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Abstract—Time-series forecasting is applied to many
areas of smart factories, including machine health monitor-
ing, predictive maintenance, and production scheduling.
In smart factories, machine speed prediction can be used
to dynamically adjust production processes based on dif-
ferent system conditions, optimize production throughput,
and minimize energy consumption. However, making accu-
rate data-driven machine speed forecasts is challenging.
Given the complex nature of industrial manufacturing pro-
cess data, predictive models that are robust to noise and
can capture the temporal and spatial distributions of input
time-series signals are prerequisites for accurate forecast-
ing. Motivated by recent deep learning studies in smart
manufacturing, in this article, we propose an end-to-end
model for multistep machine speed prediction. The model
comprises a deep convolutional LSTM encoder–decoder
architecture. Extensive empirical analyses using real-world
data obtained from a metal packaging plant in the United
Kingdom demonstrate the value of the proposed method
when compared with the state-of-the-art predictive models.

Index Terms—Convolutional long short-term memory
(ConvLSTM), deep learning (DL), industry 4.0, stacked au-
toencoders, time-series forecasting.

I. INTRODUCTION

S
MART manufacturing integrates big data, advanced an-

alytics, high-performance computing, and the industrial

Internet of things to manufacturing systems and industries to

improve manufacturing processes, resulting in better quality

products that are available at lower costs [1]. In smart factories,

devices, machines, and processes are interconnected, monitored,

and optimized to enhance productivity and efficiency. The ap-

plication of these technologies for manufacturing now repre-

sents a key enabler for addressing challenges in manufacturing
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processes, such as demand management, production/inventory

supply, and scheduling. A typical example is a situation where

sensors can observe production lines in real-time, store this

production data and use the analysis (from the observations)

to produce forecasts of the projected/anticipated production

plan.

Machine learning (ML) is considered as an enabling tech-

nology for smart manufacturing, which has contributed to the

growth of the ‘industry 4.0’ era, resulting in increased research

interest in the application of data/predictive analytics, ML,

and advanced information and communication technologies for

improving manufacturing processes. Consequently, both super-

vised and unsupervised learning approaches, such as principal

components analysis [2], [3], artificial neural networks (ANN)

[4], Bayes network [5], and regression trees [6] have been

applied to manufacturing process optimization.

Data-driven techniques for predictive analytics in smart man-

ufacturing can be classified as (traditional) ML techniques

and deep learning (DL) techniques [7]. In the literature, many

data-driven approaches have been applied toward time-series

forecasting or classification, including autoregressive integrated

moving average (ARIMA) [8], support vector machines [9],

statistical analysis [10], and instance-based learning techniques.

The application of traditional ML techniques on large datasets

consistently exposes the inherent vulnerabilities of these mod-

els, such as the inability to deal with the high dimensionality

of the data feature space, multicollinearity, and varying data

aggregation [11].

On the other hand, DL refers to techniques for learning

high-level features from data in a hierarchical manner using

stacked layer-wise architectures [12]. Four main groups of DL

architectures have been identified in the literature:

1) autoencoders;

2) deep belief networks;

3) convolutional neural networks (CNN);

4) recurrent neural networks (RNN).

In recent history, the results obtained from DL have increased

research interest in the application of DL to the research area

of smart manufacturing [11]. DL models demonstrate excellent

predictive capabilities in image and speech recognition, natu-

ral language processing, and intelligent gamification. In smart

manufacturing, many studies have developed and applied DL

algorithms for anomaly detection [13], faults diagnosis [14],

and machine health monitoring [15] and [16]. Although they
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are adept at image recognition, CNNs mainly operate in a

vector space, thereby increasing the difficulty in learning the

high-dimensional features of input time series. For this reason,

applying CNN architectures alone to the time-series forecast-

ing problem is sub-optimal. However, long short-term memory

(LSTM) networks are skillful in sequential learning by passing

signal information across time steps. Leveraging the comple-

mentary strengths of CNN and LSTM neural networks, the

convolutional LSTM (convLSTM) model both preserves spatial

information and performs well in sequential learning [17].

Motivated by this modeling approach, this article proposes

2-DConvLSTMAE, a deep ConvLSTM stacked autoencoder for

univariate, multistep machine speed forecasting in a manufactur-

ing process. The end-to-end model has three distinct components

as follows:

1) convLSTM encoding layers;

2) bidirectional stacked LSTM decoding layers;

3) time-distributed supervised learning [fully connected

(FC)] layer.

The input time-series signal is reconstructed into a sequential

supervised learning format (i.e., sequences of fixed window size

and output sequences) using a sliding-window strategy. Each

input sequence is fed into the encoding layer. The output from

the first encoding layer serves as the input to the second encoding

layer. The resulting sequences are passed onto the flatten and

repeat vector layers, respectively, where they are reconstructed

into a one-dimensional (1-D) tensor. This is then passed to the

decoding layer, where a stack of bidirectional LSTM layers

reconstructs the original input time series from the resultant

tensor. The last layer is a time-distributed FC regression layer

for multistep machine speed forecasting.

In this article, the problem is formulated as a sequential

(i.e., sequence-to-sequence) forecasting problem. The input data

comprises the internal speed (measured as the number of strokes

per minute) of a metal can bodymaker machine, which operates

at high speed and produces up to 300 aluminum cans per minute.

In can manufacturing production planning processes, predicting

the speed of the bodymaker machine, which is related to the num-

ber of cans produced by the machine, can be used to optimize

production schedules by allowing real-time adjustment of the

individual operating speeds for other upstream or downstream

machines. For details about metal can manufacturing, the reader

can refer to [18].

We test the performance of 2-DConvLSTMAE using his-

torical, real-world machine speed data obtained via machine-

embedded sensors in an aluminum can manufacturing machine

from a metal packaging plant in the United Kingdom. The

results of rigorous empirical analyses in this article substan-

tiate the value of the proposed approach when compared to

state-of-the-art DL models.

The contributions of this article are summarised as follows.

1) An end-to-end multistep (i.e., sequence-to-sequence)

time-series forecasting model comprising a convLSTM

encoder–decoder architecture for multistep machine

speed prediction.

2) A time-distributed encoder–decoder model, which is ca-

pable of short- and long-term representation learning for

machine speed prediction in smart manufacturing.

3) A robust, scalable, DL predictive model that has been

evaluated on real-world, real-time machine speed signals

in a manufacturing plant.

The remainder of this article is organized as follows. Section II

presents the technical preliminaries of key concepts used in this

article. Section III presents the proposed 2-DConvLSTMAE

model and methodological approach. In Section IV, the experi-

ments and results are discussed, while Section V concludes this

article.

II. TECHNICAL PRELIMINARIES

This section formulates the sequence-to-sequence time-series

forecasting problem and provides a technical background about

key concepts in the domain of DL, which are used within this

article.

A. Problem Formulation

The goal of multistep (i.e., sequence-to-sequence) time-series

forecasting is the use of previously observed (i.e., lagged) input

sequences to forecast a fixed-length sequence of the future

time-series values. In ML, this is typically regarded as a sequen-

tial time-series forecasting problem or sequence-to-sequence

forecasting [19]. To achieve this, the sliding-window method

[20] is adopted, which converts the sequential input data to a

supervised learning problem (i.e., inputs and outputs). In this

method, a portion of the input time-series sequence (a window

of lagged values) is reconstructed to serve as input features.

The number of previous time steps is referred to as the window

width/size.

Given a univariate time series x(t) = {x1, x2, x3, . . . , xt},

the sequence-to-sequence forecasting problem is to predict the

future k values of the sequence, ŷ = (ŷ1, ŷ2, . . . , ŷk) ∼=
(xt+1, xt+2, . . . , xt+k), using the values of previous observa-

tions in a sliding window of fixed size w, such that

ŷ = (ŷ1, ŷ2, . . . , ŷk) = f(xt−w, xt−w+1, xt−w+2, . . . , xt).
(1)

In this article, the input observations refer to the machine

speed obtained over a regular period (i.e., one minute). It is

important to note that sequence-to-sequence forecasting differs

from single-step time-series forecasting because the predicted

output is a sequence of predicted machine speed values rather

than a single value of the predicted variable. The above data

transformations for a time series of lengthN result in a sequence-

to-sequence forecasting problem having an input matrix X ∈
R

n×w and output matrix Y ∈ R
n×k, where n = (N − w − k +

1) is the number of training samples (Fig. 5 shows details about

the adopted sliding-window approach).

B. Structure of the CNN

The CNN is a feedforward neural network that is mostly

adopted in image and video recognition [14]. Fig. 1 shows

the structure of a typical CNN model. The input layer takes

the input vector and develops a feature graph corresponding

to the convolution kernel, which uses a set of weights to produce

a feature graph, which is passed onto the next layer. The link

between the input and convolution layer is established by a
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Fig. 1. Structure of a typical CNN.

receptive field, which is a square matrix of weights with sizes

that are smaller than the input. As the receptive field strides or

“convolves” along the input area, it executes the convolution

operation, which is described as

yij = σ

(
F∑

r=1

F∑

c=1

wrcx(r+1×S)(c+j×S) + b

)
(2)

0 ≤ 1 ≤
H − F

S
, 0 ≤ j ≤

W − F

S
(3)

where yij denotes the output of a node on the feature map, H
and W represent the height (vertical) and width (horizontal)

dimensions of the input, respectively. F denotes the height and

width size of the receptive field; and S represents the stride

length. The term x(r+1×S)(c+j×S) refers to the input data ele-

ment with coordinates (r + i× S, c+ j × S), and wrc and b
represent the weight positioned on the receptive field and the

bias, respectively. σ denotes the nonlinear activation function

used to extract the features from the input.

Within the convolutional layer, the input size (H ×W ×D)
is reduced to [(H−F+2P

S+1
) × (W−F+2P

S+1
)×K], where K de-

notes the number of filters. This process gradually decreases

the dimension as the convolution layer stack becomes deeper.

The pooling layer has two main functions: reduce the spatial

dimension of the input layer by (typically) up to 75% and control

overfitting.

C. LSTM Neural Networks

The LSTM is a variant of the traditional RNN that preserves

the temporal dimension of sequential data by connecting neurons

to and form a network that is a direct cycle of the input data. Fig. 2

shows the basic structure of an LSTM memory cell having two

distinct components—the long-term state component c(t) and

the short-term state component h(t).

The memory cell, as shown in Fig. 2, contains three control

gates—input, output, and forget gates—which, respectively, per-

form write, read, and reset functions in each cell. The multiplica-

tive gates allow the model to store information over long periods,

thereby eliminating the vanishing gradient problem observed

in RNNs [21]. The following set of equations represents the

description of the input, forget, and cell activation, and output,

respectively, which enable the LSTM to predict the output

vector:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) (4)

ft = σ (Wxfxt +Whfht−1 +Wcfct−1 + bf ) (5)

Fig. 2. Basic architecture of the LSTM memory cell.

Fig. 3. Inner structure of the ConvLSTM.

ct = ftct−1 + itg (Wxcxt +Whcht−1 + bc) (6)

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) (7)

ht = oth (ct) (8)

where W and b represent the weight matrix and bias vector, re-

spectively, and σ(.) denotes a standard logistic sigmoid function.

The variables i, f, o, and c are the input gate, forget gate, output

gate, and cell activation vector, respectively.

D. Convolutional LSTM

A convolutional LSTM or convLSTM model is a variant of

the LSTM that replaces the FC layer operators with convo-

lutional operators [17]. It uses convolution operators for the

input-to-hidden and hidden-to-hidden connections. Within the

LSTM memory cell, the ⊕ and ⊗ operators refer to the matrix

addition and dot product operators, respectively. Therefore, by

replacing the convolution operators with an LSTM memory

cell, the ConvLSTM is able to know what information is to

be ‘remembered’ or ‘forgotten’ from the previous cell state,

using its forget gate. Similarly, the ConvLSTM also decides

what information is to be stored in the present cell state. The

process of the ConvLSTM is described in a similar manner to

(4)–(8) used for the LSTM memory cell computation. However,

the difference with the ConvLSTM is that the input vector xt is

fed as images (i.e., 2-D or 3-D matrices) with every weight in the

connection replaced by convolution filters. In the ConvLSTM,

the transition between the states (from time steps) is analogous to

the movement between the frames. Fig. 3 shows the visualization

of the inner structure of the ConvLSTM. The input matrix at time
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xt is used to compute the hidden present state ht at time t and

takes into account the hidden state at the previous and next time

step ht−1 and ht+1, respectively.

E. Autoencoder

The autoencoder is a feedforward neural network in which the

input is the same as the output. In other words, autoencoders are

(unsupervised) learning algorithms that extract features from

input data without the need for labeled target datasets. The

autoencoder consists of three basic components: the encoder,

the code, and the decoder. These function according to their

literal meanings. The encoder compresses the input to a ‘code,’

which is subsequently decoded by the decoder. For this reason,

the autoencoder can be used as a dimensionality reduction

strategy in time-series forecasting as it can compress the input

to a mapped hidden layer [12]. The stacked autoencoder is

a hierarchically layered stack of autoencoders and, just like

autoencoders, they learn in an unsupervised manner. The model

training process involves greedy layer-wise training to minimize

the error between the input and output vectors. The subsequent

layer of the autoencoder is the hidden layer of the previous one,

with each of the layers trained by gradient descent algorithm

using an optimization function.

III. 2-DCONVLSTMAE MODEL

In this section, the proposed deep ConvLSTM autoencoder

model for univariate time-series forecasting of machine speed

in a smart factory is presented.

A. ConvLSTM Encoder

Although the ConvLSTM has been applied in time-series

classification for anomaly detection using video sequences [22],

its performance is known to deteriorate with an increase in

sequence length. To overcome this limitation, the ConvLSTM

applies an attention-based mechanism, which adaptively deter-

mines and retains the relevant hidden states across the time steps.

Therefore, (4)–(8) are rewritten as

it,l = σ
(
W l

xzx
t,l +W l

xzh
t−1.l +W l

xz ◦ c
t−1.l + blz

)
(9)

f t,l = σ
(
W l

xrx
t,l +W l

hzh
t−1.l +W l

cr ◦ c
t−1.l + blr

)
(10)

ct,l = it,l ◦ tanh
(
W l

xcx
t,l +W l

hch
t−1.l + blc

)
+ rt,l ◦ ct−1.l

(11)

ot,l = σ
(
W l

xox
t,l +Whoh

t−1.l +W l
co ◦ c

t.l + blo
)

(12)

ht = ot,l ◦ tanh
(
ct,l

)
(13)

where ◦ represents the Hadamard product, σ represents the

sigmoid function,W l
xz ,W l

xz ,W l
xr, W l

cr,W l
xc,W l

hc,W l
xo,Who,

and W l
co ∈ R

n×T represent the convolutional kernels within

the model, while blz , blr, blc, and blo are the bias parameters in the

lth layer of the ConvLSTM. Fig. 4 represents the summary archi-

tecture of the proposed 2DConvLSTMAE model. In our model,

the ConvLSTM layers have 128 and 64 filters, respectively,

with the kernel sizes of (1 × 3). The ConvLSTM layers are

arranged in a layered structure to extract the temporal features

Fig. 4. Model architecture of 2-DConvLSTMAE.

hierarchically. In the ConvLSTM, the length of sequences is a

hyperparameter that affects model performance, and hence must

be optimized. The optimal length of sequences (i.e., the number

of the previous sequence segments) was determined using a grid

search framework (see Section III-C) as 20, with three of these

lengths (i.e., three subsequences each of length 20) used in the

training regime. The output consists of an FC network of ten

units (corresponding to the ten multistep outputs or predictions).

B. Bidirectional LSTM Decoder

The output of the encoder phase of our model is a series of

feature map vectors of dimension (n× 1 × 8 × 64), where n
represents the number of training samples used. To decode the

feature maps obtained from the encoder layers, a repeat vector

layer is applied. The main function of the layer is to ‘repeat’ the

final output vector from the encoding layer in a shape that is a

constant input to each time step of the decoder. In this way, the

decoding layer is able to reconstruct the original input sequence.

The output of this repeat vector layer is passed onto a layered

bidirectional LSTM stacked network (see Fig. 4). Each LSTM

layer is made of 200 LSTM units, with rectified linear unit

activation applied. The output of the previous LSTM layer is

fed into the next layer as input in a hierarchical manner. In this

way, the decoder layer can incorporate the encoded output vector

from the ConvLSTM encoder, which improves the performance

of the predictive model by fostering representation learning at

the individual layers [12].

C. Hyperparameter Optimization

The performance of DL models depends on predetermined

hyperparameters, which are obtained using an optimization

process. Unlike model parameters, which are learned using an

optimization function to minimize an objective (or loss) func-

tion, hyperparameters are not learned during the model training
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TABLE I
HYPERPARAMETERS OF THE 2-DCONVLSTMAE MODEL

process. Several hyperparameters exist for DL models, and for

the model presented in this article, eight hyperparameters were

optimized, as presented in Table I.

Many hyperparameter optimization methods exist, such as

random search, grid search, and Bayesian optimization. How-

ever, for this article, we applied a grid search framework for

the hyperparameter optimization [23] of both the proposed 2-

DConvLSTMAE and the individual baseline/competitor model

hyperparameters. The grid search approach is chosen due to its

reliability in low-dimensional spaces such as this present study

[24] in comparison to manual search. Second, the grid search

method is simple to implement and parallelization can easily be

configured. The hyperparameter optimization method adopted

in this article is described as follows: Given a set ∀, which has

an index of n possible configuration hyperparameters h. The

grid search requires the selection of a set of values for each

hyperparameter (h1 · · ·hk) that minimizes the validation loss.

The grid search algorithm assembles all combinations of values

in a ‘grid’ format, such that the number of trials in a grid search is

S =
∏n

n=1 |h
(k)|. Table I tabulates the hyperparameter search

space applied within the grid search framework to optimize the

model hyperparameters. The other benchmark models included

in this article have been optimized using a similar approach.

D. Optimizer

Within DL models, the process of optimizing model pa-

rameters is typically performed using stochastic gradient-based

optimization algorithms. A number of optimization algorithms

exist for use in DL models, such as RMSProp [25], AdaGrad

[26], and vSGD [27]. In our network, a stochastic gradient-based

optimization algorithm—Adam [28]—is used. The learning rate

value determined by the grid search framework was 1 × 10−6.

E. Loss Function

For this article, the loss function is the root-mean-square

error (RMSE). Therefore, the RMSE over the training data is

calculated and backpropagated to update the model parameters

with each iteration (epoch). RMSE is described as

RMSE =

√
1

n

∑n

i=1
(ŷi − yi)

2
(14)

where ŷi and yi, respectively, represent the predicted values

and target variable, and n represents the sample size. We ap-

plied minibatch stochastic gradient descent using the optimizer

described in Section III-D to minimize this loss. After training

through a number of iterations (epochs), the network parameters

are then used to predict the next ten time steps, given a sequence

of input prior observations.

IV. EXPERIMENTS AND RESULTS

In this section, we report the experimental setup and evalu-

ation process of the proposed DL sequence-to-sequence time-

series predictive model for machine speed prediction. To empiri-

cally evaluate the performance of the 2-DConvLSTMAE model,

historical data are used from a bodymaker machine.

A. Data Preparation

The dataset used for this article contains historical machine-

collected speed data obtained at a frequency of 1
60

Hz. The data

represent the operational speed of a high-speed aluminum can-

making machine, measured as the number of strokes per minute

and logged internally by the machine. This bodymaker machine

is employed in metal can manufacturing to produce the full

length can body from a small (metal) cup that is forced through

a series of iron rings [18]. The operational speed of the body-

maker machine, which influences production throughput and

yield, typically exhibits a mixture of periodic patterns linked to

“normal” production schedules and episodic, sporadic patterns

due to abnormal operations. In addition, this machine impacts

(and is impacted by) the upstream and downstream processes,

such as the cupper (upstream) and the can cleaning/sterilizing

(downstream) machines.

In this article, the dataset contained 525 600 observations of

minute-wise machine speed (strokes/min) within a date range

from 31/08/2017 00 : 00 to 30/08/2018 23 : 59. From this

dataset, 463 978 were used for model training, 51 553 for testing,

while 10 000 were validation observations. As described in

Section II-A, the data must be transformed into a format that

is suitable for (sequential) supervised learning. In this article,

a sliding window of size w = 60 and a recurrent step size of

one are used (see Fig. 5). The prediction interval is chosen as

k = 10 min. Therefore, the training data were transformed from

a univariate input sequence x(t) = {x1, x2, x3, . . . , xN} of

shape (N × 1) to a matrix of shape (n× 60 × 1) from the trajec-

tory of the univariate input time-series data, where N is the total

number of observations in the dataset (i.e., 525 600) and n refers

to the training dataset size n = (N − k − w + 1) = 525 531.
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Fig. 5. Transforming input time series to samples.

B. Baseline Models

In order to evaluate the performance of the 2-DConvLSTMAE

model for multistep machine speed prediction, we compare the

performance against the naïve, statistical, and three state-of-the-

art DL baseline models.

1) Persistence Model: The persistence model, a widely used

benchmark model for time-series forecasting, operates on the

assumption that the predicted value of the target variable remains

unchanged from the previous time lag. In other words, the

predicted value at time t, ŷt = yt−1 for all times. This naïve

model proves to be highly accurate especially in short-term

forecasting but exhibits vulnerabilities in multistep prediction

[29].

2) Autoregressive Integrated Moving Average: ARIMA is a

well-known time-series forecasting model. The main assump-

tion of ARIMA is the stationarity of the mean and variance, and

that there exists a linear relationship between the lags (i.e., past

observations) and the future state, which constitutes a limitation.

3) Residual-Squeeze Net (RSNet): The RSNet proposed in

[15] comprises of 1-D CNNs using the RSNet architecture via

the squeeze operation that fuses the information using an optimal

combination of channels learned during the model training. We

apply a single-channel input data as described above to train the

model.

4) Deep LSTM Encoder–Decoder: We use the model pre-

sented in [19], which is a stacked architecture of LSTM layers

connected to a time-distributed dense layer.

5) CNN-LSTM Encoder–Decoder: A CNN-LSTM autoen-

coder model architecture presented in [30] is the third baseline

model. The work presented a classifier, but the model was

modified to include a regression layer.

C. Model Performance Evaluation

In terms of model evaluation, we adopted a technique referred

to as walk-forward validation or backtesting. The traditional

prediction evaluation methods, such as k-fold cross validation or

train-test splitting do not work well when applied to time-series

data because these evaluation methods assume that there is no

relationship between the observations, which is not the case with

time-series data, where the sequential dimension needs to be

preserved.

TABLE II
PERFORMANCE EVALUATION OF PREDICTIVE MODELS

USING WINDOW SIZE OF 30

For model evaluation, we applied three error evaluation

metrics—RMSE, mean absolute error (MAE), and symmetrical

mean absolute percentage error (sMAPE), which are defined by

(14)–(16), respectively

MAE =
1

n

n∑

i=1

|ŷi − yi| (15)

sMAPE =
200

n

n∑

i=1

|ŷi − yi|

|ŷi|+ |yi|
. (16)

D. Implementation Environment

The experimental environment used for this article was on a

single machine with Intel Xeon E-2146G CPU @ 3.50 GHz,

128-GB memory and NVIDIA Tesla V100-PCIE 16GB GPU.

The GPU is used for accelerated model training due to a large

computation demand in DL models. The development was per-

formed using Python 3.6.8 and Tensorflow 1.12.0.

E. Comparison With Baselines

To empirically evaluate the performance of the individ-

ual models, we test the models using window sizes of 60

and 30, respectively, and the evaluation metrics described in

Section IV-C. Table II and Fig. 6 represent the results for the em-

pirical analysis of the predictive models trained using a window

of size 30. As the results show, 2-DConvLSTMAE outperformed

the baselines in all evaluation metrics. From Table II, it can be

seen that our model, in addition to displaying superior predictive

accuracy, took the least training time in comparison to the

DL models. It must be mentioned that although the ARIMA

and persistence models took significantly lower training times,

they, however, performed worse than the 2-DConvLSTMAE

(see Table II). Generally, naïve models (such as the persistence

model) are used to benchmark the performance of predictive

models. Consequently, a model that outperforms a naïve model

is considered as ‘skillful’ in time-series forecasting [12].
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Fig. 6. Performance comparison of baseline models using window
size 30.

TABLE III
PERFORMANCE EVALUATION OF PREDICTIVE MODELS

USING WINDOW SIZE OF 60

To test the proposed model for robustness in larger window

sizes, we used observations from the prior 60 min as input

features (i.e., window size w = 60). The results of this analysis

are presented in Table III. Note that the ARIMA and persistence

models are not affected by the window size, since they do not

require prior data manipulation or transformation. As can be

seen from Table III, the proposed 2-DConvLSTMAE model also

outperformed the state-of-the-art DL models in all the evaluation

metrics. Furthermore, the proposed model required the lowest

training time (in comparison to the DL baselines), which makes

it applicable to industrial process modeling. Fig. 7 shows the bar

plots of the individual errors (RMSE) for each of the predictive

models. As can be seen, there is robustness in our proposed

model, as the performance does not significantly deteriorate

with a change in the window size. However, as can be seen from

Fig. 7. Performance of models using both window sizes, respectively.

Tables II and III, the optimal window size for 2-DConvLSTMAE

is 60.

Figs. 8 and 9 both show the respective DL model predic-

tive performances for the first 200 time steps for window size

w = 30 and w = 60, respectively. For each of the subplots,

the x-axis represents the time steps, while the y-axis represents

the value of the machine speed (for the upper half of the sub-

plot) and the absolute error between the predicted and actual

values (for the lower part of the subplot), respectively. From the

figures, it can be seen that the 2-DConvLSTMAE significantly

outperformed the state-of-the-art benchmark DL models both

in the shorter- (i.e., 30 prior inputs) and longer-term window

size training regimes. Also, it can be observed from Fig. 8

that the LSTM encoder–decoder [19] model performs better

than the other baseline models, given that the LSTM memory

cells better capture the long-term dependencies in the sequential

dataset than the other baseline models. This ability to capture

the long-term dependencies constitutes the main prospect and

potential for the application of ConvLSTM deep networks on

large time-series dataset from manufacturing operations. It can

be seen from Figs. 8 and 9 that the predictive performance of

the 2-DConvLSTMAE is robust to the machine speed variance

and temporal distribution, evidenced in the superior predictive

performance using 30 and 60 prior observations, respectively

[see Figs. 8(d) and 9(d)].

The effectiveness of the 2-DConvLSTMAE can be

rationalized from the following standpoints. First, the deep

ConvLSTM layers adequately capture the spatial and temporal

distribution of the sequential data, leveraging the advantages of

both the LSTM and CNN models at sequential and automatic

feature extraction, respectively. As the results have shown (see

Tables II and III; Figs. 7–9), the 2-DConvLSTMAE captures the

temporal patterns hidden in the machine speed signals. Second,

the encoder–decoder architecture doubles as a dimensionality
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Fig. 8. Predictive performance of models on validation partition trained using a window size of 30. (a) RsNet [15]. (b) CNN-LSTM-SAE [30].
(c) LSTM encoder–decoder [19]. (d) 2-DConvLSTMAE.

reduction technique and an unsupervised learning regime,

fostering representation learning, and, thereby, reducing

model training time, simultaneously. The combination of

the approaches—stacking ConvLSTM and LSTM layers

in an encoder–decoder architecture—toward the machine

speed prediction resulted in better performance (reduction in

training time and prediction error) for the univariate time-series

prediction of machine speed.

F. Analysis of Sensitivity of 2-DConvLSTMAE With
Respect to Sequence Length

As previously stated in Section II-D, the sequence length in

the ConvLSTM is a hyperparameter that needs to be optimized

externally. Consider the input to the 2-DConvLSTMAE model,

X ∈ R
n×w, which is further segmented into p subsequences.

These subsequences have a uniform length such that l = w
p

,

where l is the subsequence length and w denotes the sliding-

window size (i.e., 60 for this current study—see Section IV-A).

In order to obtain an optimal l, we performed a sensitivity

analysis of this hyperparameter. For this experiment, we set the

subsequence length l to 60, 30, 20, 12, and 10, respectively, to

test the impact of these on the predictive error and the model

training time. The other model hyperparameters remained the

same as before (see Table I). Fig. 10 shows the results of

the performance of the 2-DConvLSTMAE with the different

subsequence lengths. It can be seen that the optimal l is 20

(red dotted line), as the configuration resulted in the lowest

RMSE and training time, respectively. It must be mentioned here

that the optimal sequence length will depend on the particular

application, which may be linked to individual production cycles

and different data distributions.
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Fig. 9. Predictive performance of models on validation partition trained using window size of 60. (a) RsNet [15]. (b) CNN-LSTM-SAE [30].
(c) LSTM encoder–decoder [19]. (d) 2-DConvLSTMAE.

Fig. 10. Sensitivity analysis of impact of subsequence length on accu-
racy and training time.

V. CONCLUSION

In this article, a novel deep ConvLSTM autoencoder architec-

ture has been proposed for machine speed prediction in a smart

manufacturing process. By restructuring the input sequence to a

supervised learning manner using a sliding-window approach,

the predictive model—2-DConvLSTMAE—was applied to the

multistep time-series forecasting problem. 2-DConvLSTMAE

leveraged the advantage power of the CNN in automatic fea-

ture extraction and the LSTM for sequential and representation

learning. In the proposed model, the encoder–decoder architec-

ture, which doubles as a dimensionality reduction technique,

promoted representation learning in the model training regime,

resulting in the reduced computational demand and training

time. The results from empirical analyses showed that

1) 2-DConvLSTMAE outperformed the naïve and statistical

benchmark models as well as three (3) state-of-the-art

DL time-series models, achieving improved predictive

performance;
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2) in addition to improved predictive performance, our

model required a significantly lower model training time.

This makes 2-DConvLSTMAE not only better in machine

speed prediction but also a more practical approach for

adoption in real manufacturing processes.

The results obtained from this article can be directly applied

to multistep time-series forecasting for smart manufacturing

processes operations, enabling the improvement of production

scheduling and planning. For instance, predicting the machine

speed in advance can be used to foster just in time production by

providing an indication of future production output so that the

operational requirements can be adjusted accordingly. Future

extension of this article includes extending the proposed model

to multivariate time series including machine states and external

sensors data.
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