory shortage and
vanishing gradient issues of recurrent neural networks
(RNNs). Besides, this method is characterized by controllable
memory and rapid convergence. LSTM has achieved good
practical application results in the dynamic and deep
processing of massive, long-term, dependent data series
[22–25]. To overcome the shortcomings of existing concrete
dam deformation prediction models, RS theory and an LSTM
network are applied to a concrete dam deformation predic-
tion model in virtue of Tensor Flow. Finally, a concrete
dam deformation prediction model based on RS-LSTM is
established, and a new predictive model evaluation system
is proposed.

2. Materials and Methods

2.1. Rough Set Theory. RS theory was proposed by Polish
scholar Pawlak in the 1980s. The core objectives are the
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mining and refining of essential information under the
premise of maintaining equivalence relations. The main
tasks in this approach are attribute reduction, correlation
analysis, and importance evaluation for uncertain infor-
mation systems.

2.1.1. Information System. To describe the samples that
encompass the necessary information in RS theory, a quater-
nary information system S is established, and it can be
expressed as follows:

S = U , R, V , ff g, ð1Þ

where U is a nonempty finite set of all samples; R is a set
of attributes, including a set of conditional attributes C
and a set of decision attributes D; V is the attribute value
set; and f is the information function, also known as the
decision table.

2.1.2. Attribute Reduction. For arbitrary P ⊆ R and P ≠Ø, the
indistinguishable relationship between P and U is defined as
follows.

IND Pð Þ = x, yð Þ ∈U2
∀α ∈ P, α xð Þ = α yð Þj

� �

: ð2Þ

For an arbitrary set of objects X ⊆U and attributes B ⊆ C
in a given information system S, the approximation of X is
defined as BX = fxj½x�B ⊆ Xg; the approximate definition of
X is defined as �BX = fxj½x�B ∪ X ≠Øg; and the boundary area
of x is defined as BNBðXÞ = �BX − BX. In this case, ½x�B repre-
sents the set of indistinguishable relations for the division of
U by B.

If BNBðXÞ is not empty, then X is called a rough set of B.
The positive region of B relative to D is as follows.

POSB Dð Þ =
BXjX ∈U

IND Dð Þ

� �

: ð3Þ

When SIM = POSCðDÞ − POSC−fagðDÞ = 0, where a ∈ C,
a can be omitted. Additionally, when each element in C is
not omissible from D, it can be concluded that C is indepen-
dent of D. When C′ = C − C∗, where C′ is independent of D
and all the elements in C∗ can be omitted, then C′ is called
the relative reduction of D.

2.1.3. Importance Evaluation. In attribute reduction, the
importance of the attribute can be defined by the degree of
interdependence between the attribute sets B and D. The
degree of interdependence between P and R is defined as
follows:

γB Dð Þ =
POSB Dð Þj j

Uj j
, ð4Þ

where j·j represents the cardinality value of a set.
The importance of the conditional attribute a to the

decision attribute D based on the attribute dependency

degree is defined as follows.

Sig α, B,Dð Þ = γB Dð Þ − γB− αf g Dð Þ: ð5Þ

2.2. LSTM Network Based on a Memory Architecture. LSTM
is obtained by improving the hidden layer of the RNN struc-
ture. LSTM based on a memory architecture can overcome
memory shortage and vanishing gradient problems. The
LSTM model structure is shown in Figure 1. The key advan-
tages of LSTM are twofold. Notably, the hidden layer includes
a hidden state and a cell state, and a threshold mechanism is
established in the RNN. These factors strengthen the ability
of the model to learn current information, extract the infor-
mation and rules associated with the data, and simultaneously
transmit information to reduce memory use. The threshold
mechanism uses input gates, forget gates, and output gates
to selectively memorize the feedback parameters of the feed-
back error function as the gradient decreases, achieving rapid
gradient convergence [26].

2.2.1. Input Gate Updates. The input gate controls the infor-
mation xðtÞ transmitted from the input of the network at

moment t and hidden state at the final moment hðt−1Þ to
the cell state CðtÞ. The function of the input gate is to filter
new information. The structure of an input gate is shown in
Figure 2.

Figure 2 shows that the input gate consists of two parts.
The first part selects the sigmoid activation function, for
which the output is iðtÞ, and the second part selects the tanh
activation function, for which the output is aðtÞ. The two
partial outputs are multiplied to update the cell state. The
renewal process can be mathematically expressed as follows:

i tð Þ = σ W ih
t−1ð Þ +U ix

tð Þ + bi

� �

,

a tð Þ = tanh Wah
t−1ð Þ +Uax

tð Þ + ba

� �

,

ð6Þ

whereW i,U i, bi,Wa,Ua, and ba are the weights and biases of
the input gate and σ is the sigmoid activation function.

2.2.2. Forget Gate Updates. The forget gate controls the infor-
mation transmitted from the cell state Cðt−1Þ at moment t − 1

to the cell state CðtÞ at moment t, and the information that
should be discarded is identified. The structure of the forget
gate is shown in Figure 3.

Figure 3 shows that the hidden state hðt−1Þ at moment
t − 1 and the input xðtÞ at moment t activate the sigmoid
function, and the output f ðtÞ is in the range of [0, 1].
This value represents the probability of forgetting the
information associated with the cell state at a previous
moment. The renewal process can be mathematically
expressed as follows:

f tð Þ = σ W f h
t−1ð Þ +U f x

tð Þ + bf

� �

, ð7Þ
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where W f , U f , and bf are the weights and biases of the
forget gate.

2.2.3. Cell State Updates. The cell state controls the informa-
tion aðtÞ transmitted from the result of the input gate f ðtÞ and
the result of the forget gate iðtÞ to the cell state CðtÞ. The struc-
ture of a cell state is shown in Figure 4.

Figure 4 shows that the cell state updating result CðtÞ is
mainly determined by the cell state Cðt−1Þ at moment t − 1

and the results of the input and forget gates (f ðtÞ, iðtÞ, and
aðtÞ) at moment t. The renewal process can be mathemati-
cally expressed as follows:

C tð Þ = C t−1ð Þ
⊙ f tð Þ + i tð Þ ⊙ a tð Þ, ð8Þ

where ⊙ is the Hadamard product.

2.2.4. Output Gate Updates. The output gate controls the

information transmitted from the hidden state hðt−1Þ at
moment t − 1, the cell state CðtÞ at moment t, and the input
xðtÞ at moment t. The function of the output gate is to deter-
mine the final retained information. The structure of an
output gate is shown in Figure 5.

Figure 5 shows that the hidden state hðtÞ at moment t
contains two parts. The first part oðtÞ is determined by the

hidden state hðt−1Þ at moment t − 1, the input xðtÞ at moment
t, and the sigmoid activation function. The other part is
determined by the cell state CðtÞ at moment t and the tanh
activation function. The renewal process can be mathemati-
cally expressed as follows:

o tð Þ = σ Woh
t−1ð Þ +Uox

tð Þ + bo

� �

,

h tð Þ = o tð Þ
⊙ tanh C tð Þ

� �

,

ð9Þ

where W f , U f , and bf are the weights and biases of the
output gate.

2.2.5. Output Layer Updates. The output of the model is

determined by the hidden state hðtÞ at moment t and the
sigmoid activation function. The renewal process can be
mathematically expressed as follows:

y∧ tð Þ = σ Vh tð Þ + c
� �

, ð10Þ
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where V and c are the weight and bias of the output layer,
respectively.

2.2.6. Model Parameter Updating. To obtain the optimal
solution, this paper iteratively updates all the parameters in
the LSTM model based on the gradient descent algorithm
and error BP algorithm.

The objective loss function LðtÞ is defined to minimize
the sum of squared residuals between the predictions y∧ðtÞ

of the output layer and the target outputs yðtÞ. LðtÞ is divided
into two parts: the loss lðtÞ at moment t and the subsequent
loss lðt + 1Þ moments later.

L tð Þ =
l tð Þ + l t + 1ð Þ, t < τ,

l tð Þ, t = τ:

(

ð11Þ

The gradients of the hidden state hðtÞ and cell state CðtÞ

are defined as δðtÞh and δ
ðtÞ
C , respectively, and the gradient at

position τ can be expressed as follows.

δ
τð Þ
h =

∂L τð Þ

∂h τð Þ
=

∂L τð Þ

∂O τð Þ

∂O τð Þ

∂h τð Þ
=VT y∧ τð Þ

− y τð Þ
� �

, ð12Þ

δ
τð Þ
C =

∂L τð Þ

∂C τð Þ
=
∂L τð Þ

∂h τð Þ

∂h τð Þ

∂C τð Þ
= ∂h τð Þ ⊙ o τð Þ

⊙

� 1 − tanh2 C τð Þ
� �� �

:

ð13Þ

The output gradient error at a given moment is deter-

mined in two parts, respectively, because δ
ðtÞ
h and δ

ðtÞ
C are

obtained for lðtÞ and lðt + 1Þ. Thus, according to equations

(12) and (13), the gradients of the hidden state hðtÞ and cell
state CðtÞ can be expressed as follows.

δ
tð Þ
h =

∂L

∂h tð Þ
=VT y∧ tð Þ

− y tð Þ
� �

+ δ
t+1ð Þ
h ∂h t+1ð Þ/∂h tð Þ, ð14Þ

δ
tð Þ
C =

∂L

∂C tð Þ
= δ

t+1ð Þ
C f t+1ð Þ + δ

tð Þ
h ⊙ o tð Þ ⊙ 1 − tanh2 C tð Þ

� �� �

:

ð15Þ

According to equations (14) and (15), the following

formula can be obtained.

∂L

∂W f

= 〠
τ

t=1

∂L

∂C tð Þ

∂C tð Þ

∂f tð Þ

∂f tð Þ

∂W f

= 〠
τ

t=1

δ
tð Þ
C ⊙ C t−1ð Þ

⊙ f tð Þ
⊙ 1 − f tð Þ
� �h i

h t−1ð Þ
� �T

:

ð16Þ

The other parameters in the model are derived similarly.
The updating step size and learning rate of the model are
defined as λ and α, respectively. The parameters in the LSTM
model are iteratively updated using the gradient BP
algorithm. The corresponding formula can be expressed as
follows:

βt+1 = βt − α
∂L

∂β
, ð17Þ

where β represents the parameters in the LSTM model and
∂L/∂β represents the gradients of the parameters.

In summary, the updating process of the parameters in
the LSTM network model based on a memory architecture
can be expressed as follows. First, a parameter initialization
process is implemented. Second, the iterative process is
repeated by the gradient descent algorithm and the error
BP algorithm until the target loss function converges. Finally,
the parametric optimal solution of the LSTM model is
obtained. Moreover, the Dropout algorithm is adopted in
the training process of the LSTM model to avoid the overfit-
ting phenomenon [27] and improve network performance by
preventing feature detectors from working together.

2.3. Concrete Dam Deformation Prediction Model Based on
RS-LSTM. With the advantages of RS, the mapping rela-
tionship between the factors that influence dam operating
behaviour and the corresponding effects is established
under the premise of retaining the key information. Addi-
tionally, the redundant information is eliminated, the
expression space of the influential factors is simplified,
and the importance of each factor is evaluated. Moreover,
because the LSTM model overcomes the memory shortage
and gradient dissipation issues of traditional RNNs and is
characterized by controllable memory and fast gradient
convergence, the model yields high-performance dynamic
predictions based on long-term data series. Therefore, by
combining the advantages of RS theory and the LSTM
network, this paper establishes a concrete dam deformation
prediction model based on RS-LSTM, and the prediction
model is optimized considering the relevant influential
factors and interactive mechanisms between these factors
and concrete dam deformation in a quantitative manner.
The process of establishing a concrete dam deformation
prediction model based on RS-LSTM is shown in Figure 6.
The specific modeling steps are as follows.

2.3.1. Data Acquisition. Statistical methods are used to
perform gross error processing for concrete dam monitoring
data. Such methods provide a reliable data foundation for the
establishment of prediction models. Attribute reduction in
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y
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Figure 5: Output gate structure.
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RS theory is conducted based on a complex multivariate
dataset composed of water depth, temperature, seepage flow,
fracture aperture, and uplift pressure information to
accurately obtain the representative factors that affect the
deformation behaviours of concrete dams. Deformation
monitoring data and the representative influential factors
corresponding to certain measurement points are selected
as the model dataset. The representative factor dataset is
standardized using an independent standardization formula,
and the model dataset is divided into a training set and
testing set by a cross-validation method.

2.3.2. Model Training. The preprocessed and standardized
training set samples are used as model inputs. Error back
propagation based on the gradient descent algorithm drives
the model loss function to converge, and the optimal model
parameters are obtained. The Dropout algorithm is used to
overcome the problem of overfitting in training, and finally,
a prediction model with optimal parameters is obtained.

2.3.3. Model Prediction. The testing set samples are input into
the trained prediction model to obtain the corresponding
deformation prediction results.

2.3.4. Model Performance Evaluation. According to the
established evaluation system, the results of the concrete
dam deformation prediction model based on LSTM, a classi-
cal least squares (OLS) model, a support vector machine
(SVM) model, and a multilayer perceptron (MLP) model
with 2 hidden layers are compared based on accuracy,
robustness, externality, and generalization.

2.4. Evaluation System for the Concrete Dam Deformation
Prediction Model. A concrete dam deformation prediction
model plays an important role in operational behaviour
monitoring, real-time abnormality detection, and decision-
making, and its performance directly affects condition
assessments and early warning strategies. In actual applica-
tion processes, a single accuracy evaluation index may have
certain limitations, and it is often impossible to evaluate the
robustness, externality, and generalization of a model. There-
fore, a complete evaluation system for concrete dam deforma-
tion prediction models must be established for practical
applications. Therefore, this paper evaluates model perfor-
mance from the aspects of accuracy, robustness, externality,
and generalization, and quantitative evaluation indexes are
used to comprehensively evaluate the performance of the
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dataset

Start

Model 
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Dataset
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Figure 6: Process of establishing the concrete dam deformation prediction model based on RS-LSTM.
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concrete dam deformation prediction model based on
statistical theory.

2.4.1. Accuracy. The accuracy of the concrete dam deforma-
tion prediction model refers to the degree of agreement
between the predicted and true values. This evaluation index
is the most widely used in model assessment. In actual
engineering, the MAPE, MSE, and RMSE are usually selected
to evaluate the accuracy of a model. Considering the nonsta-
tionarity of deformation monitoring data and the overlap
among evaluation indexes, the RMSEP and MAPEP are
selected to establish the accuracy evaluation index (AEI) of
the concrete dam deformation prediction model. The corre-
sponding formulas are defined as follows.

RMSEP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
〠
n

t=1

yt − y∧tð Þ2

s

,

MAPEP =
100

n
〠
n

t=1

yt − ŷt
yt

	

	

	

	

	

	

	

	

:

ð18Þ

2.4.2. Robustness. The robustness of a concrete dam deforma-
tion prediction model refers to its resistance to the inherent
errors in training data. Model training and prediction are
performed by establishing normal training samples and
training samples with a certain degree of random error. The
ability of a model to learn the true nonlinear mapping rela-
tionships when there is a small gross error in the training
set is tested. The absolute difference between the RMSEO of
the training model prediction results with no gross error
and the RMSEE of the training model prediction results with
gross error is selected as the robustness evaluation index
(REI) for the concrete dam deformation prediction model.
The corresponding formula is defined as follows.

REI = RMSEO − RMSEEj j: ð19Þ

2.4.3. Externality. The externality of the concrete dam defor-
mation prediction model refers to its adaptability to accu-
rately process samples outside the training set with the
same mapping relationship. A high-performance model
based on its externality ability can learn the mapping rela-
tionships hidden in data through training set. Even if some
samples are outside the training set, a model with a satisfac-
tory externality can achieve accurate predictions. The sam-
ples outside the training set are fused with the testing
samples, and the prediction performance of the model based
on a training set with the same mapping relationship is
tested. The accuracy index of the model under this condition,
the RMSEP , is selected as the externality evaluation index
(EEI). The corresponding formula is defined as follows.

EEI = RMSEP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
〠
n

t=1

yt − y∧tð Þ2

s

: ð20Þ

2.4.4. Generalization. The generalization of a concrete dam
deformation prediction model refers to its adaptability to
process samples with the same mapping relationship. A poor

generalization ability can lead to overfitting. In such cases,
the model error for the training set is very low, but the error
is very large for the testing set. The model is optimized by
adding training samples, performing regularization process-
ing, and applying the Dropout algorithm to improve its
generalization performance. Selecting the ratio of RMSET

in the training process to RMSEP in the prediction process
is selected as the generalization evaluation index (GEI). The
corresponding formula is defined as follows.

GEI =
RMSEP

RMSET

: ð21Þ

In each evaluation index formula above, yðtÞ represents
a measured value; ŷðtÞ represents a predicted value; n
represents the number of predicted samples; the subscript
T represents the training process; the subscript P represents
the prediction process; the subscript O represents samples
with no gross error; and the subscript E represents samples
with gross error.

2.5. Simulation Environment and Engineering Project.
Concrete dam deformation prediction models based on
OLS, SVM, MLP, and LSTM are established in accordance
with the horizontal displacement of concrete gravity dams,
and the evaluation system is used to evaluate the accuracy,
robustness, externality, and generalization of each model.
Additionally, a comparative analysis is performed. The simu-
lation environment includes the Windows 10 operating
system, an Intel Core i5 CPU, 8GB of memory, the Python
programming language version 3.7.2rcl, and the TensorFlow
deep learning framework version 1.12.0.

2.5.1. Engineering Situation. Zhouning Hydropower Station
is a diversion-type power station on the Muyang River in
Fujian Province that performs step exploitation. The total
installed capacity is 250MW, the total storage capacity of
the reservoir is 47 million m3, and the designed flood level is
633.00m. The power station consists of a barrage, a sluice
building, a water conveyance system, an underground power-
house, and a ground switch station. The barrage is an RCC
gravity dam with a foundation plane elevation of 562.00m, a
maximum dam height of 72.40m, and a dam crest length of
206.00m. The body of Zhouning Dam is divided into nine
dam sections, of whichNos. 1-4 andNos. 7-9 are nonoverflow
sections and Nos. 5-6 are overflow sections.

The deformation monitoring data collected by Zhouning
Hydropower Station include horizontal and vertical dam dis-
placement data. The horizontal displacement monitoring of
the dam crest is performed by the extension wire alignment
method. The fixed end of the extension wire with a total
length of 200.75m is arranged at Sta. R01+107.025 and the
guide end is placed at Sta. L0+93.50. In total, 11 monitoring
points are arranged along the dam, of which nine datum
points are located at the top of each dam section and two
checkpoints are set at the left and right ends of the extension
wire to check the displacement of each end. The extension
wire system was automated in April 2005 with an observation
frequency of 1 time per day. The layout of the extension wire
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measurement points for horizontal displacement is shown in
Figure 7.

2.5.2. Selection and Optimization of Influential Factors in the
Prediction Model. According to theoretical knowledge, mon-
itoring data, expert experience, etc., the initial selection of
empirical influence factors was as follows:

H −H0ð Þ1, H −H0ð Þ2, H −H0ð Þ3, T5 − Tð Þ, T20 − Tð Þ,
�

T60 − Tð Þ, T90 − Tð Þ, θ, ln 1 + θð Þ, J ,Q,U
�

,

ð22Þ

where H is the water depth on a day when observations are
collected, H0 is the water depth on the base day; T i is the
mean reservoir region temperature i days ago, and T is the
annual mean temperature. Additionally, θ = ðt − t0Þ/100,
where t is the observation date and t0 is the date of the base
day. J is the average fracture aperture at measurement points,
Q is the seepage flow, and U is the average uplift pressure at
measurement points.

The initial empirical influential factors are selected as the
conditional attributes X, and the horizontal displacements
obtained by the dam crest extension wire (to the left bank is
positive and to the right bank is negative) at point EX1 are
set as the decision attributes Y in the single-point prediction
model. Additionally, the horizontal displacements of EX1,
EX2, EX4, EX5, EX6, and EX7 are selected as the decision
attributes YM in the multipoint prediction model (because
the extension wire at EX3 contacted a stainless-steel rod, the
monitoring data at the point are not reliable). Overall, 864
monitoring samples of horizontal displacement and influen-
tial factors were selected as the sample set U . The attribute
range V was determined based on the K-means clustering
algorithm with adaptive discretization, and the number of
clusters was experimentally determined to be 7. To eliminate
irrelevant orweakly informative input variables and keep only
the representative factors that affect concrete dam deforma-
tion, the RS theory is used to conduct an attribute reduction
and importance evaluation and obtain an initial information
table S = fU , X ∪ Y , V , f g. The attribute reduction and

importance evaluation results for the single-point and multi-
point prediction models are shown in Table 1.

According to attribute reduction and importance evaluation
results, the influential factors of the single-point prediction
model are {H‐H0, ðH‐H0Þ

2, ðH‐H0Þ
3, ðT5‐TÞ, ðT20‐TÞ, θ, ln

ð1 + θÞ}, and the importance evaluation values for each compo-
nent of horizontal displacement at EX1 are 0.12, 0.08, 0.13, 0.42,
0.20, 0.02, and 0.03, respectively. The influential factors of the
multipoint prediction model are {H‐H0, ðH‐H0Þ

2, ðH‐H0Þ
3,

ðT5‐TÞ, ðT20‐TÞ, θ, ln ð1 + θÞ, J ,Q,U}, and the importance
evaluation values of each component of the horizontal
displacement at EX1, EX2, EX4, EX5, EX6, and EX7 are
0.10, 0.07, 0.06, 0.33, 0.19, 0.00, 0.00, 0.02, 0.04, 0.06, 0.08,
and 0.05. Therefore, it can be concluded that the horizontal
displacement of the extension wire is greatly affected by
temperature changes and water level fluctuations. Specifically,
the temperature component accounts for 60% of the horizontal
displacement, and the lag period of the water level is approxi-
mately 20 days.

2.5.3. Sample Selection for Prediction Models. According to
attribute reduction and importance evaluation results, the
influential factor monitoring data of the single-point and
multipoint prediction models are selected to obtain samples
as independent variables, and the horizontal displacement
at points EX1-EX7 (except EX3) is selected to obtain samples
as dependent variables. The dataset is established between
June 2, 2016, and October 22, 2018, and has a total of 864
samples of data. The dataset of 700 samples selected from
June 2, 2016, to May 10, 2018, is used as the training set,
and the dataset of 164 samples selected from May 11, 2018,
to October 22, 2018, is adopted as the testing set. Investiga-
tions of the concrete dam deformation prediction model
based on the OLS, SVM, MLP, and LSTM methods are
performed using the dataset with 864 samples of data. Varia-
tions in the water depth and horizontal displacement are
shown in Figures 8 and 9.

2.5.4. Model Parameter Setting. The performance of SVM,
MLP, and LSTM models depends greatly on the setting of
some parameters. According to experience and experiment
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Figure 7: Layout of the extension wire measuring points for horizontal displacement.

8 Journal of Sensors



results, parameters of the adapted algorithms, namely, regu-
larization parameters, kernel function parameters, network
parameters, learning rates, and so on, are given before the
simulation.

Parameters in the SVM model: the kernel function is
determined as a radial basis function (RBF) according to
experience. Parameter range of the SVM model is deter-
mined based on experience, penalty parameter C ∈ ½−256,

Table 1: Attribute reduction results of the single-point and multipoint prediction models.

Experience
impact factors

Component
name

Single-point
model SIM

Reduction
Importance evaluation

Sig a, X, Yð Þ
Multipoint
model SIM

Reduction
Importance evaluation

Sig a, X, Yð Þ

H‐H0

Water
pressure

-5 No 0.12 -4 No 0.10

H‐H0ð Þ2 -2 No 0.08 -2 No 0.07

H‐H0ð Þ3 -2 No 0.13 -4 No 0.06

(T5‐T)

Temperature

-5 No 0.42 -7 No 0.33

(T20‐T) -4 No 0.20 -2 No 0.19

(T60‐T) 0 Yes 0.00 0 Yes 0.00

(T90‐T) 0 Yes 0.00 0 Yes 0.00

θ
Aging

-2 No 0.02 -2 No 0.02

ln 1 + θð Þ -1 No 0.03 -3 No 0.04

J Fracture -1 Yes 0.00 -2 No 0.06

Q Seepage -2 Yes 0.00 -4 No 0.08

U
Uplift
pressure

-3 Yes 0.00 -3 No 0.05
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256�, kernel parameter γ ∈ ½−256, 256�. Parametric tuning is
implemented with Grid Search, C is set to 8, and γ is set to
0.72 according to the experimental relationship between the
objective functions and parameters.

Parameters in the MLP model: according to experiment
results, the network is composed of input layer, hidden
layers, and output layer with the three-layer topology of 7-
15-15-1 for single-point prediction model and 10-15-15-1
for multipoint prediction model, and the learning rate is also
set to 0.08. The network variable parameter weights and
biases are initialized randomly and calculated by gradient
descent algorithms, and the activation function is the ReLU
function.

Parameters in the LSTMmodel: hyperparameter range of
the LSTM model is determined based on experience, batch
size ∈ ½0, 1000�, timestep ∈ ½20, 300�, hidden layers ∈ ½20,200�,
and the initial value of learning rate is set to 0.1. Taking the
minimum RMSE value as the objective function, and
according to the experimental relationship between the
objective function and parameters, parametric tuning is
implemented with Grid Search. Finally, batch size, time-
step, hidden layers, and learning rate are set to 12, 46,
42, and 0.12, respectively. The network variable parameters
including weights and biases are generated using the
glorot_uniform initializer and calculated by gradient
descent algorithms.

3. Results

To verify the superiority of the concrete dam deformation
prediction model based on LSTM compared to other models
in terms of accuracy, robustness, externality, and generaliza-
tion, a comparative analysis of the OLS, SVM, MLP, and
LSTM models is conducted based on the prediction results
with preprocessed training and testing samples.

3.1. Single-Point Prediction Model. Single-point prediction
models for concrete dam deformation based on the OLS,
SVM,MLP, and LSTM algorithms are established to facilitate
comparative analysis.

3.1.1. Model Prediction Analysis. Concrete dam deformation
prediction models based on the OLS, SVM, MLP, and LSTM
algorithms were established based on the preprocessed stan-
dardized environmental dataset and the unnormalized defor-
mation dataset. Based on the objective functions, the training
samples are used to train the models, and the optimal model
parameters are obtained. Finally, a concrete dam deforma-
tion prediction and performance analysis are performed.
The measured and predicted values of concrete dam defor-
mation based on the OLS, SVM, MLP, and LSTM models
are shown in Figure 10.

Figure 10 shows that the predicted values of the OLS
model largely deviate from the measured values, but the over-
all trend is similar to that for the measured values. The devi-
ation between the predicted values of the SVM, MLP, and
LSTM models and the measured values is small, but the
late-stage prediction trend of the SVMmodel deviates signif-
icantly from the measured values. The LSTMmodel not only
exhibits the highest degree of agreement between the pre-
dicted and measured values but also yields the same trend
as that for the measured values. Therefore, the prediction
performance of the concrete dam deformation prediction
model based on LSTM is significantly better than that based
on the OLS, SVM, and MLP models.

3.1.2. Model Performance Evaluation. A prediction model for
concrete dam deformation is an important tool for quantita-
tively evaluating the safety status of dams, revealing abnor-
malities in the service status and ensuring engineering
safety. A high-performance deformation prediction model
should meet the relevant accuracy, robustness, externality,
and generalization requirements to implement effective early
warning strategies and feedback control for engineering
safety. To verify the reliability of the concrete dam deforma-
tion prediction model based on LSTM, concrete dam defor-
mation prediction models based on OLS, SVM, MLP, and
LSTM were compared and analyzed according to the evalua-
tion system established in this paper. The horizontal dis-
placement residuals of each prediction model are shown in
Figure 11. Evaluation index values of all prediction models
are shown in Table 2.
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(1) Accuracy. Figure 11 and AVI value of each model in
Table 2 show that the horizontal displacement residuals of
the concrete dam deformation prediction model based on
LSTM are the smallest, RMSEP is lower than 0.1, MAPEP is
lower than 10, and all these are in the low range compared
with those of the models based on OLS, SVM, and MLP.
Therefore, the concrete dam deformation prediction model
based on LSTM displays better accuracy than the other
models, and the prediction results better agree with the real
data.

(2) Robustness. The REI value of each model in Table 2 shows
that the concrete dam prediction models based on OLS,
SVM, MLP, and LSTM are all affected by the gross error,
resulting in different degrees of prediction accuracy. The
REI value of the concrete dam deformation prediction model
based on LSTM is the smallest among the REI values of all the
models; thus, the gross error associated with the data sample
has little impact on the prediction results of the proposed
model, which displays the strongest robustness.

(3) Externality. The EEI value of each model in Table 2 shows
that the accuracy of the models decreases after adding
samples outside the training set to the model testing samples.
Nevertheless, the concrete dam deformation prediction
model based on LSTM exhibits the smallest EEI, representing
the strongest externality and the most powerful learning
ability.

(4) Generalization. The GEI value of each model in
Table 2 shows that the generalization of the concrete
dam deformation prediction models based on OLS and
SVM is poor. These models likely experience overfitting
during training, resulting in an increase in the error for
the testing set and poor performance. The concrete dam
deformation prediction models based on MLP and LSTM
display good generalization performance, and the LSTM
model yields the best performance.

In summary, the successful application of machine
learning technology has greatly promoted the development
of concrete dam deformation prediction model compared
with using traditional statistical methods. The concrete
dam deformation prediction models based on SVM,
MLP, and LSTM all displayed high accuracy, but the
performance of each model in terms of robustness, exter-
nality, and generalization varies. The concrete deformation
prediction model based on LSTM displays the highest
accuracy, robustness, externality, and generalization by
comparison with the performance of the other models.
Therefore, the application of LSTM to concrete deforma-
tion prediction models further promotes the development
of concrete dam prediction model.

3.2. Multipoint Synchronized Prediction Model for Concrete
Dam Deformation. According to the theoretical, mathemat-
ical, and mechanical principles of concrete dams, the
concrete dam deformation is affected not only by loads
such as water pressure and temperature loads but also by
adjacent local factors. The sudden displacement of some
dam parts will influence the surrounding areas, and a
single-point prediction model for concrete dam deforma-
tion does not consider the relationships among points;
therefore, it is difficult to grasp the displacement field
under a given load. It is necessary to establish a multipoint
synchronized prediction model for concrete dam deforma-
tion that can effectively improve the prediction perfor-
mance compared to that of traditional models and the
accuracy of mechanical parameter inversion and feedback
analysis. Additionally, such a method could improve the
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Figure 11: The horizontal displacement residuals of each prediction model.

Table 2: Evaluation index values of all prediction models.

Prediction model
OLS SVM MLP LSTM

AVI

RMSEP 0.32833 0.2466 0.1604 0.0690

MAPEP 29.7077 24.7789 16.3695 6.3213

REI 0.3253 0.3672 0.2865 0.1760

EEI 0.4032 0.2739 0.1892 0.1023

GEI 0.8266 0.8788 0.9336 0.9610
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safety monitoring level of concrete dams. This paper
establishes a multipoint synchronized prediction model
for concrete dam deformation based on the data
collected at multiple points and the advantages of LSTM
for multiple inputs and outputs.

3.2.1. Model Prediction Analysis. The factors that influence
the multipoint synchronized prediction model for concrete
dam deformation are determined by attribute reduction. All
the data are normalized and used as samples of the indepen-
dent variables in the LSTM model, and the deformation
monitoring data from points EX1-EX7 (except EX3) are
selected as samples of the dependent variable (no normaliza-
tion processing). The training data and testing set are divided
in the same way as in the single-point model. The output
layer is a multidimensional fully connected layer, the model
learning rate is 0.18, and other parameters are the same as
those in the single-point model. The six-point synchronized
prediction model for concrete dam deformation with optimal
parameters is obtained by training, and the deformation
values are predicted based on the testing samples. The actual
measured values and the predicted values of the single-point
and multipoint models are shown in Figure 12 (taking the

measured values at EX1 as an example). The measured values
and values predicted with the multipoint synchronized
deformation model are shown in Figure 13 (taking the mea-
sured values at EX4-EX6 as examples).

3.2.2. Model Performance Evaluation. Since the prediction
model is based on the deformation values at multiple points,
the error of the multipoint model includes the error at all
points. According to error theory, RMSE of the multipoint
model is the weighted average of RMSE at each point, and
it can be expressed as follows:

S =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ns21 + ns22+⋯+ns2k
kn

r

=

ffiffiffiffiffiffiffiffiffiffi

〠
k

i=1

s2i
k

v

u

u

t , ð23Þ

where S represents the RMSE of the multipoint model, si
represents each point, and k represents the number of testing
samples.

The RMSE values of the multipoint synchronized predic-
tion model and single-point prediction model are compared
and analyzed, as shown in Table 3.
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Figures 12 and 13 and Table 3 show that the performance
of both models is good, and the error is within the acceptable
precision range. The RMSE value of the multipoint predic-
tion model is smaller than that of the single-point prediction
model, and the predicted values of the multipoint model are
closer to the measured values. Additionally, the weighted
average RMSE of the single-point prediction model is larger
than the RMSE of the multipoint model, which indicates that
the prediction accuracy at each point in the multipoint model
is high. Therefore, the multipoint synchronized prediction
model for concrete dam deformation based on LSTM
exhibits good performance, and the analysis results are
locally meaningful and spatially representative at large scales.

4. Conclusions and Discussion

RS theory and an LSTM network are introduced for concrete
dam safety monitoring in the TensorFlow framework, and
single-point and multipoint concrete dam deformation
prediction models based on LSTM are established. Moreover,
a new evaluation system and quantitative evaluation indexes
for the concrete dam deformation prediction model are
proposed. The following conclusions were obtained from
application examples.

(1) RS theory is applied to optimize the selection and
evaluate the importance of the factors that influence
concrete dam deformation based on the internal rela-
tionships among the monitoring dataset. This
approach overcomes the deficiencies of intelligent
prediction models related to the quantitative inter-
pretation and ensures the objectivity of prediction
model analysis

(2) According to statistical theory, an evaluation system
is proposed, and accuracy, robustness, externality,
and generalization evaluation indexes are given as
performance inspection criteria to comprehensively
evaluate the performance of concrete dam deforma-
tion prediction models in practical engineering

(3) The single-point prediction model for concrete dam
deformation based on LSTM displays high prediction
accuracy and strong robustness, externality, and gen-
eralization. Moreover, the multipoint synchronized
prediction model for concrete dam deformation
based on LSTM is locally pertinent and spatially
representative at large scales. Thus, the multipoint
approach can be effectively used in the deformation
prediction of concrete dams at large scales

The continuous improvements in concrete dam tech-
nology have resulted in high requirements for prediction
model performance, and establishing high-performance
spatiotemporal prediction models will be important as
concrete dam safety monitoring continues to progress.
Therefore, the combination of AI, deep learning theory,
online dynamic learning, and space-time deformation
prediction models should be promoted to establish an ideal
concrete dam monitoring system and achieve the goal of
“intelligent monitoring.”
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