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Abstract

Background: The rapid development in big data analytics and the data-rich environment of intensive care units

together provide unprecedented opportunities for medical breakthroughs in the field of critical care. We developed

and validated a machine learning-based model, the Pediatric Risk of Mortality Prediction Tool (PROMPT), for real-

time prediction of all-cause mortality in pediatric intensive care units.

Methods: Utilizing two separate retrospective observational cohorts, we conducted model development and

validation using a machine learning algorithm with a convolutional neural network. The development cohort

comprised 1445 pediatric patients with 1977 medical encounters admitted to intensive care units from January

2011 to December 2017 at Severance Hospital (Seoul, Korea). The validation cohort included 278 patients with 364

medical encounters admitted to the pediatric intensive care unit from January 2016 to November 2017 at Samsung

Medical Center.

Results: Using seven vital signs, along with patient age and body weight on intensive care unit admission, PROMPT

achieved an area under the receiver operating characteristic curve in the range of 0.89–0.97 for mortality prediction

6 to 60 h prior to death. Our results demonstrated that PROMPT provided high sensitivity with specificity and

outperformed the conventional severity scoring system, the Pediatric Index of Mortality, in predictive ability. Model

performance was indistinguishable between the development and validation cohorts.

Conclusions: PROMPT is a deep model-based, data-driven early warning score tool that can predict mortality in

critically ill children and may be useful for the timely identification of deteriorating patients.
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Background

Hospitalized children, particularly those in high-acuity

environments such as the pediatric intensive care unit

(PICU), are inevitably susceptible to clinical deterioration.

Several outcome prediction models such as the Pediatric

Index of Mortality (PIM) and the Pediatric Risk of Mortal-

ity (PRISM) are widely used in PICUs [1, 2]. However,

these acuity scores are based on “snapshot” values gath-

ered during the early period following PICU admission.

These static scores fail to adapt with the patient’s clinical

progression and offer little assistance for the management

of individual patients [3, 4].

Previous studies demonstrating that acute deterioration

in patients is often preceded by subtle changes in physio-

logical parameters [5, 6] led to the development of the Early

Warning Score (EWS) [7]. Accurate and generalizable risk

stratification tools may contribute to the timely identifica-

tion of high-risk patients and facilitate earlier clinical inter-

vention leading to improved patient outcomes [8]. Since its

introduction, the EWS has undergone many alterations,

and its modified forms are widely used in general hospitals

today [9, 10]. However, the primary target population is

usually confined to relatively healthy patients in general

wards [9, 11] or emergency department settings [12] and

may not be applicable to intensive care settings [13].

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: kwkim@yuhs.ac
†Soo Yeon Kim and Saehoon Kim contributed equally to this work.
1Department of Pediatrics, Severance Children’s Hospital, Institute of Allergy,

Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS

Project for Medical Science, Yonsei University College of Medicine, 50-1

Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea

Full list of author information is available at the end of the article

Kim et al. Critical Care          (2019) 23:279 

https://doi.org/10.1186/s13054-019-2561-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s13054-019-2561-z&domain=pdf
http://orcid.org/0000-0003-4529-6135
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:kwkim@yuhs.ac


Current literature frequently calls for the development

of diverse intensive care warning scores [14–16]. The rapid

development in machine learning, coupled with the rich-

ness of data from extensive patient monitoring in the

intensive care unit (ICU), provides unprecedented oppor-

tunities for the development of new prediction scores in

the field of critical care [17–19]. Challenges in the analytics

of PICU data, including pathologic diversity and complex-

ity [20] and the wide range of age and developmental

stages, are anticipated to be addressed by the implementa-

tion of innovative predictive modeling [18, 21].

Curtis et al. developed a cardiac arrest prediction model

by time series trend analysis using a support vector ma-

chine algorithm that achieved excellent performance [22].

In addition, Zhengping et al. adopted Gradient Boosting

Trees to learn an interpretable model, which demonstrated

strong performance for the prediction of mortality and

ventilator-free days in the PICU [23]. Despite their success-

ful application of data-driven analytics, the above studies

were limited by the lack of external validation. To allow

practical application in a real-world setting, the preliminary

results would require further refinement regarding data

elements, extraction, processing, and operation with

acceptable false alarms.

In this paper, we describe the development and evalu-

ation of a new tool, the Pediatric Risk of Mortality Predic-

tion Tool (PROMPT), for real-time mortality prediction in

PICUs. We also assessed PROMPT’s suitability for practical

application in the clinical care of critically ill children.

Methods
Study population and data sources

We used data from the electronic health records (EHRs)

of all patients under 19 years old admitted to the medical

ICU at Severance Hospital (Seoul, Korea) between

January 2011 and December 2017. The primary cohort

contained 1445 patients with 1977 ICU admissions. For

external validation, we used a separate dataset provided

by Samsung Medical Center (Seoul, Korea) containing

data on 278 patients with 364 PICU admissions from

January 2016 to November 2017. Details on these data-

sets are presented in Additional file 1: Table S1. All data

were anonymized, and a waiver was obtained from the

Institutional Review Board of each hospital (#4-2017-

0060 and #2019-09015-001, respectively).

Feature selection and data processing

The extracted data contained sets of static features, such

as demographic and clinical information, and temporal

features such as time-stamped vital signs. To construct a

mortality prediction tool, we adopted two descriptive

features—age and weight—and seven vital signs: systolic

blood pressure (SBP), diastolic blood pressure (DBP),

mean blood pressure (MBP), heart rate (HR), respiratory

rate (RR), peripheral capillary oxygen saturation (SpO2),

and body temperature (BT). We selected vital signs as

objective predictor variables because they are routinely

and frequently collected from all patients regardless of

clinical situation and the values are rarely affected by the

examiner. Most vital signs of ICU patients are automat-

ically measured by monitoring devices at minimum once

an hour, and the values are recorded on the EHR.

The following cleaning process ensured that the EHR

data was ready for analysis and did not contain errors.

Non-numeric values were removed. In addition, a set of

defined ranges of physiologically possible values for

selected variables were used to eliminate outliers

(Additional file 1: Table S2). Carry-forward/carry-back-

ward methods were employed for imputations. In case

of multiple measurements within an hour, the most

extreme values were used. Policy-based preprocessing

was automated and resulted in an average coverage of

96.1% of all data with an accuracy of 97.5% compared to

manual corrections. Finally, for modeling, each variable

was standardized to fit an isotropic Gaussian distribution.

Machine learning

The primary outcome was all-cause mortality in the ICU.

For this binary outcome, we extracted positive instances

from all cases who died in ICU and negative instances from

all cases who survived (Additional file 1: Figure S1). The

24-h window of vital signs up to 6 to 60 h prior to death

was extracted as a positive instance, and 24-h window of

vital signs randomly chosen from during ICU stay of the

survivor was assigned as a negative instance. For simplicity,

only a single instance was selected from each encounter,

and both sampled positive and negative instances were

designated to be similar in their mean lengths to avoid

possible biases (Additional file 1: Table S3).

Model development was carried out using convolutional

neural networks (CNNs) [24], a class of deep, feed-forward

artificial neural networks consisting of alternating convolu-

tional and subsampling layers that replicate the complex-

ities of the animal visual cortex. The convolution operation

involves combining input data with a convolution kernel to

form transformed data. The filters in the convolutional

layers are modified based on learned parameters to incorp-

orate the most useful information for a specific task. This

method adjusts automatically to determine the best feature

based on the task and has achieved great success in feature

representation learning in images [25]. Recent reports have

also demonstrated its utility in predicting sepsis in adult

[26] and pediatric populations [27] and cardiac arrhythmias

[28]. A detailed architecture of our CNN, which consisted

of two layers of one-dimensional convolutional operations

followed by max pooling is presented in the supplementary

materials for reproducibility (Additional file 1: Table S4). A

fivefold cross-validation with five repetitions on the
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development cohort was adopted to validate PROMPT’s

performance, and external validation was followed to assess

its generalizability.

Statistical analysis

We compared the performance of PROMPT with other

standard machine learning algorithms, such as Gradient

Boosting Decision Trees (GBDT) [29], Long Short-Term

Memory (LSTM) [30], and the Pediatric Index of Mor-

tality 3 (PIM 3), which is currently widely used in PICUs

[1]. Model performance was assessed based on discrim-

ination using the area under the receiver operating char-

acteristic curve (AUROC), one of the most commonly

used metrics, and the area under the precision-recall

curve (AUPRC), which, because the outcome of interest

was mortality, was calculated considering a skewed large

domain of true negatives [31]. Sensitivity, specificity,

positive predicted value (PPV), negative predicted value

(NPV), and accuracy were also evaluated for all predic-

tion tools assessed in this study.

Results
Dataset statistics

As shown from the descriptive statistics for each cohort

(Additional file 1: Table S1), the development cohort

consisted of 1977 patient encounters, in which 303 cases

of mortality (15.3%) were identified. The validation co-

hort showed 9.6% mortality. Significant differences were

noted between the two datasets in terms of age, PIM 3,

mortality, length of ICU stay, and inclusion period.

Mortality prediction performance

The performance metrics of PROMPT on mortality

prediction compared to other standard machine learning

algorithms and PIM 3 are summarized in Table 1. The

best performance was achieved for predicting mortality

6 h prior to death (AUROC 0.965, AUPRC 0.831) with a

slight decrease, although still high-performance, as the time

window increased to 60 h prior to death. In detecting mor-

tality 60 h in advance, PROMPT (AUROC 0.887, AUPRC

0.565) consistently outperformed GBDT (AUROC 0.831,

AUPRC 0.419), LSTM (AUROC 0.814, AUPRC 0.429), and

Table 1 Summary of model mortality detection performance

Development cohort Validation cohort

Lead time window AUROC 95% CI AUPRC 95% CI AUROC 95% CI AUPRC 95% CI

PROMPT

6 h 0.965 ± 0.006 0.831 ± 0.018 0.922 ± 0.004 0.716 ± 0.016

12 h 0.948 ± 0.009 0.745 ± 0.029 0.945 ± 0.004 0.701 ± 0.023

24 h 0.933 ± 0.009 0.733 ± 0.027 0.946 ± 0.005 0.605 ± 0.024

48 h 0.899 ± 0.013 0.570 ± 0.041 0.849 ± 0.007 0.360 ± 0.023

60 h 0.887 ± 0.018 0.565 ± 0.052 0.881 ± 0.011 0.445 ± 0.031

GBDT

6 h 0.944 ± 0.008 0.767 ± 0.022 0.877 ± 0.005 0.499 ± 0.032

12 h 0.927 ± 0.008 0.684 ± 0.028 0.915 ± 0.005 0.605 ± 0.022

24 h 0.908 ± 0.014 0.612 ± 0.032 0.897 ± 0.007 0.442 ± 0.021

48 h 0.853 ± 0.014 0.452 ± 0.031 0.805 ± 0.009 0.342 ± 0.025

60 h 0.831 ± 0.022 0.419 ± 0.051 0.790 ± 0.012 0.403 ± 0.035

LSTM

6 h 0.945 ± 0.010 0.808 ± 0.019 0.875 ± 0.006 0.547 ± 0.039

12 h 0.915 ± 0.016 0.703 ± 0.031 0.870 ± 0.012 0.520 ± 0.034

24 h 0.889 ± 0.013 0.644 ± 0.032 0.837 ± 0.012 0.348 ± 0.032

48 h 0.844 ± 0.014 0.530 ± 0.029 0.770 ± 0.013 0.348 ± 0.027

60 h 0.814 ± 0.025 0.429 ± 0.050 0.759 ± 0.019 0.353 ± 0.034

PIM 3

Total 0.767 – 0.509 – 0.881 – 0.500 –

Subset 1* 0.787 – 0.315 – 0.876 – 0.462 –

Subset 2** 0.785 – 0.298 – 0.876 – 0.462 –

AUROC area under the receiver operating characteristic curve, CI confidence interval, AUPRC area under the precision-recall curve, PROMPT pediatric risk of

mortality prediction tool, GBDT Gradient Boosting Decision Trees, LSTM Long Short-Term Memory, PIM 3 Pediatric Index of Mortality 3
*Subset of the cohort with data of at least 48 h
**Subset of the cohort with data of at least 60 h
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PIM 3 (AUROC 0.785, AUPRC 0.298) in the development

cohort (Table 1), also shown in the micro-averaged per-

formance comparisons (Additional file 1: Figure S2). Similar

results were found on external validation (Table 1).

Additional paired comparison metrics at a sensitivity

of 0.8 for specificity, PPV, NPV, and accuracy for each

model are presented in Table 2. Within the development

cohort, PROMPT identified 80% of patients who were to

die in 24 h, yielded 7% false alarms (specificity = 0.931),

and was the most consistently accurate of all metrics.

Comparison of sensitivity according to the number of

false alarms showed that PROMPT provided fewer false

alarms than existing models, including PIM 3, in both

cohorts (Additional file 1: Figure S3).

Visualization of prediction trajectory

PROMPT produced an averaged mortality risk score over

multiple prediction models trained from development

cohorts to predict mortality in the preceding 6, 12, 24, 48,

and 60 h (examples are presented in Fig. 1). Where t is the

current time point, the input data composed of two

descriptive features and vital signs in a range of [t − 24, t]

transformed to an averaged risk score. The same procedure

was repeated at the t + 1 time points to generate prediction

trajectory. A sliding window (0 to 24 h) moved hour-by-

hour through the time series to generate predicted mortal-

ity for each time point during the ICU stay.

Designation of time and feature contributions

An interpretation module that quantitatively measured

the contribution of time series features for mortality was

developed. Every time-stamped vital sign was substituted

for an age-dependent mean value and, following changes

in predicted mortality, produced quantitative contribu-

tions of each feature (%). In addition, algebraic manipu-

lation demonstrated that the contribution of each time

point was captured by the importance of six blocks in mak-

ing a prediction. This is because a temporal relationship is

lost due to pooling operations. Accordingly, 24 h data was

grouped by six blocks for which the contribution to the

prediction was computed. An average filter was then ap-

plied for smoothing the signal. Figure 2 depicts illustrative

Table 2 Comparison of model’s accuracy for mortality prediction

Development cohort Validation cohort

Lead time window Sensitivity Specificity PPV NPV Accuracy Sensitivity Specificity PPV NPV Accuracy

PROMPT

6 h 0.846 0.963 0.663 0.986 0.953 0.800 0.850 0.288 0.982 0.846

12 h 0.800 0.946 0.555 0.983 0.935 0.800 0.890 0.336 0.985 0.884

24 h 0.800 0.931 0.454 0.985 0.922 0.849 0.887 0.334 0.989 0.884

48 h 0.800 0.834 0.224 0.986 0.832 0.800 0.752 0.177 0.983 0.755

60 h 0.800 0.882 0.268 0.988 0.878 0.800 0.772 0.190 0.983 0.773

GBDT

6 h 0.800 0.933 0.509 0.982 0.922 0.800 0.805 0.238 0.981 0.805

12 h 0.801 0.898 0.398 0.982 0.891 0.800 0.854 0.276 0.984 0.850

24 h 0.800 0.854 0.283 0.983 0.850 0.800 0.818 0.227 0.984 0.817

48 h 0.800 0.769 0.172 0.985 0.771 0.800 0.629 0.126 0.979 0.640

60 h 0.800 0.693 0.123 0.985 0.698 0.800 0.551 0.107 0.976 0.567

LSTM

6 h 0.800 0.951 0.588 0.982 0.939 0.800 0.770 0.209 0.981 0.772

12 h 0.800 0.888 0.374 0.981 0.881 0.800 0.782 0.204 0.982 0.783

24 h 0.800 0.828 0.251 0.983 0.826 0.800 0.740 0.170 0.982 0.743

48 h 0.800 0.729 0.150 0.984 0.733 0.800 0.537 0.104 0.976 0.554

60 h 0.800 0.626 0.103 0.983 0.635 0.800 0.505 0.098 0.974 0.524

PIM 3

Total 0.800 0.617 0.392 0.909 0.661 0.800 0.799 0.298 0.974 0.799

Subset 1* 0.806 0.643 0.218 0.964 0.661 0.818 0.754 0.182 0.984 0.758

Subset 2** 0.800 0.643 0.200 0.966 0.659 0.818 0.754 0.182 0.984 0.758

PPV positive predictive value, NPV negative predictive value, PROMPT pediatric risk of mortality prediction tool, GBDT Gradient Boosting Decision Trees, LSTM Long

Short-Term Memory, PIM 3 Pediatric Index of Mortality 3
*Subset of the cohort with data of at least 48 h
**Subset of the cohort with data of at least 60 h
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Fig. 1 (See legend on next page.)
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examples of a deceased case showing the measured contri-

bution of each time point and those of features at the most

critical time point, as well as the linear trend of vital signs

for 24 h.

Interpretability of PROMPT

Individual feature importance was plotted by computing a

sensitivity heat map on a total of 363 test instances in the

development cohort to measure the importance of individ-

ual input variables (Additional file 1: Figure S4). The

sensitivity was defined as the derivative of the predicted

mortality according to the input variables, and the relative

importance of input variables was normalized to satisfy the

sum-to-one constraint. RR showed the highest relative im-

portance among all other features, followed by SBP and HR.

Individual Conditional Expectation plots are shown in

Additional file 1: Figure S5. These six plots show the test

instances in the development cohort. The predicted

mortality probability was computed by creating variants of

each input variable while keeping all other features as it is.

For blood pressures, predicted mortality tends to increase

when pressure values are too low or too high, and it de-

clines as the feature value falls within the physiological

range. A similar trend was observed in other vital signs,

such as HR, RR, and BT. In SpO2, predicted mortality

tends to decrease as the degree of saturation increases to

100%. However, several instances were identified with a

(See figure on previous page.)

Fig. 1 Prediction trajectory using PROMPT. Serial trends of recorded vital signs during ICU stay and hourly calculated predicted mortality rate

using PROMPT shown for patients from the validation cohort who survived (a) and died (b), respectively. Predicted mortality was averaged over

multiple prediction models trained from development cohort using the dataset to predict mortality in the preceding k hours (where k = 6, 12, 24,

48, and 60). SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; HR, heart rate; RR, respiratory rate; SpO2,

peripheral capillary oxygen saturation; BT, body temperature; ICU, intensive care unit

Fig. 2 Depiction of time and feature contributions for mortality using PROMPT. Measured contribution (%) for mortality at the critical time point and

serial trend of vital signs over 24 h are plotted on each panel. The last sub-figure presents the time contribution. The height of the graph represents

the level of importance, and the positive/negative conversion distinguishes the time point contributed to make positive or negative predictions for

mortality. In the presented case, the critical time point (i.e., a peak of time contribution) was about 10 h, of which fluctuations in SpO2, blood pressure,

and HR are shown to contribute to instability which can be associated with mortality. SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP,

mean blood pressure; HR, heart rate; RR, respiratory rate; SpO2, peripheral capillary oxygen saturation; BT, body temperature
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high mortality probability despite a high SpO2, due to the

correlation between the features.

Discussion

In this study, we developed and validated a targeted real-

time early warning score, PROMPT, based on a CNN

algorithm using a PICU dataset with routine vital signs.

Utilizing a handful of variables, PROMPT achieved high

performance with high sensitivity and specificity for pre-

dicting mortality in PICU patients. In predictive ability, it

outperformed the conventional severity scoring system,

PIM 3, as well as other models that use GBDT and LSTM.

Existing risk prediction tools in ICU use static physio-

logical parameters from early in the course of critical

illness (often within the first 24 h following admission),

along with other components, such as age and diagnosis,

to assess severity and risk of death for the purpose of

predicting outcomes [32]. For pediatric populations,

PIM and PRISM are the most representative [1, 2]. How-

ever, it is generally agreed that they are poor surrogates

for risk stratification and should not be used as the basis

for individual treatment decisions [4, 33, 34]. Generic se-

verity scores were originally developed and calibrated to

maximize the capacity for mortality risk assessment for

populations of interest, and not for clinical decision-

making concerning individuals within those populations

[4]. Moreover, utilizing the poorest values within a fixed

time window, regardless of the outcome of interventions,

fails to reflect the dynamic clinical course including

differential treatment responses. Thus, these systems are

unable to distinguish which patients are at higher risk of

developing specific acute conditions. In our study, this

was demonstrated by the notably low discriminative

ability of PIM 3 in mortality prediction.

Predictive analytics on time series monitoring data

were introduced [35, 36] based on evidence that physio-

logic signatures preceded acute deterioration of patients

prior to the arousal of clinical suspicion [5, 6, 37]. Wide-

spread adoption of EHRs which could be queried in real

time enabled the development of EWS with the ability

to identify clinically deteriorating patients in need of

intervention [8, 38]. Accordingly, a wide variety of differ-

ent tools now exist and are operated alongside rapid re-

sponse teams in different hospital contexts [9, 10, 39].

For instance, the Bedside Pediatric Early Warning Score

(PEWS) is used across the UK National Health Service

for the detection of patients in wards who are at risk of

acute deterioration, facilitating their timely upgrade to

higher level care [40, 41]. Similarly, many other EWS

systems have been developed and validated primarily on

general wards [11, 40], and their use has been extended

to emergency departments [12, 42] and prehospital

settings [43].

The ICU environment, where patients are clinically un-

stable and change rapidly between states of improvement

and deterioration, calls for meticulous monitoring and

clinical support. This has facilitated the development of

ICU early warning systems [18, 44, 45]. The development

of more sophisticated monitoring devices has resulted in an

exponential growth in sensor data. This, coupled with re-

cent advances in machine learning, artificial intelligence

techniques, and data archiving hardware, has facilitated the

discovery of data-driven characteristics and patterns of dis-

eases [18, 36, 46–48]. However, the numerous developmen-

tal stages, baseline age-related differences in physiologic

parameters, and the wide range of underlying pathologic di-

versity present unique challenges for the analysis of PICU

patient data [20, 21]. Moreover, physiological data of the

patient is continuously influenced by clinical interventions

such as oxygen supplement, volume resuscitation, and

vasopressor use, given that the core principle of intensive

care is to maintain the steady state [20]. Because variations

in physiological data occur within a complex biological

system composed of multiple components that interact

together, more sophisticated deep learning models such as

neural networks, which automatically learn features, have

demonstrated better performance than traditional machine

learning [49].

Our study makes several significant contributions to the

existing literature on mortality prediction in the PICU set-

ting. PROMPT utilized changing vital signs of individuals;

employed CNN, a deep model primarily used in image an-

alytics; and achieved high accuracy and discriminative

ability in predicting mortality. Prediction performance

decreased slightly as the time window ahead of the event

lengthened from 6 to 60 h, and the performance of this

earlier identification was relatively lower in the validation

cohort. Nevertheless, PROMPT provided AUROC above

0.88 for predicting mortality 60 h in advance from both

cohorts. Moreover, it consistently achieved higher sensi-

tivity and specificity compared to other standard machine

learning algorithms and PIM 3.

Accuracy and false alarm rate are important issues to

consider in the practical implementation of EWS in ICU

settings. Because sensitivity and specificity mutually

interact, the performance of EWS and alarm fatigue

should be weighed and optimized [50]. Notably,

PROMPT consistently provided higher specificity than

PIM 3 and other algorithms against which it was

tested. In addition, PROMPT maintained a higher

level of accuracy than other models even with a small

number of alarms (Additional file 1: Figure S3).

In this study, PROMPT used seven vital signs along with

the patient’s age and body weight on PICU admission.

The model does not require any custom data entry and

relies entirely on data elements that are usually available

from the EHRs of most hospitals. Incorporating further
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parameters such as laboratory tests would be expected to

enhance PROMPT’s performance. However, we note that

models based on continuously updated physiologic moni-

toring data are better able to provide timely warning of

pending deterioration. Thus, using only the most basic

and commonly measured critical care data streamed from

the bedside monitor has an advantage for the broader

adoption of this model in other ICUs. Relatively minimal

data requirements, few manual data entry requirements,

and automated operation on data extracted from EHRs

save additional labor and cost and may lighten the burden

of application in the clinical setting.

This study has several limitations. First, we could not de-

termine the generalizability of our results to other popula-

tions. In addition, the retrospective study design did not

allow the determination of model performance in a pro-

spective setting. Our model remains a population-based

estimate, as we did not validate its efficacy for individual

prognostication in a prospective way. Moreover, despite

PROMPT’s high performance in detecting and predicting

mortality, this knowledge alone is insufficient to affect pa-

tient outcomes. Clinician input is required to determine

clinical interventions and shape patient-centered outcomes.

However, considering that clinicians in the PICU envir-

onment face limited clinical resources and that rationing of

health care is a reality in some respects, PROMPT may

have the potential to benefit clinical practice. If the risk of

critical adverse outcomes is identified earlier, clinicians

could allocate staffing and other medical resources

with a higher level of certainty. Our model utilizes

easily collected data and, therefore, may be particu-

larly suitable for bedside prognostications in relatively

low-resourced environments.

In addition, because the predictive window of

PROMPT is up to 60 h before death, earlier warnings

may give physicians more time to intervene and prevent

or mitigate mortality. Alternatively, once physicians are

alerted and prepared for the likelihood of death, there

are opportunities for preference-concordant, high-value

care in PICUs by initiating goals of care discussions earl-

ier and revising treatment plans. Hence, our future work

will focus on the practical impact of early recognition of

at-risk patients on clinically relevant outcomes.

Lastly, we would like to stress the additional implica-

tions of our model. Although our current model does

not tell the clinician precisely how to treat a deteriorat-

ing patient, the trajectory of predicted risk and designa-

tion for time and feature contributions are expected to

provide additional information, indirectly. Changes in

the trend of predicted mortality over time, coupled with

an event or specific intervention with a patient, may pro-

vide clinicians intuitive insight into potential associations

with a favorable or unfavorable clinical course in individ-

ual cases.

Conclusion
In this two-center retrospective study, we validated an

easily implementable deep model-based real-time mor-

tality prediction system for critically ill children. Using

seven vital signs routinely recorded in standard critical

care practice, along with patient age and body weight on

ICU admission, our results indicate that PROMPT

provides high sensitivity, specificity, and discriminative

ability for the prediction of patients at high risk for

mortality up to 60 h prior to death. This data-driven

early warning score may be an effective tool for the

timely recognition of deteriorating patients.
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